Environmental Influences on the Immune System: The Aging Immune System

  • Julia N. Mälzer
  • Axel R. Schulz
  • Andreas Thiel


The term “immunosenescence” defines gradual alterations of human immune functions associated with advancing age. Decreasing immunocompetence results in a higher susceptibility to infections and rising incidences of certain malignant and autoimmune diseases in elderly humans. As a major signature for immunosenescence, decreased vaccination efficiencies have been reported regardless of whether vaccinations were of primary or secondary nature. “Inflamm-aging”, referring to the development of chronic systemic low-level inflammation, is further a key aspect of immunosenescence. Since an inflammatory aspect has been described for the pathogenesis of many major age-related diseases such as atherosclerosis and Alzheimer’s disease, the clinical impact of immunosenescence may extend far beyond diseases where a role of immunological dysfunction has been proven. A distorted immunocompetence in the elderly may result from intrinsic cellular changes as well as from external influences affecting the immunological network at all layers. So far, research efforts have found a broad variety of complex age-related alterations regarding the phenotype and the functionality of various types of immune cells, which can be associated with compromised immune functions. Chronic viral infections such as CMV have been confirmed to promote immunosenescence changes by driving exhaustive immune responses. It seems that the regenerative potential of the aged immune system is altered due to changes in the bone marrow microenvironment and a distorted functionality of hematopoietic stem cells. One of the most drastic age-associated changes for the immune system is the involution of the thymus resulting in decreased production of new T cells starting already during early adult age. Interlinking and appreciating these individual signatures is only feasible in conducting bioinformatics and system’s biology approaches. An enhanced understanding of immunosenescence alongside with the development of diagnostic and therapeutic tools to identify and treat age-related impairments in immune functions will be of great scientific and socioeconomic interest, considering the speed and magnitude of population aging worldwide.


West Nile Virus Herpes Zoster Yellow Fever Virus Chronic Viral Infection Thymic Involution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akiyama H et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421PubMedCentralPubMedCrossRefGoogle Scholar
  2. Albright JW, Makinodan T (1976) Decline in the growth potential of spleen-colonizing bone marrow stem cells of long-lived aging mice. J Exp Med 144(5):1204–1213PubMedCrossRefGoogle Scholar
  3. Alexander T et al (2008) Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113(1):214–223PubMedCrossRefGoogle Scholar
  4. Al-Harthi L et al (2000) Detection of T cell receptor circles (TRECs) as biomarkers for de novo T cell synthesis using a quantitative polymerase chain reaction–enzyme linked immunosorbent assay (PCR–ELISA). J Immunol Methods 237(1–2):187–197PubMedCrossRefGoogle Scholar
  5. Andrews NJ et al (2012) Impact and effectiveness of 23-valent pneumococcal polysaccharide vaccine against invasive pneumococcal disease in the elderly in England and Wales. Vaccine 30(48):6802–6808PubMedCrossRefGoogle Scholar
  6. Azar A, Ballas ZK (2014) Immune function in older adults. UpToDate. Cited 29 Nov 2014Google Scholar
  7. Babcock GJ et al (1998) EBV persistence in memory B cells in vivo. Immunity 9(3):395–404PubMedCrossRefGoogle Scholar
  8. Bagnara GP, Bonsi L, Strippoli P, Bonifazi F, Tonelli R, D’Addato S, Paganelli R, Scala E, Fagiolo U, Monti D, Cossarizza A, Bonafé M, Franceschi C (2000) Hemopoiesis in healthy old people and centenarians: well-maintained responsiveness of CD34+ cells to hemopoietic growth factors and remodeling of cytokine network. J Gerontol A Biol Sci Med Sci 55(2):B61–B66PubMedCrossRefGoogle Scholar
  9. Betts MR et al (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107(12):4781–4789PubMedCentralPubMedCrossRefGoogle Scholar
  10. Blackman MA, Woodland DL (2011) The narrowing of the CD8 T cell repertoire in old age. Curr Opin Immunol 23(4):537–542PubMedCentralPubMedCrossRefGoogle Scholar
  11. Boehm T, Swann JB (2013) Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 13(11):831–838PubMedCrossRefGoogle Scholar
  12. Boren E, Gershwin ME (2004) Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev 3(5):401–406PubMedCrossRefGoogle Scholar
  13. Borrego F et al (1999) NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 34(2):253–265PubMedCrossRefGoogle Scholar
  14. Bruunsgaard H et al (2003) Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am J Med 115(4):278–283PubMedCrossRefGoogle Scholar
  15. Busse WW et al (2011) Vaccination of patients with mild and severe asthma with a 2009 pandemic H1N1 influenza virus vaccine. J Allergy Clin Immunol 127(1):130–137.e3PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cancro MP et al (2009) B cells and aging: molecules and mechanisms. Trends Immunol 30(7):313–318PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20(4):202–213PubMedCrossRefGoogle Scholar
  18. Castle SC et al (1999) Antigen presenting cell function is enhanced in healthy elderly. Mech Ageing Dev 107(2):137–145PubMedCrossRefGoogle Scholar
  19. Cawthon RM et al (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395PubMedCrossRefGoogle Scholar
  20. Chandra RK (2004) Impact of nutritional status and nutrient supplements on immune responses and incidence of infection in older individuals. Ageing Res Rev 3(1):91–104PubMedCrossRefGoogle Scholar
  21. Čičin-Šain L et al (2010) Loss of naïve T-cells and repertoire constriction predict poor response to vaccination in old primates. J Immunol 184(12):6739–6745PubMedCentralPubMedCrossRefGoogle Scholar
  22. Cohen JI (2000) Epstein–Barr virus infection. N Engl J Med 343(7):481–492PubMedCrossRefGoogle Scholar
  23. Cohen HJ, Harris T, Pieper CF (2003) Coagulation and activation of inflammatory pathways in the development of functional decline and mortality in the elderly. Am J Med 114(3):180–187PubMedCrossRefGoogle Scholar
  24. Cohen AA et al (2013) A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mech Ageing Dev 134(3–4):110–117PubMedCentralPubMedCrossRefGoogle Scholar
  25. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640PubMedCrossRefGoogle Scholar
  26. Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25(1):4–7PubMedCrossRefGoogle Scholar
  27. de Roux A et al (2008) Comparison of pneumococcal conjugate polysaccharide and free polysaccharide vaccines in elderly adults: conjugate vaccine elicits improved antibacterial immune responses and immunological memory. Clin Infect Dis 46(7):1015–1023PubMedCrossRefGoogle Scholar
  28. Della Bella S et al (2007) Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 122(2):220–228PubMedCrossRefGoogle Scholar
  29. den Braber I et al (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36(2):288–297CrossRefGoogle Scholar
  30. Derhovanessian E et al (2013) Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with poor humoral response to influenza vaccination. Vaccine 31(4):685–690PubMedCrossRefGoogle Scholar
  31. Djojosubroto MW et al (2003) Telomeres and telomerase in aging, regeneration and cancer. Mol Cells 15(2):164–175PubMedGoogle Scholar
  32. Douek DC et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396(6712):690–695PubMedCrossRefGoogle Scholar
  33. Dunn-Walters DK, Ademokun AA (2010) B cell repertoire and ageing. Curr Opin Immunol 22(4):514–520PubMedCrossRefGoogle Scholar
  34. Ericsson CD et al (2001) Travel vaccines and elderly persons: review of vaccines available in the United States. Clin Infect Dis 33(9):1553–1556CrossRefGoogle Scholar
  35. Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51(1):245–270PubMedCrossRefGoogle Scholar
  36. Faltynek CR et al (1992) Administration of human recombinant IL-7 to normal and irradiated mice increases the numbers of lymphocytes and some immature cells of the myeloid lineage. J Immunol 149(4):1276–1282PubMedGoogle Scholar
  37. Ferrucci L et al (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47(6):639–646PubMedCrossRefGoogle Scholar
  38. Fisman DN, Agrawal D, Leder K (2002) Effect of age on immunologic response to recombinant hepatitis B vaccine: a meta-analysis. Clin Infect Dis 35(11):1368–1375PubMedCrossRefGoogle Scholar
  39. Fletcher JM et al (2005) Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J Immunol 175(12):8218–8225PubMedCrossRefGoogle Scholar
  40. Flores KG et al (1999) Analysis of the human thymic perivascular space during aging. J Clin Invest 104(8):1031–1039PubMedCentralPubMedCrossRefGoogle Scholar
  41. Franceschi C, Bonafe M (2003) Centenarians as a model for healthy aging. Biochem Soc Trans 31(2):457–461PubMedCrossRefGoogle Scholar
  42. Franceschi C et al (2000) Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908(1):244–254PubMedCrossRefGoogle Scholar
  43. Francis T (1960) On the doctrine of original antigenic sin. Proc Am Philos Soc 104:572–578Google Scholar
  44. Frasca D et al (2008) Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J Immunol 180(8):5283–5290PubMedCrossRefGoogle Scholar
  45. Fulop T et al (2007) Immunosupportive therapies in aging. Clin Interv Aging 2:33–54PubMedCentralPubMedCrossRefGoogle Scholar
  46. Garbe K et al (2012) Plasmacytoid dendritic cells and their Toll-like receptor 9 expression selectively decrease with age. Hum Immunol 73(5):493–497PubMedCrossRefGoogle Scholar
  47. Gavazzi G, Krause K-H (2002) Ageing and infection. Lancet Infect Dis 2(11):659–666PubMedCrossRefGoogle Scholar
  48. Geiger H, Rudolph KL (2009) Aging in the lympho-hematopoietic stem cell compartment. Trends Immunol 30(7):360–365PubMedCrossRefGoogle Scholar
  49. George AJT, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17(6):267–272PubMedCrossRefGoogle Scholar
  50. Gibson KL et al (2009) B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 8(1):18–25PubMedCentralPubMedCrossRefGoogle Scholar
  51. Goodwin K, Viboud C, Simonsen L (2006) Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24(8):1159–1169PubMedCrossRefGoogle Scholar
  52. Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17(5):468–475PubMedCrossRefGoogle Scholar
  53. Goronzy J, Weyand C (2012) Immune aging and autoimmunity. Cell Mol Life Sci 69(10):1615–1623PubMedCentralPubMedCrossRefGoogle Scholar
  54. Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14(5):428–436PubMedCentralPubMedCrossRefGoogle Scholar
  55. Goronzy JJ et al (2001) Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol 75(24):12182–12187PubMedCentralPubMedCrossRefGoogle Scholar
  56. Gruver AL, Sempowski GD (2008) Cytokines, leptin, and stress-induced thymic atrophy. J Leukoc Biol 84(4):915–923PubMedCentralPubMedCrossRefGoogle Scholar
  57. Guilliams M et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578PubMedCentralPubMedCrossRefGoogle Scholar
  58. Hallgren HM et al (1973) Lymphocyte phytohemagglutinin responsiveness, immunoglobulins and autoantibodies in aging humans. J Immunol 111(4):1101–1107PubMedGoogle Scholar
  59. Hancock K et al (2009) Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 361(20):1945–1952PubMedCrossRefGoogle Scholar
  60. Hayhoe RPG et al (2010) Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Hum Immunol 71(7):676–681PubMedCrossRefGoogle Scholar
  61. Haynes BF et al (2000) The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol 18(1):529–560PubMedCrossRefGoogle Scholar
  62. Hearps AC et al (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11(5):867–875PubMedCrossRefGoogle Scholar
  63. Hislop AD et al (2002) Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection. J Exp Med 195(7):893–905PubMedCentralPubMedCrossRefGoogle Scholar
  64. Holland D et al (2008) Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J Infect Dis 198(5):650–658PubMedCrossRefGoogle Scholar
  65. Howard WA, Gibson KL, Dunn-Walters DK (2006) Antibody quality in old age. Rejuvenation Res 9(1):117–125PubMedCrossRefGoogle Scholar
  66. Jefferson T et al (2007) Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet 366(9492):1165–1174CrossRefGoogle Scholar
  67. Jeffery R (2008) South and Inflammatory and coagulation biomarkers linked to mortality in large treatment interruption trial. P. Clayden (ed.) HIV Treatment Bulletin South. 8/2008. ISSN 20104-1450Google Scholar
  68. Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90PubMedCrossRefGoogle Scholar
  69. Jing Y et al (2009) Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol 70(10):777–784PubMedCrossRefGoogle Scholar
  70. Johnson SA, Cambier JC (2004) Ageing, autoimmunity and arthritis: senescence of the B cell compartment – implications for humoral immunity. Arthritis Res Ther 6(4):131–139PubMedCentralPubMedCrossRefGoogle Scholar
  71. Kaml M et al (2006) Booster vaccination in the elderly: their success depends on the vaccine type applied earlier in life as well as on pre-vaccination antibody titers. Vaccine 24(47–48):6808–6811PubMedCrossRefGoogle Scholar
  72. Kapasi ZF, Murali-Krishna K, McRae ML, Ahmed R (2002) Defective generation but normal maintenance of memory T cells in old mice. Eur J Immunol 32(6):1567–1573PubMedCrossRefGoogle Scholar
  73. Kim JH et al (2009) Original antigenic sin responses to influenza viruses. J Immunol 183(5):3294–3301PubMedCentralPubMedCrossRefGoogle Scholar
  74. Kimmig S et al (2002) Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med 195(6):789–794PubMedCentralPubMedCrossRefGoogle Scholar
  75. Kirkwood TBL (1977) Evolution of ageing. Nature 270(5635):301–304PubMedCrossRefGoogle Scholar
  76. Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408(6809):233–238PubMedCrossRefGoogle Scholar
  77. Klenerman P, Zinkernagel RM (1998) Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 394(6692):482–485PubMedCrossRefGoogle Scholar
  78. Koch S et al (2008) Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing 5(1):6PubMedCentralPubMedCrossRefGoogle Scholar
  79. Kohler S et al (2005) Post‐thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol 35(6):1987–1994PubMedCrossRefGoogle Scholar
  80. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388(4):621–625PubMedCrossRefGoogle Scholar
  81. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34PubMedCrossRefGoogle Scholar
  82. Lanier LL (1998) NK Cell receptors. Annu Rev Immunol 16(1):359–393PubMedCrossRefGoogle Scholar
  83. Levin MJ (2012) Immune senescence and vaccines to prevent herpes zoster in older persons. Curr Opin Immunol 24(4):494–500PubMedCrossRefGoogle Scholar
  84. Levy MZ et al (1992) Telomere end-replication problem and cell aging. J Mol Biol 225(4):951–960PubMedCrossRefGoogle Scholar
  85. Levy Y et al (2009) Enhanced T cell recovery in HIV-1–infected adults through IL-7 treatment. J Clin Invest 119(4):997–1007PubMedCentralPubMedGoogle Scholar
  86. Li G et al (2012) Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med 18(10):1518–1524PubMedCentralPubMedCrossRefGoogle Scholar
  87. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874PubMedCrossRefGoogle Scholar
  88. Licastro F et al (2005) Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing 2(1):8PubMedCentralPubMedCrossRefGoogle Scholar
  89. ListÌ F et al (2006) A study of serum immunoglobulin levels in elderly persons that provides new insights into B cell immunosenescence. Ann N Y Acad Sci 1089(1):487–495PubMedCrossRefGoogle Scholar
  90. Liu Y-J (2004) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23(1):275–306CrossRefGoogle Scholar
  91. Lloberas J, Celada A (2002) Effect of aging on macrophage function. Exp Gerontol 37(12):1325–1331PubMedCrossRefGoogle Scholar
  92. Malaguarnera L, Cristaldi E, Malaguarnera M (2010) The role of immunity in elderly cancer. Crit Rev Oncol Hematol 74(1):40–60PubMedCrossRefGoogle Scholar
  93. Mansfield AS et al (2012) Normal ageing is associated with an increase in Th2 cells, MCP-1 (CCL1) and RANTES (CCL5), with differences in sCD40L and PDGF-AA between sexes. Clin Exp Immunol 170(2):186–193PubMedCentralPubMedCrossRefGoogle Scholar
  94. Mariani E et al (2002) Chemokine production by natural killer cells from nonagenarians. Eur J Immunol 32(6):1524–1529PubMedCrossRefGoogle Scholar
  95. Mariotti S et al (1992) Thyroid and other organ-specific autoantibodies in healthy ceritenarians. Lancet 339(8808):1506–1508PubMedCrossRefGoogle Scholar
  96. Marone G et al (1986) Human basophil releasability: I. Age-related changes in basophil releasability. J Allergy Clin Immunol 77(2):377–383PubMedCrossRefGoogle Scholar
  97. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442PubMedCentralPubMedCrossRefGoogle Scholar
  98. Mathur SK et al (2008) Age-related changes in eosinophil function in human subjects. Chest 133(2):412–419PubMedCentralPubMedCrossRefGoogle Scholar
  99. Matias G et al (2014) Estimates of mortality attributable to influenza and RSV in the United States during 1997–2009 by influenza type or subtype, age, cause of death, and risk status. Influenza Other Respi Viruses 8(5):507–515CrossRefGoogle Scholar
  100. Medzhitov R, Janeway C (2000) Innate immunity. N Engl J Med 343(5):338–344PubMedCrossRefGoogle Scholar
  101. Moniuszko M et al (2004) Recombinant interleukin-7 induces proliferation of naive macaque CD4+ and CD8+ T cells in vivo. J Virol 78(18):9740–9749PubMedCentralPubMedCrossRefGoogle Scholar
  102. Moro-García MA et al (2012) Relationship between functional ability in older people, immune system status, and intensity of response to CMV. Age 34(2):479–495PubMedCentralPubMedCrossRefGoogle Scholar
  103. Morrisette-Thomas V et al (2014) Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev 139:49–57PubMedCrossRefGoogle Scholar
  104. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737PubMedCentralPubMedCrossRefGoogle Scholar
  105. Nash D et al (2001) The outbreak of West Nile virus infection in the New York city area in 1999. N Engl J Med 344(24):1807–1814PubMedCrossRefGoogle Scholar
  106. Nasi M et al (2006) Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life. Aging Cell 5(2):167–175PubMedCrossRefGoogle Scholar
  107. Naylor K et al (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174(11):7446–7452PubMedCrossRefGoogle Scholar
  108. Niwa Y et al (1989) Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci 44(22):1655–1664PubMedCrossRefGoogle Scholar
  109. Ogata K et al (2001) Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol 124(3):392–397PubMedCentralPubMedCrossRefGoogle Scholar
  110. Ogawa T, Kitagawa M, Hirokawa K (2000) Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev 117(1–3):57–68PubMedCrossRefGoogle Scholar
  111. Olivieri F et al (2012) Telomere/telomerase system: a new target of statins pleiotropic effect? Curr Vasc Pharmacol 10(2):216–224PubMedCrossRefGoogle Scholar
  112. Ouyang Q et al (2004) Dysfunctional CMV-specific CD8+ T cells accumulate in the elderly. Exp Gerontol 39(4):607–613PubMedCrossRefGoogle Scholar
  113. Panda A et al (2010) Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 184(5):2518–2527PubMedCrossRefGoogle Scholar
  114. Pawelec G (2014) Immunosenenescence: role of cytomegalovirus. Exp Gerontol 54:1–5PubMedCrossRefGoogle Scholar
  115. Pawelec G et al (2002) Is human immunosenescence clinically relevant? Looking for ‘immunological risk phenotypes’. Trends Immunol 23(7):330–332PubMedCrossRefGoogle Scholar
  116. Pawelec G et al (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19(1):47–56PubMedCrossRefGoogle Scholar
  117. Plowden J et al (2004) Innate immunity in aging: impact on macrophage function. Aging Cell 3(4):161–167PubMedCrossRefGoogle Scholar
  118. Qian F et al (2011) Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis 203(10):1415–1424PubMedCentralPubMedCrossRefGoogle Scholar
  119. Ramos-Casals M et al (2004) Systemic autoimmune diseases in elderly patients: atypical presentation and association with neoplasia. Autoimmun Rev 3(5):376–382PubMedCrossRefGoogle Scholar
  120. Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6(6):476–483PubMedCrossRefGoogle Scholar
  121. Roberts ET et al (2010) Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol 172(4):363–371PubMedCentralPubMedCrossRefGoogle Scholar
  122. Rossi DJ, Bryder D, Weissman IL (2007) Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol 42(5):385–390PubMedCentralPubMedCrossRefGoogle Scholar
  123. Ruiz-Limon P et al (2015) Atherosclerosis and cardiovascular disease in systemic lupus erythematosus: effects of in vivo statin treatment. Ann Rheum Dis 74:1450–1458Google Scholar
  124. Sadeghi HM et al (1999) Phenotypic and functional characteristics of circulating monocytes of elderly persons. Exp Gerontol 34(8):959–970PubMedCrossRefGoogle Scholar
  125. Sadighi Akha AA, Miller RA (2005) Signal transduction in the aging immune system. Curr Opin Immunol 17(5):486–491PubMedCrossRefGoogle Scholar
  126. Sakata-Kaneko S et al (2000) Altered Th1/Th2 commitment in human CD4+ T cells with ageing. Clin Exp Immunol 120(2):267–273PubMedCentralPubMedCrossRefGoogle Scholar
  127. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22(1):745–763PubMedCrossRefGoogle Scholar
  128. Sandmand M et al (2002) Is ageing associated with a shift in the balance between Type 1 and Type 2 cytokines in humans? Clin Exp Immunol 127(1):107–114PubMedCentralPubMedCrossRefGoogle Scholar
  129. Saurwein-Teissl M et al (2002) Lack of antibody production following immunization in old age: association with CD8 + CD28− T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168(11):5893–5899PubMedCrossRefGoogle Scholar
  130. Schubert C (2010) New vaccine tailored to the weakened elderly immune system. Nat Med 16(2):137PubMedCrossRefGoogle Scholar
  131. Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(4):247–258PubMedCrossRefGoogle Scholar
  132. Seidler S et al (2010) Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 11:30PubMedCentralPubMedCrossRefGoogle Scholar
  133. Seok J et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci 110(9):3507–3512PubMedCentralPubMedCrossRefGoogle Scholar
  134. Shanley DP et al (2009) An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 30(7):374–381PubMedCrossRefGoogle Scholar
  135. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887PubMedCentralPubMedCrossRefGoogle Scholar
  136. Small TN et al (1999) Comparison of immune reconstitution after unrelated and related T-cell–depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 93:467–480Google Scholar
  137. Solana R et al (2012) CMV and immunosenescence: from basics to clinics. Immun Ageing 9(1):23PubMedCentralPubMedCrossRefGoogle Scholar
  138. Sportès C et al (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205(7):1701–1714PubMedCentralPubMedCrossRefGoogle Scholar
  139. Sridharan A et al (2011) Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity. Age 33(3):363–376PubMedCentralPubMedCrossRefGoogle Scholar
  140. Stanziano DC et al (2010) A review of selected longitudinal studies on aging: past findings and future directions. J Am Geriatr Soc 58:S292–S297PubMedCentralPubMedCrossRefGoogle Scholar
  141. Staras SAS et al (2006) Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis 43(9):1143–1151PubMedCrossRefGoogle Scholar
  142. Steger MM, Maczek C, Grubeck-Loebenstein B (1997) Peripheral blood dendritic cells reinduce proliferation in in vitro aged T cell populations. Mech Ageing Dev 93(1–3):125–130PubMedCrossRefGoogle Scholar
  143. Stiasny K et al (2012) Age affects quantity but not quality of antibody responses after vaccination with an inactivated flavivirus vaccine against tick-borne encephalitis. PLoS One 7(3):e34145PubMedCentralPubMedCrossRefGoogle Scholar
  144. Strindhall J et al (2007) No immune risk profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 42(8):753–761PubMedCrossRefGoogle Scholar
  145. Sutherland JS et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175(4):2741–2753PubMedCrossRefGoogle Scholar
  146. Sylwester AW et al (2005) Broadly targeted human cytomegalovirus-specific CD4(+) and CD8(+) T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685PubMedCentralPubMedCrossRefGoogle Scholar
  147. Tacke F, Randolph GJ (2006) Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211(6–8):609–618PubMedCrossRefGoogle Scholar
  148. Tan LC et al (1999) A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J Immunol 162(3):1827–1835PubMedGoogle Scholar
  149. Teixeira BC et al (2014) Inflammatory markers, endothelial function and cardiovascular risk. J Vasc Bras 13(2):108–115CrossRefGoogle Scholar
  150. Thompson WW et al (2009) Estimating influenza-associated deaths in the United States. Am J Public Health 99(S2):S225–S230PubMedCentralPubMedCrossRefGoogle Scholar
  151. Torroba M, Zapata AG (2003) Aging of the vertebrate immune system. Microsc Res Tech 62(6):477–481PubMedCrossRefGoogle Scholar
  152. Trzonkowski P et al (2003) Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination—an impact of immunosenescence. Vaccine 21(25–26):3826–3836PubMedCrossRefGoogle Scholar
  153. Tseng CW, Liu GY (2014) Expanding roles of neutrophils in aging hosts. Curr Opin Immunol 29:43–48PubMedCrossRefGoogle Scholar
  154. United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Ageing 2013. ST/ESA/SER.A/348Google Scholar
  155. Vadasz Z et al (2013) Age-related autoimmunity. BMC Med 11:94PubMedCentralPubMedCrossRefGoogle Scholar
  156. van Duin D et al (2007a) Age-associated defect in human TLR-1/2 function. J Immunol 178(2):970–975PubMedCrossRefGoogle Scholar
  157. van Duin D et al (2007b) Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. J Infect Dis 195(11):1590–1597PubMedCrossRefGoogle Scholar
  158. Vaziri H et al (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci 91(21):9857–9860PubMedCentralPubMedCrossRefGoogle Scholar
  159. Wang C et al (2014) Effects of aging, cytomegalovirus infection, and EBV infection on human B cell repertoires. J Immunol 192(2):603–611PubMedCentralPubMedCrossRefGoogle Scholar
  160. Weinberger B, Grubeck-Loebenstein B (2012) Vaccines for the elderly. Clin Microbiol Infect 18:100–108PubMedCrossRefGoogle Scholar
  161. Weston WM et al (2012) Vaccination of adults 65 years of age and older with tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine (Boostrix®): results of two randomized trials. Vaccine 30(9):1721–1728PubMedCrossRefGoogle Scholar
  162. WHO (2014) World Health Statistics. The top 10 causes of death. Fact sheet N°310, ISBN 978924 1564885;
  163. Zhang X et al (1999) Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 13(18):2388–2399PubMedCentralPubMedCrossRefGoogle Scholar
  164. Zimmermann HW et al (2010) Functional contribution of elevated circulating and hepatic non-classical CD14(+)CD16(+) monocytes to inflammation and human liver fibrosis. PLoS One 5(6):e11049PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Julia N. Mälzer
    • 1
  • Axel R. Schulz
    • 1
  • Andreas Thiel
    • 2
  1. 1.Regenerative Immunology and AgingBerlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin BerlinBerlinGermany
  2. 2.Regenerative Immunology and AgingBerlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-KlinikumBerlinGermany

Personalised recommendations