Mechanisms by Which UV Radiation, a Natural Component of Sunlight, Suppresses the Immune Response

  • Stephen E. Ullrich


The ultraviolet (UV) radiation present in sunlight is the primary cause of skin cancer, the most common form of cancer in the industrialized world. UV exposure is also immunosuppressive, and the immunosuppression induced by sunlight exposure is a major risk factor for skin cancer induction. For this reason, studying the mechanisms underlying UV-mediated immunosuppression has been an active area of research since the initial description of UV-induced immunosuppression and its role in photocarcinogenesis by Margaret Kripke in the early 1970s. Moreover, understanding how this ubiquitous and inescapable environmental agent affects the immune response provides an excellent model system for understanding how the environment influences the immune system. In this chapter I will review some of the more recent findings in this area. I will describe the mechanisms that activate systemic immunosuppression, following a photon of UV light as it penetrates the outermost layers of the skin, and activate photoreceptors, which then starts a cascade of events that ultimately transmits the suppressive signal from the skin to the immune system. I will also briefly describe some of the beneficial effects of UV-induced immunosuppression (i.e., suppressing autoimmunity). Finally, I will review studies demonstrating that applying jet fuel to the skin activates a similar mechanism to induce immunosuppression, indicating that the lessons learned from studying UV-induced immunosuppression may have broader implications for the general toxicology community.


Mast Cell Drain Lymph Node Mometasone Furoate Mast Cell Density Germinal Center Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alard P, Kurimoto I, Niizeki H, Doherty JM, Streilein JW (2001) Hapten-specific tolerance induced by acute, low-dose ultraviolet B radiation of skin requires mast cell degranulation. Eur J Immunol 31:1736–1746PubMedCrossRefGoogle Scholar
  2. Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML et al (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169:569–576PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski AW et al (2012) Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med 18:1286–1290PubMedCrossRefGoogle Scholar
  4. Bickers DR, Lim HW, Margolis D, Weinstock MA, Goodman C, Faulkner E et al (2006) The burden of skin diseases: 2004 a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol 55:490–500PubMedCrossRefGoogle Scholar
  5. Brown EL, Rivas JM, Ullrich SE, Young CR, Norris SJ, Kripke ML (1995) Modulation of immunity to Borrelia burgdorferi by ultraviolet irradiation: differential effect on Th1 and Th2 immune responses. Eur J Immunol 25:3017–3022PubMedCrossRefGoogle Scholar
  6. Bruhs A, Haarmann-Stemmann T, Frauenstein K, Krutmann J, Schwarz T, Schwarz A (2015) Activation of the arylhydrocarbon receptor causes immunosuppression primarily by modulating dendritic cells. J Invest Dermatol 135:435–444PubMedCrossRefGoogle Scholar
  7. Burton JM, Kimball S, Vieth R, Bar-Or A, Dosch HM, Cheung R et al (2010) A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology 74:1852–1859PubMedCentralPubMedCrossRefGoogle Scholar
  8. Byrne SN, Spinks N, Halliday GM (2002) Ultraviolet a irradiation of C57BL/6 mice suppresses systemic contact hypersensitivity or enhances secondary immunity depending on dose. J Invest Dermatol 119:858–864PubMedCrossRefGoogle Scholar
  9. Byrne SN, Ahmed J, Halliday GM (2005) Ultraviolet B but not A radiation activates suppressor B cells in draining lymph nodes. Photochem Photobiol 81:1366–1370PubMedCrossRefGoogle Scholar
  10. Byrne SN, Limón-Flores AY, Ullrich SE (2008) Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J Immunol 180:4648–4655PubMedCentralPubMedCrossRefGoogle Scholar
  11. Byrne SN, Beaugie C, O'Sullivan C, Leighton S, Halliday GM (2011) The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. Am J Pathol 179:211–222PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cestari TF, Kripke ML, Baptista PL, Bakos L, Bucana CD (1995) Ultraviolet radiation decreases the granulomatous response to lepromin in humans. J Invest Dermatol 105:8–13PubMedCrossRefGoogle Scholar
  13. Chacón-Salinas R, Limón-Flores AY, Chávez-Blanco AD, Gonzalez-Estrada A, Ullrich SE (2011) Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J Immunol 186:25–31PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chacón-Salinas R, Chen L, Chávez-Blanco AD, Limón-Flores AY, Ma Y, Ullrich SE (2014) An essential role for platelet-activating factor in activating mast cell migration following ultraviolet irradiation. J Leukoc Biol 95:139–148PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chen CH, Xirasagar S, Lin HC (2006) Seasonality in adult asthma admissions, air pollutant levels, and climate: a population-based study. J Asthma 43:287–292PubMedCrossRefGoogle Scholar
  16. Correale J, Farez MF (2013) Modulation of multiple sclerosis by sunlight exposure: role of cis-urocanic acid. J Neuroimmunol 261:134–140PubMedCrossRefGoogle Scholar
  17. Damian DL, Patterson CR, Stapelberg M, Park J, Barnetson RS, Halliday GM (2007) UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide. J Invest Dermatol 128:447–454PubMedCrossRefGoogle Scholar
  18. De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 158:84–98PubMedCrossRefGoogle Scholar
  19. Denkins YM, Kripke ML (1993) Effect of UV irradiation on lethal infection of mice with Candida albicans. Photochem Photobiol 57:266–271PubMedCrossRefGoogle Scholar
  20. Denkins Y, Fidler IJ, Kripke ML (1989) Exposure of mice to UV-B radiation suppresses delayed hypersensitivity to Candida albicans. Photochem Photobiol 49:615–619PubMedCrossRefGoogle Scholar
  21. Devary Y, Rosette C, DiDonato JA, Karin M (1993) NF-κB activation by ultraviolet light is not dependent on a nuclear signal. Science 261:1442–1445PubMedCrossRefGoogle Scholar
  22. Dixon KM, Norman AW, Sequeira VB, Mohan R, Rybchyn MS, Reeve VE et al (2011) 1{alpha},25(OH)2-vitamin D and a non-genomic vitamin D analog inhibit ultraviolet radiation-induced skin carcinogenesis. Cancer Prev Res (Phila) 4:1485–1494CrossRefGoogle Scholar
  23. Eide MJ, Johnson DA, Jacobsen GR, Krajenta RJ, Rao DS, Lim HW et al (2011) Vitamin D and nonmelanoma skin cancer in a health maintenance organization cohort. Arch Dermatol 147:1379–1384PubMedCrossRefGoogle Scholar
  24. Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J (2013) Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol 35:677–691PubMedCrossRefGoogle Scholar
  25. Fritsche E, Schafer C, Calles C, Bernsmann T, Bernshausen T, Wurm M et al (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci U S A 104:8851–8856PubMedCentralPubMedCrossRefGoogle Scholar
  26. Fukunaga A, Khaskhely NM, Sreevidya CS, Byrne SN, Ullrich SE (2008) Dermal dendritic cells, and not Langerhans cells, play an essential role in inducing an immune response. J Immunol 180:3057–3064PubMedCentralPubMedCrossRefGoogle Scholar
  27. Fukunaga A, Khaskhely NM, Ma Y, Sreevidya CS, Taguchi K, Nishigori C et al (2010) Langerhans cells serve as immunoregulatory cells by activating NKT cells. J Immunol 185:4633–4640PubMedCentralPubMedCrossRefGoogle Scholar
  28. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786PubMedCrossRefGoogle Scholar
  29. Giannini SH (1992) Effects of ultraviolet B irradiation on cutaneous leishmaniasis. Parasitol Today 8:44–48PubMedCrossRefGoogle Scholar
  30. Gibbs NK, Norval M (2013) Photoimmunosuppression: a brief overview. Photodermatol Photoimmunol Photomed 29:57–64PubMedCrossRefGoogle Scholar
  31. Gibbs NK, Tye J, Norval M (2008) Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci 7:655–667PubMedCrossRefGoogle Scholar
  32. Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J et al (2007) Blood-derived dermal langerin + dendritic cells survey the skin in the steady state. J Exp Med 204:3133–3146PubMedCentralPubMedCrossRefGoogle Scholar
  33. Gordon-Thomson C, Gupta R, Tongkao-on W, Ryan A, Halliday GM, Mason RS (2012) 1alpha, 25 dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem Photobiol Sci 11:1837–1847PubMedCrossRefGoogle Scholar
  34. Grimbaldeston MA, Skov L, Baadsgaard O, Skov BG, Marshman G, Finlay-Jones JJ et al (2000) Communications: high dermal mast cell prevalence is a predisposing factor for basal cell carcinoma in humans. J Invest Dermatol 115:317–320PubMedCrossRefGoogle Scholar
  35. Grimbaldeston MA, Pearce AL, Robertson BO, Coventry BJ, Marshman G, Finlay-Jones JJ et al (2004) Association between melanoma and dermal mast cell prevalence in sun-unexposed skin. Br J Dermatol 150:895–903PubMedCrossRefGoogle Scholar
  36. Halliday GM (2005) Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 571:107–120PubMedCrossRefGoogle Scholar
  37. Halliday GM, Byrne SN, Damian DL (2011) Ultraviolet a radiation: its role in immunosuppression and carcinogenesis. Semin Cutan Med Surg 30:214–221PubMedCrossRefGoogle Scholar
  38. Hammerberg C, Katiyar SK, Carroll MC, Cooper KD (1998) Activated complement component 3 (C3) is required for ultraviolet induction of immunosuppression and antigenic tolerance. J Exp Med 187:1133–1138PubMedCentralPubMedCrossRefGoogle Scholar
  39. Hart PH, Grimbaldeston MA, Swift GJ, Jaksic A, Noonan FP, Finlay-Jones JJ (1998) Dermal mast cells determine susceptibility to Ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med 187:2045–2053PubMedCentralPubMedCrossRefGoogle Scholar
  40. Hart PH, Gorman S, Finlay-Jones JJ (2011) Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat Rev Immunol 11:584–596PubMedCrossRefGoogle Scholar
  41. Holan V, Kuffová L, Zajícová A, Krulová M, Filipec M, Holler P et al (1998) Urocanic acid enhances IL-10 production in activated CD4+ T cells. J Immunol 161:3237–3241PubMedGoogle Scholar
  42. Housman TS, Feldman SR, Williford PM, Fleischer AB Jr, Goldman ND, Acostamadiedo JM et al (2003) Skin cancer is among the most costly of all cancers to treat for the medicare population. J Am Acad Dermatol 48:425–429PubMedCrossRefGoogle Scholar
  43. Hughes AM, Lucas RM, Ponsonby AL, Chapman C, Coulthard A, Dear K et al (2011) The role of latitude, ultraviolet radiation exposure and vitamin D in childhood asthma and hayfever: an Australian multicenter study. Pediatr Allergy Immunol 22:327–333PubMedCrossRefGoogle Scholar
  44. Inzinger M, Heschl B, Weger W, Hofer A, Legat FJ, Gruber-Wackernagel A et al (2011) Efficacy of psoralen plus ultraviolet A therapy vs. biologics in moderate to severe chronic plaque psoriasis: retrospective data analysis of a patient registry. Br J Dermatol 165:640–645PubMedCrossRefGoogle Scholar
  45. Jeevan A, Evans R, Brown EL, Kripke ML (1992) Effect of local ultraviolet irradiation on infections of mice with Candida albicans, Mycobacterium bovis BCG, and Schistosoma mansoni. J Invest Dermatol 99:59–64PubMedCrossRefGoogle Scholar
  46. Jeevan A, Ullrich SE, De Gracia M, Shah R, Sun Y (1996) Mechanism of UVB-induced suppression of the immune response to Mycobacterium bovis bacillus Calmette-Guerin: role of cytokines on macrophage function. Photochem Photobiol 64:259–266PubMedCrossRefGoogle Scholar
  47. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kaneko K, Travers JB, Matsui MS, Young AR, Norval M, Walker SL (2009) cis-Urocanic acid stimulates primary human keratinocytes independently of serotonin or platelet-activating factor receptors. J Invest Dermatol 129:2567–2573PubMedCrossRefGoogle Scholar
  49. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ (2005) Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23:611–620PubMedCrossRefGoogle Scholar
  50. Katiyar SK (2007) UV-induced immune suppression and photocarcinogenesis: chemoprevention by dietary botanical agents. Cancer Lett 255:1–11PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kim TH, Ullrich SE, Ananthaswamy HN, Zimmerman S, Kripke ML (1998) Suppression of delayed and contact hypersensitivity responses in mice have different UV dose responses. Photochem Photobiol 68:738–744PubMedCrossRefGoogle Scholar
  52. Kitazawa R, Mori K, Yamaguchi A, Kondo T, Kitazawa S (2008) Modulation of mouse RANKL gene expression by Runx2 and vitamin D3. J Cell Biochem 105:1289–1297PubMedCrossRefGoogle Scholar
  53. Kripke ML (1974) Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst 53:1333–1336PubMedGoogle Scholar
  54. Kripke ML, Cox PA, Alas LG, Yarosh DB (1992) Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci U S A 89:7516–7520PubMedCentralPubMedCrossRefGoogle Scholar
  55. Krstic G (2011) Asthma prevalence associated with geographical latitude and regional insolation in the United States of America and Australia. PLoS One 6, e18492PubMedCentralPubMedCrossRefGoogle Scholar
  56. Kuchel JM, Barnetson RS, Halliday GM (2005) Cyclobutane pyrimidine dimer formation is a molecular trigger for solar-simulated ultraviolet radiation-induced suppression of memory immunity in humans. Photochem Photobiol Sci 4:577–582PubMedCrossRefGoogle Scholar
  57. Kurtitzky LA, Finlay-Jones JJ, Hart PH (2007) The controversial role of vitamin D in the skin: immunosuppression vs. photoprotection. Clin Exp Dermatol 33:167–170CrossRefGoogle Scholar
  58. Lapolla W, Yentzer BA, Bagel J, Halvorson CR, Feldman SR (2011) A review of phototherapy protocols for psoriasis treatment. J Am Acad Dermatol 64:936–949PubMedCrossRefGoogle Scholar
  59. Limón-Flores AY, Chacón-Salinas R, Ramos G, Ullrich SE (2009) Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel. Toxicol Sci 112:144–152PubMedCentralPubMedCrossRefGoogle Scholar
  60. Loh TP, Lai FY, Tan ES, Thoon KC, Tee NW, Cutter J et al (2011) Correlations between clinical illness, respiratory virus infections and climate factors in a tropical paediatric population. Epidemiol Infect 139:1884–1894PubMedCrossRefGoogle Scholar
  61. Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S et al (2007) Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12:1372–1379CrossRefGoogle Scholar
  62. MacLaughlin JA, Anderson RR, Holick MF (1982) Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 216:1001–1003PubMedCrossRefGoogle Scholar
  63. Marathe GK, Johnson C, Billings SD, Southall MD, Pei Y, Spandau D et al (2005) Ultraviolet B radiation generates platelet-activating factor-like phospholipids underlying cutaneous damage. J Biol Chem 280:35448–35457PubMedCrossRefGoogle Scholar
  64. Matsumura Y, Byrne SN, Nghiem DX, Miyahara Y, Ullrich SE (2006) A role for inflammatory mediators in the induction of immunoregulatory B cells. J Immunol 177:4810–4817PubMedCentralPubMedCrossRefGoogle Scholar
  65. Matthews YJ, Halliday GM, Phan TA, Damian DL (2010) Wavelength dependency for UVA-induced suppression of recall immunity in humans. J Dermatol Sci 59:192–197PubMedCrossRefGoogle Scholar
  66. McDougal JN, Pollard DL, Weisman W, Garrett CM, Miller TE (2000) Assessment of skin absorption and penetration of JP-8 jet fuel and its components. Toxicol Sci 55:247–255PubMedCrossRefGoogle Scholar
  67. McGlade JP, Gorman S, Zosky GR, Larcombe AN, Sly PD, Finlay-Jones JJ et al (2007a) Suppression of the asthmatic phenotype by ultraviolet B-induced, antigen-specific regulatory cells. Clin Exp Allergy 37:1267–1276PubMedCrossRefGoogle Scholar
  68. McGlade JP, Gorman S, Lenzo JC, Tan JW, Watanabe T, Finlay-Jones JJ et al (2007b) Effect of both ultraviolet B irradiation and histamine receptor function on allergic responses to an inhaled antigen. J Immunol 178:2794–2802PubMedCrossRefGoogle Scholar
  69. McGlade JP, Strickland DH, Lambert MJ, Gorman S, Thomas JA, Judge MA et al (2010) UV inhibits allergic airways disease in mice by reducing effector CD4 T cells. Clin Exp Allergy 40:772–785PubMedGoogle Scholar
  70. Moodycliffe AM, Nghiem D, Clydesdale G, Ullrich SE (2000) Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol 1:521–525PubMedCrossRefGoogle Scholar
  71. Moyal DD, Fourtanier AM (2001) Broad-spectrum sunscreens provide better protection from the suppression of the elicitation phase of delayed-type hypersensitivity response in humans. J Invest Dermatol 117:1186–1192PubMedCrossRefGoogle Scholar
  72. Müller G, Salonga J, Germann T, Schuler G, Knopp J, Enk AH (1995) IL-12 as mediator and adjuvant for the induction of contact sensitivity in vivo. J Immunol 155:4661–4668PubMedGoogle Scholar
  73. Munger KL, Zhang SM, O'Reilly E, Hernan MA, Olek MJ, Willett WC et al (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62:60–65PubMedCrossRefGoogle Scholar
  74. Navid F, Bruhs A, Schuller W, Fritsche E, Krutmann J, Schwarz T et al (2013) The aryl hydrocarbon receptor is involved in UVR-induced immunosuppression. J Invest Dermatol 133:2763–2770PubMedCrossRefGoogle Scholar
  75. Ng RL, Bisley JL, Gorman S, Norval M, Hart PH (2010) Ultraviolet irradiation of mice reduces the competency of bone marrow-derived CD11c + cells via an indomethacin-inhibitable pathway. J Immunol 185:7207–7215PubMedCrossRefGoogle Scholar
  76. Ng RL, Scott NM, Strickland DH, Gorman S, Grimbaldeston MA, Norval M et al (2013a) Altered immunity and dendritic cell activity in the periphery of mice after long-term engraftment with bone marrow from ultraviolet-irradiated mice. J Immunol 190:5471–5484PubMedCrossRefGoogle Scholar
  77. Ng RL, Scott NM, Bisley JL, Lambert MJ, Gorman S, Norval M et al (2013b) Characterisation of regulatory dendritic cells differentiated from the bone marrow of UV-irradiated mice. Immunology 140:399–412PubMedCentralPubMedCrossRefGoogle Scholar
  78. Nghiem DX, Kazimi N, Clydesdale G, Ananthaswamy HN, Kripke ML, Ullrich SE (2001) Ultraviolet a radiation suppresses an established immune response: implications for sunscreen design. J Invest Dermatol 117:1193–1199PubMedCrossRefGoogle Scholar
  79. Nishigori C, Yarosh DB, Ullrich SE, Vink AA, Bucana CD, Roza L et al (1996) Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proc Natl Acad Sci U S A 93:10354–10359PubMedCentralPubMedCrossRefGoogle Scholar
  80. Noonan FP, De Fabo EC, Morrison H (1988) Cis-urocanic acid, a product formed by UVB irradiation of the skin, initiates an antigen presentation defect in splenic cells in vivo. J Invest Dermatol 90:92–99PubMedCrossRefGoogle Scholar
  81. Nordlind K, Azmitia EC, Slominski A (2008) The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp Dermatol 17:301–311PubMedCrossRefGoogle Scholar
  82. Norval M, Halliday GM (2011) The consequences of UV-induced immunosuppression for human health. Photochem Photobiol 87:965–977PubMedCrossRefGoogle Scholar
  83. Norval M, Woods GM (2011) UV-induced immunosuppression and the efficacy of vaccination. Photochem Photobiol Sci 10:1267–1274PubMedCrossRefGoogle Scholar
  84. O'Connor A, Nishigori C, Yarosh D, Alas L, Kibitel J, Burley L et al (1996) DNA double strand breaks in epidermal cells cause immune suppression in vivo and cytokine production in vitro. J Immunol 157:271–278PubMedGoogle Scholar
  85. Penn I (2000) Post-transplant malignancy: the role of immunosuppression. Drug Saf 23:101–113PubMedCrossRefGoogle Scholar
  86. Petermann F, Korn T (2011) Cytokines and effector T cell subsets causing autoimmune CNS disease. FEBS Lett 585:3747–3757PubMedCrossRefGoogle Scholar
  87. Poon TS, Barnetson RS, Halliday GM (2005) Sunlight-induced immunosuppression in humans is initially because of UVB, then UVA, followed by interactive effects. J Invest Dermatol 125:840–846PubMedCrossRefGoogle Scholar
  88. Prasad R, Katiyar SK (2013) Prostaglandin E2 promotes UV radiation-induced immune suppression through DNA hypermethylation. Neoplasia 15:795–804PubMedCentralPubMedCrossRefGoogle Scholar
  89. Ramos G, Nghiem DX, Walterscheid JP, Ullrich SE (2002) Dermal application of jet fuel suppresses secondary immune reactions. Toxicol Appl Pharmacol 180:136–144PubMedCrossRefGoogle Scholar
  90. Ramos G, Kazimi N, Nghiem DX, Walterscheid JP, Ullrich SE (2004) Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression. Toxicol Appl Pharmacol 195:331–338PubMedCrossRefGoogle Scholar
  91. Ramos G, Limón-Flores AY, Ullrich SE (2009) JP-8 induces immune suppression via a reactive oxygen species NF-kappa beta-dependent mechanism. Toxicol Sci 108:100–109PubMedCentralPubMedCrossRefGoogle Scholar
  92. Randolph DA, Stephens R, Carruthers CJ, Chaplin DD (1999a) Cooperation between Th1 and Th2 cells in a murine model of eosinophilic airway inflammation. J Clin Invest 104:1021–1029PubMedCentralPubMedCrossRefGoogle Scholar
  93. Randolph DA, Carruthers CJ, Szabo SJ, Murphy KM, Chaplin DD (1999b) Modulation of airway inflammation by passive transfer of allergen-specific Th1 and Th2 cells in a mouse model of asthma. J Immunol 162:2375–2383PubMedGoogle Scholar
  94. Rannug A, Rannug U, Rosenkranz HS, Winqvist L, Westerholm R, Agurell E et al (1987) Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J Biol Chem 262:15422–15427PubMedGoogle Scholar
  95. Ritter U, Meissner A, Scheidig C, Korner H (2004) CD8 alpha- and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis. Eur J Immunol 34:1542–1550PubMedCrossRefGoogle Scholar
  96. Rivas JM, Ullrich SE (1992) Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes. An essential role for keratinocyte-derived IL-10. J Immunol 149:3865–3871PubMedGoogle Scholar
  97. Rockel N, Esser C, Grether-Beck S, Warskulat U, Flogel U, Schwarz A et al (2007) The osmolyte taurine protects against ultraviolet B radiation-induced immunosuppression. J Immunol 179:3604–3612PubMedCrossRefGoogle Scholar
  98. Ross JA, Howie SEM, Norval M, Maingay J, Simpson TJ (1986) Ultraviolet-irradiated urocanic acid suppresses delayed type hypersensitivity to herpes simplex virus in mice. J Invest Dermatol 87:630–633PubMedCrossRefGoogle Scholar
  99. Sahu RP, Turner MJ, DaSilva SC, Rashid BM, Ocana JA, Perkins SM et al (2012) The environmental stressor ultraviolet B radiation inhibits murine antitumor immunity through its ability to generate platelet-activating factor agonists. Carcinogenesis 33:1360–1367PubMedCentralPubMedCrossRefGoogle Scholar
  100. Salmaggi A, Dufour A, Eoli M, Corsini E, La Mantia L, Massa G et al (1996) Low serum interleukin-10 levels in multiple sclerosis: further evidence for decreased systemic immunosuppression? J Neurol 243:13–17PubMedCrossRefGoogle Scholar
  101. Sarchio SN, Kok LF, O'Sullivan C, Halliday GM, Byrne SN (2012) Dermal mast cells affect the development of sunlight-induced skin tumours. Exp Dermatol 21:241–248PubMedCrossRefGoogle Scholar
  102. Sarchio SN, Scolyer RA, Beaugie C, McDounald D, Marsh-Wakefield F, Halliday GM, Byrne SN (2014) Pharmacologically antagonizing the CXCR4-CXCL12 chemokine pathway with AMD3100 inhibits sunlight-induced skin cancer. J Invest Dermatol 134:1091–1100PubMedCrossRefGoogle Scholar
  103. Schmitt DA, Ullrich SE (2000) Exposure to ultraviolet radiation causes dendritic cells/macrophages to secrete immune suppressive IL-12p40 homodimers. J Immunol 165:3162–3167PubMedCrossRefGoogle Scholar
  104. Schmitt DA, Owen-Schaub L, Ullrich SE (1995) Effect of IL-12 on immune suppression and suppressor cell induction by ultraviolet radiation. J Immunol 154:5114–5120PubMedGoogle Scholar
  105. Schmitt DA, Walterscheid JP, Ullrich SE (2000) Reversal of ultraviolet radiation-induced immune suppression by recombinant interleukin-12: suppression of cytokine production. Immunology 101:90–96PubMedCentralPubMedCrossRefGoogle Scholar
  106. Schwarz T (2008) 25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells. Photochem Photobiol 84:10–18PubMedCrossRefGoogle Scholar
  107. Schwarz A, Grabbe S, Aragane Y, Sandkuhl K, Riemann H, Luger TA et al (1996) Interleukin-12 prevents ultraviolet B-induced local immunosuppression and overcomes UVB-induced tolerance. J Invest Dermatol 106:1187–1191PubMedCrossRefGoogle Scholar
  108. Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, Schwarz T (2010) Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol 130:1419–1427PubMedCrossRefGoogle Scholar
  109. Schwarz A, Navid F, Sparwasser T, Clausen BE, Schwarz T (2012) 1,25-dihydroxyvitamin D exerts similar immunosuppressive effects as UVR but is dispensable for local UVR-induced immunosuppression. J Invest Dermatol 132:2762–2769PubMedCrossRefGoogle Scholar
  110. Scott NM, Ng RL, Strickland DH, Bisley JL, Bazely SA, Gorman S et al (2012) Toward homeostasis: regulatory dendritic cells from the bone marrow of mice with inflammation of the airways and peritoneal cavity. Am J Pathol 181:535–547PubMedCrossRefGoogle Scholar
  111. Scott NM, Ng RL, Gorman S, Norval M, Waithman J, Hart PH (2014) Prostaglandin E2 imprints a long-lasting effect on dendritic cell progenitors in the bone marrow. J Leukoc Biol 95:225–232PubMedCrossRefGoogle Scholar
  112. Sharief MK, Hentges R (1991) Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med 325:467–472PubMedCrossRefGoogle Scholar
  113. Shklovskaya E, O'Sullivan BJ, Ng LG, Roediger B, Thomas R, Weninger W et al (2011) Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci U S A 108:18049–18054PubMedCentralPubMedCrossRefGoogle Scholar
  114. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  115. Simon MM, Aragane Y, Schwarz A, Luger TA, Schwarz T (1994) UVB light induces a nuclear factor κΒ (NFκΒ) activity independently from chromosomal DNA damage in cell-free cytosolic extracts. J Invest Dermatol 102:422–427PubMedCrossRefGoogle Scholar
  116. Simpson S Jr, Blizzard L, Otahal P, Van der Mei I, Taylor B (2011) Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry 82:1132–1141PubMedCrossRefGoogle Scholar
  117. Singh TP, Schon MP, Wallbrecht K, Michaelis K, Rinner B, Mayer G et al (2010) 8-methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL-23/Th17 axis and induction of Foxp3+ regulatory T cells involving CTLA4 signaling in a psoriasis-like skin disorder. J Immunol 184:7257–7267PubMedCrossRefGoogle Scholar
  118. Singh TP, Huettner B, Koefeler H, Mayer G, Bambach I, Wallbrecht K et al (2011) Platelet-activating factor blockade inhibits the T-helper type 17 cell pathway and suppresses psoriasis-like skin disease in K5.hTGF-beta1 transgenic mice. Am J Pathol 178:699–708PubMedCentralPubMedCrossRefGoogle Scholar
  119. Sreevidya CS, Khaskhely NM, Fukunaga A, Khaskina P, Ullrich SE (2008) Inhibition of photocarcinogenesis by platelet-activating factor or serotonin receptor antagonists. Cancer Res 68:3978–3984PubMedCentralPubMedCrossRefGoogle Scholar
  120. Sreevidya CS, Fukunaga A, Khaskhely NM, Masaki T, Ono R, Nishigori C et al (2010) Agents that reverse UV-induced immune suppression and photocarcinogenesis affect DNA repair. J Invest Dermatol 130:1428–1437PubMedCentralPubMedCrossRefGoogle Scholar
  121. Stapelberg MP, Williams RB, Byrne SN, Halliday GM (2009) The alternative complement pathway seems to be a UVA sensor that leads to systemic immunosuppression. J Invest Dermatol 129:2694–2701PubMedCrossRefGoogle Scholar
  122. Staples JA, Ponsonby AL, Lim LL, McMichael AJ (2003) Ecologic analysis of some immune-related disorders, including type 1 diabetes, in Australia: latitude, regional ultraviolet radiation, and disease prevalence. Environ Health Perspect 111:518–523PubMedCentralPubMedCrossRefGoogle Scholar
  123. Stege H, Roza L, Vink AA, Grewe M, Ruzicka T, Grether-Beck S et al (2000) Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci U S A 97:1790–1795PubMedCentralPubMedCrossRefGoogle Scholar
  124. Surjana D, Halliday GM, Damian DL (2013) Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin. Carcinogenesis 34:1144–1149PubMedCrossRefGoogle Scholar
  125. Toews GB, Bergstresser PR, Streilein JW (1980) Epidermal langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol 124:445–449PubMedGoogle Scholar
  126. Travers JB, Berry D, Yao Y, Yi Q, Konger RL (2010) Ultraviolet B radiation of human skin generates platelet-activating factor receptor agonists. Photochem Photobiol 86:949–954PubMedCentralPubMedCrossRefGoogle Scholar
  127. Ullrich SE (1987) The effect of ultraviolet radiation-induced suppressor cells on T cell activity. Immunology 60:353–360PubMedCentralPubMedGoogle Scholar
  128. Ullrich SE (1996) Does exposure to UV radiation induce a shift to a Th-2-like immune reaction? Photochem Photobiol 64:254–258PubMedCrossRefGoogle Scholar
  129. Ullrich SE (1999) Dermal application of JP-8 jet fuel induces immune suppression. Toxicol Sci 52:61–67PubMedCrossRefGoogle Scholar
  130. Ullrich SE (2005) Mechanisms underlying UV-induced immune suppression. Mutat Res 571:185–205PubMedCrossRefGoogle Scholar
  131. Ullrich SE, Lyons HJ (2000) Mechanisms involved in the immunotoxicity induced by dermal application of JP-8 jet fuel. Toxicol Sci 58:290–298PubMedCrossRefGoogle Scholar
  132. Ullrich SE, Nghiem DX, Khaskina P (2007) Suppression of an established immune response by UVA-a critical role for mast cells. Photochem Photobiol 83:1095–1100PubMedCentralPubMedCrossRefGoogle Scholar
  133. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979PubMedCentralPubMedCrossRefGoogle Scholar
  134. Vink AA, Strickland FM, Bucana C, Cox PA, Roza L, Yarosh DB et al (1996a) Localization of DNA damage and its role in altered antigen-presenting cell function in ultraviolet-irradiated mice. J Exp Med 183:1491–1500PubMedCrossRefGoogle Scholar
  135. Vink AA, Yarosh DB, Kripke ML (1996b) Chromophore for UV-induced immunosuppression: DNA. Photochem Photobiol 63:383–386PubMedCrossRefGoogle Scholar
  136. Vink AA, Moodycliffe AM, Shreedhar V, Ullrich SE, Roza L, Yarosh DB et al (1997) The inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers. Proc Natl Acad Sci U S A 94:5255–5260PubMedCentralPubMedCrossRefGoogle Scholar
  137. Vink AA, Shreedhar V, Roza L, Krutmann J, Kripke ML (1998) Cellular target of UVB-induced DNA damage resulting in local suppression of contact hypersensitivity. J Photochem Photobiol B 44:107–111PubMedCrossRefGoogle Scholar
  138. Walterscheid JP, Ullrich SE, Nghiem DX (2002) Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. J Exp Med 195:171–179PubMedCentralPubMedCrossRefGoogle Scholar
  139. Walterscheid JP, Nghiem DX, Kazimi N, Nutt LK, McConkey DJ, Norval M et al (2006) Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc Natl Acad Sci U S A 103:17420–17425Google Scholar
  140. Ward MD, Sailstad DM, Andrews DL, Boykin EH, Selgrade MK (2004) Ultraviolet radiation downregulates allergy in BALB/c mice. J Toxicol Environ Health A 67:73–85PubMedCrossRefGoogle Scholar
  141. Weichenthal M, Schwarz T (2005) Phototherapy: how does UV work? Photodermatol Photoimmunol Photomed 21:260–266PubMedCrossRefGoogle Scholar
  142. Wille JJ, Kydonieus AF, Murphy GF (1999) cis-urocanic acid induces mast cell degranulation and release of preformed TNF-alpha: a possible mechanism linking UVB and cis-urocanic acid to immunosuppression of contact hypersensitivity. Skin Pharmacol Appl Skin Physiol 12:18–27PubMedCrossRefGoogle Scholar
  143. Witten ML, Zeiger E, Richie GD (eds) (2011) Jet fuel toxicology. CRC Press, Boca RatonGoogle Scholar
  144. Wolf P, Maier H, Mullegger RR, Chadwick CA, Hofmann-Wellenhof R, Soyer HP et al (2000) Topical treatment with liposomes containing T4 endonuclease V protects human skin in vivo from ultraviolet-induced upregulation of interleukin-10 and tumor necrosis factor-alpha. J Invest Dermatol 114:149–156PubMedCrossRefGoogle Scholar
  145. Wolf P, Nghiem DX, Walterscheid JP, Byrne S, Matsumura Y, Matsumura Y et al (2006) Platelet-activating factor is crucial in psoralen and ultraviolet A-induced immune suppression, inflammation, and apoptosis. Am J Pathol 169:795–805PubMedCentralPubMedCrossRefGoogle Scholar
  146. Yarosh D, Klein J, O'Connor A, Hawk J, Rafal E, Wolf P (2001) Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomised study. Xeroderma Pigmentosum Study Group. Lancet 357:926–929PubMedCrossRefGoogle Scholar
  147. Yoshida Y, Kang K, Berger M, Chen G, Gilliam AC, Moser A et al (1998) Monocyte induction of IL-10 and down-regulation of IL-12 by iC3b deposited in ultraviolet-exposed human skin. J Immunol 161:5873–5879PubMedGoogle Scholar
  148. Yoshikawa T, Rae V, Bruins-Slot W, Van den Berg JW, Taylor JR, Streilein JW (1990) Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. J Invest Dermatol 95:530–536PubMedCrossRefGoogle Scholar
  149. Yoshiki R, Kabashima K, Sakabe J, Sugita K, Bito T, Nakamura M et al (2010) The mandatory role of IL-10-producing and OX40 ligand-expressing mature Langerhans cells in local UVB-induced immunosuppression. J Immunol 184:5670–5677PubMedCrossRefGoogle Scholar
  150. Zhang Q, Yao Y, Konger RL, Sinn AL, Cai S, Pollok KE et al (2008) UVB radiation-mediated inhibition of contact hypersensitivity reactions is dependent on the platelet-activating factor system. J Invest Dermatol 128:1780–1787PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations