Influence of Early-Life Environmental Exposures on Immune Function Across the Life Span

  • Lisbeth A. Boule
  • B. Paige Lawrence


As described in other chapters of this book, the function of the mature, fully formed immune system can be altered by a variety of environmental factors. While it is important to understand how these exposures modulate the immune system, an understudied aspect of how the environment shapes the immune system is the impact of exposures during development on the way the immune system functions later in life. Early life is a particularly susceptible time window for environmental exposures, because this is when the development and programming of multiple organs systems occurs (Nat Struct Mol Biol 20(3):282–289, 2013). In fact, some studies have shown that exposures during development lead to persistent changes in the function of other organ systems. Moreover, exposures during critical developmental periods lead to potentially permanent functional differences, as opposed to the generally transient changes that occurs after exposures during adulthood (Environ Health Perspect 120(10):1353–1361, 2012). Herein, we review the current evidence that the function of the immune system is sensitive to perturbation by developmental exposure to environmental agents. For some compounds, there is strong evidence that there are persistent immune defects associated with developmental exposures. For others, there are a handful of studies that suggest there may be immune consequences of developmental exposures. However, for many exposures little or nothing is known about whether developmental exposure has immunomodulatory effects that persist later in life. To provide an overview of current knowledge, we divide these exposures into five groups: pollutants for which a specific cellular receptor has been identified, smoke, heavy metals, pharmaceuticals, and maternal diet. Clearly, some of these agents contain a mixture of components, and metabolites of these agents may fall in to more than one category. Thus, in some situations the developing immune system is likely exposed to multiple environmental insults simultaneously. However, for brevity they are discussed in one place, acknowledging that these categories are not mutually exclusive.


Immune Function Smoke Exposure Arsenic Exposure Inorganic Mercury Biomass Fuel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abedi-Valugerdi M, Hu H, Moller G (1999) Mercury-induced anti-nucleolar autoantibodies can transgress the membrane of living cells in vivo and in vitro. Int Immunol 11(4):605–615PubMedCrossRefGoogle Scholar
  2. Ahmed S, Ahsan KB, Kippler M, Mily A, Wagatsuma Y, Hoque AM, Ngom PT, El Arifeen S, Raqib R, Vahter M (2012) In utero arsenic exposure is associated with impaired thymic function in newborns possibly via oxidative stress and apoptosis. Toxicol Sci 129(2):305–314. doi: 10.1093/toxsci/kfs202 PubMedCrossRefGoogle Scholar
  3. Al-Saleh I, Shinwari N, Mashhour A, Mohamed Gel D, Rabah A (2011) Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health 214(2):79–101. doi: 10.1016/j.ijheh.2010.10.001 PubMedCrossRefGoogle Scholar
  4. Antonucci R, Zaffanello M, Puxeddu E, Porcella A, Cuzzolin L, Pilloni MD, Fanos V (2012) Use of non-steroidal anti-inflammatory drugs in pregnancy: impact on the fetus and newborn. Curr Drug Metab 13(4):474–490PubMedCrossRefGoogle Scholar
  5. Baarsma R, Kamps WA (1993) Immunological responses in an infant after cyclosporine A exposure during pregnancy. Eur J Pediatr 152(6):476–477PubMedCrossRefGoogle Scholar
  6. Babalik A, Bakirci N, Taylan M, Bostan L, Kiziltas S, Basbug Y, Calisir HC (2013) Biomass smoke exposure as a serious health hazard for women. Tuberk Toraks 61(2):115–121PubMedCrossRefGoogle Scholar
  7. Bakker JM, Schmidt ED, Kroes H, Kavelaars A, Heijnen CJ, Tilders FJ, van Rees EP (1995) Effects of short-term dexamethasone treatment during pregnancy on the development of the immune system and the hypothalamo-pituitary adrenal axis in the rat. J Neuroimmunol 63(2):183–191PubMedCrossRefGoogle Scholar
  8. Barber K, Mussin E, Taylor DK (1996) Fetal exposure to involuntary maternal smoking and childhood respiratory disease. Ann Allergy Asthma Immunol 76(5):427–430. doi: 10.1016/S1081-1206(10)63459-X PubMedCrossRefGoogle Scholar
  9. Barrow PC, Horand F, Ravel G (2006) Developmental immunotoxicity investigations in the SD rat following pre- and post-natal exposure to cyclosporin. Birth Defects Res B Dev Reprod Toxicol 77(5):430–437. doi: 10.1002/bdrb.20093 PubMedCrossRefGoogle Scholar
  10. Bauer SM, Roy A, Emo J, Chapman TJ, Georas SN, Lawrence BP (2012) The effects of maternal exposure to bisphenol A on allergic lung inflammation into adulthood. Toxicol Sci 130(1):82–93. doi: 10.1093/toxsci/kfs227 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bilrha H, Roy R, Wagner E, Belles-Isles M, Bailey JL, Ayotte P (2004) Effects of gestational and lactational exposure to organochlorine compounds on cellular, humoral, and innate immunity in swine. Toxicol Sci 77(1):41–50. doi: 10.1093/toxsci/kfg240 PubMedCrossRefGoogle Scholar
  12. Bjermo H, Sand S, Nalsen C, Lundh T, Enghardt Barbieri H, Pearson M, Lindroos AK, Jonsson BA, Barregard L, Darnerud PO (2013) Lead, mercury, and cadmium in blood and their relation to diet among Swedish adults. Food Chem Toxicol 57:161–169. doi: 10.1016/j.fct.2013.03.024 PubMedCrossRefGoogle Scholar
  13. Bodin J, Bolling AK, Becher R, Kuper F, Lovik M, Nygaard UC (2014) Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci 137(2):311–323. doi: 10.1093/toxsci/kft242 PubMedCrossRefGoogle Scholar
  14. Bonfanti P, Colombo A, Villa S, Comelli F, Costa B, Santagostino A (2009) The effects of accumulation of an environmentally relevant polychlorinated biphenyl mixture on cytochrome P450 and P-glycoprotein expressions in fetuses and pregnant rats. Chemosphere 75(5):572–579. doi: 10.1016/j.chemosphere.2009.01.063 PubMedCrossRefGoogle Scholar
  15. Bradley JP, Bacharier LB, Bonfiglio J, Schechtman KB, Strunk R, Storch G, Castro M (2005) Severity of respiratory syncytial virus bronchiolitis is affected by cigarette smoke exposure and atopy. Pediatrics 115(1):e7–e14. doi: 10.1542/peds.2004-0059 PubMedGoogle Scholar
  16. Breckenridge BCSJ, Eldridge JC, Stevens JT (eds) (2010) Symmetrical triazine herbicides: a review of regulatory endpoints. Handbook of pesticide toxicology: agents, 3rd edn. Academic, New YorkGoogle Scholar
  17. Burke H, Leonardi-Bee J, Hashim A, Pine-Abata H, Chen Y, Cook DG, Britton JR, McKeever TM (2012) Prenatal and passive smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics 129(4):735–744. doi: 10.1542/peds.2011-2196 PubMedCrossRefGoogle Scholar
  18. Bushnik T, Haines D, Levallois P, Levesque J, Van Oostdam J, Viau C (2010) Lead and bisphenol A concentrations in the Canadian population. Health Rep 21(3):7–18PubMedGoogle Scholar
  19. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116(1):39–44. doi: 10.1289/ehp.10753 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Carney EW, Zablotny CL, Marty MS, Crissman JW, Anderson P, Woolhiser M, Holsapple M (2004) The effects of feed restriction during in utero and postnatal development in rats. Toxicol Sci 82(1):237–249. doi: 10.1093/toxsci/kfh249 PubMedCrossRefGoogle Scholar
  21. Castillo P, Ibanez F, Guajardo A, Llanos MN, Ronco AM (2012) Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus. PLoS One 7(9), e44139. doi: 10.1371/journal.pone.0044139 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Chapin RE, Adams J, Boekelheide K, Gray LE Jr, Hayward SW, Lees PS, McIntyre BS, Portier KM, Schnorr TM, Selevan SG, Vandenbergh JG, Woskie SR (2008) NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Res B Dev Reprod Toxicol 83(3):157–395. doi: 10.1002/bdrb.20147 PubMedCrossRefGoogle Scholar
  23. Cheraghi M, Salvi S (2009) Environmental tobacco smoke (ETS) and respiratory health in children. Eur J Pediatr 168(8):897–905. doi: 10.1007/s00431-009-0967-3 PubMedCrossRefGoogle Scholar
  24. Classen JB, Shevach EM (1991) Evidence that cyclosporine treatment during pregnancy predisposes offspring to develop autoantibodies. Transplantation 51(5):1052–1057PubMedCrossRefGoogle Scholar
  25. Collinge M, Burns-Naas LA, Chellman GJ, Kawabata TT, Komocsar WJ, Piccotti JR, Shenton J, Wierda D (2012) Developmental immunotoxicity (DIT) testing of pharmaceuticals: current practices, state of the science, knowledge gaps, and recommendations. J Immunotoxicol 9(2):210–230. doi: 10.3109/1547691X.2012.661486 PubMedCrossRefGoogle Scholar
  26. Corsini E, Luebke RW, Germolec DR, Dewitt JC (2014) Perfluorinated compounds: Emerging POPs with potential immunotoxicity. Toxicol Lett. doi: 10.1016/j.toxlet.2014.01.038 PubMedCentralGoogle Scholar
  27. Couse JF, Dixon D, Yates M, Moore AB, Ma L, Maas R, Korach KS (2001) Estrogen receptor-alpha knockout mice exhibit resistance to the developmental effects of neonatal diethylstilbestrol exposure on the female reproductive tract. Dev Biol 238(2):224–238. doi: 10.1006/dbio.2001.0413 PubMedCrossRefGoogle Scholar
  28. Cronican AA, Fitz NF, Carter A, Saleem M, Shiva S, Barchowsky A, Koldamova R, Schug J, Lefterov I (2013) Genome-wide alteration of histone H3K9 acetylation pattern in mouse offspring prenatally exposed to arsenic. PLoS One 8(2), e53478. doi: 10.1371/journal.pone.0053478 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Cupul-Uicab LA, Skjaerven R, Haug K, Melve KK, Engel SM, Longnecker MP (2012) In utero exposure to maternal tobacco smoke and subsequent obesity, hypertension, and gestational diabetes among women in the MoBa cohort. Environ Health Perspect 120(3):355–360. doi: 10.1289/ehp.1103789 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Dallaire F, Dewailly E, Muckle G, Vezina C, Jacobson SW, Jacobson JL, Ayotte P (2004) Acute infections and environmental exposure to organochlorines in Inuit infants from Nunavik. Environ Health Perspect 112(14):1359–1365PubMedCentralPubMedCrossRefGoogle Scholar
  31. Dallaire F, Dewailly E, Vezina C, Muckle G, Weber JP, Bruneau S, Ayotte P (2006) Effect of prenatal exposure to polychlorinated biphenyls on incidence of acute respiratory infections in preschool Inuit children. Environ Health Perspect 114(8):1301–1305PubMedCentralPubMedCrossRefGoogle Scholar
  32. Davidson PW, Myers GJ, Weiss B, Shamlaye CF, Cox C (2006) Prenatal methyl mercury exposure from fish consumption and child development: a review of evidence and perspectives from the Seychelles Child Development Study. Neurotoxicology 27(6):1106–1109. doi: 10.1016/j.neuro.2006.03.024 PubMedCrossRefGoogle Scholar
  33. Devereux G, Barker RN, Seaton A (2002) Antenatal determinants of neonatal immune responses to allergens. Clin Exp Allergy 32(1):43–50PubMedCrossRefGoogle Scholar
  34. Dewailly E, Ayotte P, Bruneau S, Gingras S, Belles-Isles M, Roy R (2000) Susceptibility to infections and immune status in Inuit infants exposed to organochlorines. Environ Health Perspect 108(3):205–211PubMedCentralPubMedCrossRefGoogle Scholar
  35. DeWitt JC, Copeland CB, Luebke RW (2007) Immune function is not impaired in Sprague-Dawley rats exposed to dimethyltin dichloride (DMTC) during development or adulthood. Toxicology 232(3):303–310. doi: 10.1016/j.tox.2007.01.017
  36. Dietert RR, Lee JE, Olsen J, Fitch K, Marsh JA (2003) Developmental immunotoxicity of dexamethasone: comparison of fetal versus adult exposures. Toxicology 194(1–2):163–176PubMedCrossRefGoogle Scholar
  37. Dietert RR, Lee JE, Hussain I, Piepenbrink M (2004) Developmental immunotoxicology of lead. Toxicol Appl Pharmacol 198(2):86–94. doi: 10.1016/j.taap.2003.08.020 PubMedCrossRefGoogle Scholar
  38. Diette GB, Accinelli RA, Balmes JR, Buist AS, Checkley W, Garbe P, Hansel NN, Kapil V, Gordon S, Lagat DK, Yip F, Mortimer K, Perez-Padilla R, Roth C, Schwaninger JM, Punturieri A, Kiley J (2012) Obstructive lung disease and exposure to burning biomass fuel in the indoor environment. Glob Heart 7(3):265–270. doi: 10.1016/j.gheart.2012.06.016 PubMedCentralPubMedCrossRefGoogle Scholar
  39. DiFranza JR, Aligne CA, Weitzman M (2004) Prenatal and postnatal environmental tobacco smoke exposure and children’s health. Pediatrics 113(4 Suppl):1007–1015PubMedGoogle Scholar
  40. Doherty SP, Grabowski J, Hoffman C, Ng SP, Zelikoff JT (2009) Early life insult from cigarette smoke may be predictive of chronic diseases later in life. Biomarkers 14(Suppl 1):97–101. doi: 10.1080/13547500902965898 PubMedCrossRefGoogle Scholar
  41. Domingo JL, Bocio A (2007) Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: a literature review. Environ Int 33(3):397–405. doi: 10.1016/j.envint.2006.12.004 PubMedCrossRefGoogle Scholar
  42. Donohue KM, Miller RL, Perzanowski MS, Just AC, Hoepner LA, Arunajadai S, Canfield S, Resnick D, Calafat AM, Perera FP, Whyatt RM (2013) Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J Allergy Clin Immunol 131(3):736–742. doi: 10.1016/j.jaci.2012.12.1573 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Dostal M, Benesova O, Tejkalova H, Soukupova D (1995) Immune response of adult rats is altered by administration of diazepam in the first postnatal week. Reprod Toxicol 9(2):115–121PubMedCrossRefGoogle Scholar
  44. Faith RE, Moore JA (1977) Impairment of thymus-dependent immune functions by exposure of the developing immune system to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). J Toxicol Environ Health 3(3):451–464. doi: 10.1080/15287397709529578 PubMedCrossRefGoogle Scholar
  45. Ferre P (2004) The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53(Suppl 1):S43–S50PubMedCrossRefGoogle Scholar
  46. Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, Bhattacharya S, Kandjanapa K, Soontararuks S, Nookabkaew S, Mahidol C, Ruchirawat M, Samson LD (2007) Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet 3(11), e207. doi: 10.1371/journal.pgen.0030207 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Gasiewicz TA, Geiger LE, Rucci G, Neal RA (1983) Distribution, excretion, and metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J, DBA/2J, and B6D2F1/J mice. Drug Metab Dispos 11(5):397–403PubMedGoogle Scholar
  48. Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, Maghuin-Rogister G, Pironnet AM, Pussemier L, Scippo ML, Van Loco J, Covaci A (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–3740. doi: 10.1016/j.fct.2012.07.059 PubMedCrossRefGoogle Scholar
  49. Gehrs BC, Smialowicz RJ (1997) Alterations in the developing immune system of the F344 rat after perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin I. [correction of II]. Effects on the fetus and the neonate. Toxicology 122(3):219–228PubMedCrossRefGoogle Scholar
  50. Gehrs BC, Smialowicz RJ (1999) Persistent suppression of delayed-type hypersensitivity in adult F344 rats after perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology 134(1):79–88PubMedCrossRefGoogle Scholar
  51. Gehrs BC, Riddle MM, Williams WC, Smialowicz RJ (1997) Alterations in the developing immune system of the F344 rat after perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin: II. Effects on the pup and the adult. Toxicology 122(3):229–240PubMedCrossRefGoogle Scholar
  52. Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36(7):146A–152APubMedCrossRefGoogle Scholar
  53. Glynn A, Thuvander A, Aune M, Johannisson A, Darnerud PO, Ronquist G, Cnattingius S (2008) Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study. Environ Health 7:62. doi: 10.1186/1476-069X-7-62
  54. Gore AC (2008) Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Front Neuroendocrinol 29(3):358–374. doi: 10.1016/j.yfrne.2008.02.002 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, Heilmann C (2012) Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 307(4):391–397. doi: 10.1001/jama.2011.2034 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Granot E, Jakobovich E, Rabinowitz R, Levy P, Schlesinger M (2011) DHA supplementation during pregnancy and lactation affects infants’ cellular but not humoral immune response. Mediators Inflamm 2011:493925. doi: 10.1155/2011/493925 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Guarnieri MJ, Diaz JV, Basu C, Diaz A, Pope D, Smith KR, Smith-Sivertsen T, Bruce N, Solomon C, McCracken J, Balmes JR (2014) Effects of woodsmoke exposure on airway inflammation in rural Guatemalan women. PLoS One 9(3), e88455. doi: 10.1371/journal.pone.0088455 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Guo YL, Lambert GH, Hsu CC, Hsu MM (2004) Yucheng: health effects of prenatal exposure to polychlorinated biphenyls and dibenzofurans. Int Arch Occup Environ Health 77(3):153–158. doi: 10.1007/s00420-003-0487-9 PubMedCrossRefGoogle Scholar
  59. Han SG, Bhoopalan V, Akinbiyi T, Gairola CG, Bhalla DK (2011) In utero tobacco smoke exposure alters pulmonary responses of newborn rats to ozone. J Toxicol Environ Health A 74(10):668–677. doi: 10.1080/15287394.2011.539133 PubMedCrossRefGoogle Scholar
  60. Hanson ML, Brundage KM, Schafer R, Tou JC, Barnett JB (2010) Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development. Toxicol Appl Pharmacol 242(2):136–145. doi: 10.1016/j.taap.2009.09.023 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Hanson ML, Holaskova I, Elliott M, Brundage KM, Schafer R, Barnett JB (2012) Prenatal cadmium exposure alters postnatal immune cell development and function. Toxicol Appl Pharmacol 261(2):196–203. doi: 10.1016/j.taap.2012.04.002 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Heilmann C, Grandjean P, Weihe P, Nielsen F, Budtz-Jorgensen E (2006) Reduced antibody responses to vaccinations in children exposed to polychlorinated biphenyls. PLoS Med 3(8), e311. doi: 10.1371/journal.pmed.0030311 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Heilmann C, Budtz-Jorgensen E, Nielsen F, Heinzow B, Weihe P, Grandjean P (2010) Serum concentrations of antibodies against vaccine toxoids in children exposed perinatally to immunotoxicants. Environ Health Perspect 118(10):1434–1438. doi: 10.1289/ehp.1001975 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Herberth G, Bauer M, Gasch M, Hinz D, Roder S, Olek S, Kohajda T, Rolle-Kampczyk U, von Bergen M, Sack U, Borte M, Lehmann I (2014) Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 133(2):543–550. doi: 10.1016/j.jaci.2013.06.036 PubMedCrossRefGoogle Scholar
  65. Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284(15):878–881. doi: 10.1056/NEJM197104222841604 PubMedCrossRefGoogle Scholar
  66. Herr CE, Dostal M, Ghosh R, Ashwood P, Lipsett M, Pinkerton KE, Sram R, Hertz-Picciotto I (2010) Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths. Environ Health 9:46. doi: 10.1186/1476-069X-9-46 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Herr CE, Ghosh R, Dostal M, Skokanova V, Ashwood P, Lipsett M, Joad JP, Pinkerton KE, Yap PS, Frost JD, Sram R, Hertz-Picciotto I (2011) Exposure to air pollution in critical prenatal time windows and IgE levels in newborns. Pediatr Allergy Immunol 22(1 Pt 1):75–84. doi: 10.1111/j.1399-3038.2010.01074.x PubMedCrossRefGoogle Scholar
  68. Hochstenbach K, van Leeuwen DM, Gmuender H, Gottschalk RW, Stolevik SB, Nygaard UC, Lovik M, Granum B, Namork E, Meltzer HM, Kleinjans JC, van Delft JH, van Loveren H (2012) Toxicogenomic profiles in relation to maternal immunotoxic exposure and immune functionality in newborns. Toxicol Sci 129(2):315–324. doi: 10.1093/toxsci/kfs214 PubMedCentralPubMedCrossRefGoogle Scholar
  69. Hofhuis W, de Jongste JC, Merkus PJ (2003) Adverse health effects of prenatal and postnatal tobacco smoke exposure on children. Arch Dis Child 88(12):1086–1090PubMedCentralPubMedCrossRefGoogle Scholar
  70. Hogaboam JP, Moore AJ, Lawrence BP (2008) The aryl hydrocarbon receptor affects distinct tissue compartments during ontogeny of the immune system. Toxicol Sci 102(1):160–170. doi: 10.1093/toxsci/kfm283 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Holaskova I, Elliott M, Hanson ML, Schafer R, Barnett JB (2012) Prenatal cadmium exposure produces persistent changes to thymus and spleen cell phenotypic repertoire as well as the acquired immune response. Toxicol Appl Pharmacol 265(2):181–189. doi: 10.1016/j.taap.2012.10.009 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Holladay SD, Mustafa A, Gogal RM Jr (2011) Prenatal TCDD in mice increases adult autoimmunity. Reprod Toxicol 31(3):312–318. doi: 10.1016/j.reprotox.2010.08.001 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Holmes P, James KA, Levy LS (2009) Is low-level environmental mercury exposure of concern to human health? Sci Total Environ 408(2):171–182. doi: 10.1016/j.scitotenv.2009.09.043 PubMedCrossRefGoogle Scholar
  74. Hu H, Moller G, Abedi-Valugerdi M (1999) Mechanism of mercury-induced autoimmunity: both T helper 1- and T helper 2-type responses are involved. Immunology 96(3):348–357PubMedCentralPubMedCrossRefGoogle Scholar
  75. Hu Q, Franklin JN, Bryan I, Morris E, Wood A, DeWitt JC (2012) Does developmental exposure to perflurooctanoic acid (PFOA) induce immunopathologies commonly observed in neurodevelopmental disorders? Neurotoxicology 33(6):1491–1498. doi: 10.1016/j.neuro.2012.10.016 PubMedCrossRefGoogle Scholar
  76. Hussain I, Piepenbrink MS, Fitch KJ, Marsh JA, Dietert RR (2005) Developmental immunotoxicity of cyclosporin-A in rats: age-associated differential effects. Toxicology 206(2):273–284. doi: 10.1016/j.tox.2004.08.019 PubMedCrossRefGoogle Scholar
  77. Hylkema MN, Blacquiere MJ (2009) Intrauterine effects of maternal smoking on sensitization, asthma, and chronic obstructive pulmonary disease. Proc Am Thorac Soc 6(8):660–662. doi: 10.1513/pats.200907-065DP PubMedCrossRefGoogle Scholar
  78. Institute of Medicine (2003) Dioxins and dioxin-like compounds in the food supply. National Academy of Sciences, Washington, D.C.Google Scholar
  79. Intarasunanont P, Navasumrit P, Waraprasit S, Chaisatra K, Suk WA, Mahidol C, Ruchirawat M (2012) Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line. Environ Health 11:31. doi: 10.1186/1476-069X-11-31 PubMedCentralPubMedCrossRefGoogle Scholar
  80. Jaakkola JJ, Kosheleva AA, Katsnelson BA, Kuzmin SV, Privalova LI, Spengler JD (2006) Prenatal and postnatal tobacco smoke exposure and respiratory health in Russian children. Respir Res 7:48. doi: 10.1186/1465-9921-7-48 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182PubMedCrossRefGoogle Scholar
  82. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208. doi: 10.1016/j.taap.2009.04.020 PubMedCrossRefGoogle Scholar
  83. Jedrychowski W, Galas A, Pac A, Flak E, Camman D, Rauh V, Perera F (2005) Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur J Epidemiol 20(9):775–782. doi: 10.1007/s10654-005-1048-1 PubMedCrossRefGoogle Scholar
  84. Ji CM, Royce FH, Truong U, Plopper CG, Singh G, Pinkerton KE (1998) Maternal exposure to environmental tobacco smoke alters Clara cell secretory protein expression in fetal rat lung. Am J Physiol 275(5 Pt 1):L870–L876PubMedGoogle Scholar
  85. Kalland T (1980a) Alterations of antibody response in female mice after neonatal exposure to diethylstilbestrol. J Immunol 124(1):194–198PubMedGoogle Scholar
  86. Kalland T (1980b) Decreased and disproportionate T-cell population in adult mice after neonatal exposure to diethylstilbestrol. Cell Immunol 51(1):55–63PubMedCrossRefGoogle Scholar
  87. Kalland T (1980c) Ovarian influence on mitogen responsiveness of lymphocytes from mice neonatally exposed to diethylstilbestrol. J Toxicol Environ Health 6(1):67–74. doi: 10.1080/15287398009529831 PubMedCrossRefGoogle Scholar
  88. Kalland T (1980d) Reduced natural killer activity in female mice after neonatal exposure to diethylstilbestrol. J Immunol 124(3):1297–1300PubMedGoogle Scholar
  89. Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S (2012) Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 120(6):799–806. doi: 10.1289/ehp.1104494 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Karrow NA, Guo TL, Delclos KB, Newbold RR, Weis C, Germolec DR, White KL Jr, McCay JA (2004) Nonylphenol alters the activity of splenic NK cells and the numbers of leukocyte subpopulations in Sprague-Dawley rats: a two-generation feeding study. Toxicology 196(3):237–245. doi: 10.1016/j.tox.2003.11.009 PubMedCrossRefGoogle Scholar
  91. Keil DE, Mehlmann T, Butterworth L, Peden-Adams MM (2008) Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol Sci 103(1):77–85. doi: 10.1093/toxsci/kfn015 PubMedCrossRefGoogle Scholar
  92. Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Cardenas A, Wright RO, Christiani DC (2014) Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 9(5):774–782. doi: 10.4161/epi.28153 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Kimbrough RD, Krouskas CA (2001) Polychlorinated biphenyls, dibenzo-p-dioxins, and dibenzofurans and birth weight and immune and thyroid function in children. Regul Toxicol Pharmacol 34(1):42–52. doi: 10.1006/rtph.2001.1484 PubMedCrossRefGoogle Scholar
  94. Kirchner S, Kieu T, Chow C, Casey S, Blumberg B (2010) Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol Endocrinol 24(3):526–539. doi: 10.1210/me.2009-0261 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Knopik VS, Maccani MA, Francazio S, McGeary JE (2012) The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 24(4):1377–1390. doi: 10.1017/S0954579412000776 PubMedCentralPubMedCrossRefGoogle Scholar
  96. Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ (2013) Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ Health Perspect 121(8):971–977. doi: 10.1289/ehp.1205925 PubMedCentralPubMedCrossRefGoogle Scholar
  97. Kurzer MS, Xu X (1997) Dietary phytoestrogens. Annu Rev Nutr 17:353–381. doi: 10.1146/annurev.nutr.17.1.353 PubMedCrossRefGoogle Scholar
  98. Kushima K, Oda K, Sakuma S, Furusawa S, Fujiwara M (2007) Effect of prenatal administration of NSAIDs on the immune response in juvenile and adult rats. Toxicology 232(3):257–267. doi: 10.1016/j.tox.2007.01.012 PubMedCrossRefGoogle Scholar
  99. Lantz RC, Chau B, Sarihan P, Witten ML, Pivniouk VI, Chen GJ (2009) In utero and postnatal exposure to arsenic alters pulmonary structure and function. Toxicol Appl Pharmacol 235(1):105–113. doi: 10.1016/j.taap.2008.11.012 PubMedCentralPubMedCrossRefGoogle Scholar
  100. Laschi A, Descotes J, Tachon P, Evreux JC (1983) Adverse influence of diazepam upon resistance to Klebsiella pneumoniae infection in mice. Toxicol Lett 16(3–4):281–284PubMedCrossRefGoogle Scholar
  101. Lawrence BP, Vorderstrasse BA (2013) New insights into the aryl hydrocarbon receptor as a modulator of host responses to infection. Semin Immunopathol 35(6):615–626. doi: 10.1007/s00281-013-0395-3 PubMedCrossRefGoogle Scholar
  102. Livezey GT, Marczynski TJ, McGrew EA, Beluhan FZ (1986) Prenatal exposure to diazepam: late postnatal teratogenic effect. Neurobehav Toxicol Teratol 8(5):433–440PubMedGoogle Scholar
  103. Luebke RW, Chen DH, Dietert R, Yang Y, King M, Luster MI (2006) The comparative immunotoxicity of five selected compounds following developmental or adult exposure. J Toxicol Environ Health B Crit Rev 9(1):1–26. doi: 10.1080/15287390500194326 PubMedCrossRefGoogle Scholar
  104. Luster MI, Faith RE, McLachlan JA (1978) Alterations of the antibody response following in utero exposure to diethylstilbestrol. Bull Environ Contam Toxicol 20(4):433–437PubMedCrossRefGoogle Scholar
  105. Luster MI, Faith RE, McLachlan JA, Clark GC (1979) Effect of in utero exposure to diethylstilbestrol on the immune response in mice. Toxicol Appl Pharmacol 47(2):279–285PubMedCrossRefGoogle Scholar
  106. Luster MI, Boorman GA, Dean JH, Harris MW, Luebke RW, Padarathsingh ML, Moore JA (1980) Examination of bone marrow, immunologic parameters and host susceptibility following pre- and postnatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Int J Immunopharmacol 2(4):301–310PubMedCrossRefGoogle Scholar
  107. Maccani JZ, Koestler DC, Houseman EA, Marsit CJ, Kelsey KT (2013) Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics 5(6):619–630. doi: 10.2217/epi.13.63 PubMedCentralPubMedCrossRefGoogle Scholar
  108. Mahaffey KR, Corneliussen PE, Jelinek CF, Fiorino JA (1975) Heavy metal exposure from foods. Environ Health Perspect 12:63–69PubMedCentralPubMedCrossRefGoogle Scholar
  109. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK (2012) Dioxin (TCDD) induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations. PLoS One 7(9), e46249. doi: 10.1371/journal.pone.0046249 PubMedCentralPubMedCrossRefGoogle Scholar
  110. Manoli SE, Smith LA, Vyhlidal CA, An CH, Porrata Y, Cardoso WV, Baron RM, Haley KJ (2012) Maternal smoking and the retinoid pathway in the developing lung. Respir Res 13:42. doi: 10.1186/1465-9921-13-42 PubMedCentralPubMedCrossRefGoogle Scholar
  111. Martin WJ 2nd, Glass RI, Balbus JM, Collins FS (2011) Public health. A major environmental cause of death. Science 334(6053):180–181. doi: 10.1126/science.1213088 PubMedCrossRefGoogle Scholar
  112. Martino D, Prescott S (2011) Epigenetics and prenatal influences on asthma and allergic airways disease. Chest 139(3):640–647. doi: 10.1378/chest.10-1800 PubMedCrossRefGoogle Scholar
  113. McEvoy CT, Schilling D, Clay N, Jackson K, Go MD, Spitale P, Bunten C, Leiva M, Gonzales D, Hollister-Smith J, Durand M, Frei B, Buist AS, Peters D, Morris CD, Spindel ER (2014) Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA 311(20):2074–2082. doi: 10.1001/jama.2014.5217 PubMedCentralPubMedCrossRefGoogle Scholar
  114. Mehra D, Geraghty PM, Hardigan AA, Foronjy R (2012) A comparison of the inflammatory and proteolytic effects of dung biomass and cigarette smoke exposure in the lung. PLoS One 7(12), e52889. doi: 10.1371/journal.pone.0052889 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Midoro-Horiuti T, Tiwari R, Watson CS, Goldblum RM (2010) Maternal bisphenol a exposure promotes the development of experimental asthma in mouse pups. Environ Health Perspect 118(2):273–277. doi: 10.1289/ehp.0901259 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Miyashita C, Sasaki S, Saijo Y, Washino N, Okada E, Kobayashi S, Konishi K, Kajiwara J, Todaka T, Kishi R (2011) Effects of prenatal exposure to dioxin-like compounds on allergies and infections during infancy. Environ Res 111(4):551–558. doi: 10.1016/j.envres.2011.01.021 PubMedCrossRefGoogle Scholar
  117. Moore SE, Prentice AM, Wagatsuma Y, Fulford AJ, Collinson AC, Raqib R, Vahter M, Persson LA, Arifeen SE (2009) Early-life nutritional and environmental determinants of thymic size in infants born in rural Bangladesh. Acta Paediatr 98(7):1168–1175. doi: 10.1111/j.1651-2227.2009.01292.x PubMedCentralPubMedCrossRefGoogle Scholar
  118. Motta M, Ciardelli L, Marconi M, Tincani A, Gasparoni A, Lojacono A, Chirico G (2007) Immune system development in infants born to mothers with autoimmune disease, exposed in utero to immunosuppressive agents. Am J Perinatol 24(8):441–447PubMedCrossRefGoogle Scholar
  119. Motta M, Tincani A, Meroni PL, Cimaz R (2008) Follow-up of children exposed antenatally to immunosuppressive drugs. Rheumatology (Oxford) 47 Suppl 3:iii32–iii34. doi: 10.1093/rheumatology/ken149
  120. Mouralidarane A, Soeda J, Visconti-Pugmire C, Samuelsson AM, Pombo J, Maragkoudaki X, Butt A, Saraswati R, Novelli M, Fusai G, Poston L, Taylor PD, Oben JA (2013) Maternal obesity programs offspring nonalcoholic fatty liver disease by innate immune dysfunction in mice. Hepatology 58(1):128–138. doi: 10.1002/hep.26248 PubMedCrossRefGoogle Scholar
  121. Murphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, Schildkraut JM, Murtha AP, Iversen ES, Hoyo C (2012) Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494(1):36–43. doi: 10.1016/j.gene.2011.11.062 PubMedCentralPubMedCrossRefGoogle Scholar
  122. Mustafa A, Holladay SD, Goff M, Witonsky SG, Kerr R, Reilly CM, Sponenberg DP, Gogal RM Jr (2008) An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD. Toxicol Appl Pharmacol 232(1):51–59. doi: 10.1016/j.taap.2008.04.015 PubMedCentralPubMedCrossRefGoogle Scholar
  123. Mustafa A, Holladay S, Witonsky S, Zimmerman K, Manari A, Countermarsh S, Karpuzoglu E, Gogal R (2011a) Prenatal TCDD causes persistent modulation of the postnatal immune response, and exacerbates inflammatory disease, in 36-week-old lupus-like autoimmune SNF1 mice. Birth Defects Res B Dev Reprod Toxicol 92(1):82–94. doi: 10.1002/bdrb.20285 PubMedCrossRefGoogle Scholar
  124. Mustafa A, Holladay SD, Witonsky S, Sponenberg DP, Karpuzoglu E, Gogal RM Jr (2011b) A single mid-gestation exposure to TCDD yields a postnatal autoimmune signature, differing by sex, in early geriatric C57BL/6 mice. Toxicology 290(2–3):156–168. doi: 10.1016/j.tox.2011.08.021 PubMedCrossRefGoogle Scholar
  125. Myles IA, Fontecilla NM, Janelsins BM, Vithayathil PJ, Segre JA, Datta SK (2013) Parental dietary fat intake alters offspring microbiome and immunity. J Immunol 191(6):3200–3209. doi: 10.4049/jimmunol.1301057 PubMedCrossRefGoogle Scholar
  126. Nakajima Y, Goldblum RM, Midoro-Horiuti T (2012) Fetal exposure to bisphenol A as a risk factor for the development of childhood asthma: an animal model study. Environ Health 11:8. doi: 10.1186/1476-069X-11-8 PubMedCentralPubMedCrossRefGoogle Scholar
  127. National Institute of Environmental Health Sciences (2010) Endocrine disruptors. National Institutes of Health, Research Triangle ParkGoogle Scholar
  128. Newbold RR, Padilla-Banks E, Jefferson WN (2006) Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147(6 Suppl):S11–S17. doi: 10.1210/en.2005-1164 PubMedCrossRefGoogle Scholar
  129. Newbold RR, Padilla-Banks E, Snyder RJ, Phillips TM, Jefferson WN (2007) Developmental exposure to endocrine disruptors and the obesity epidemic. Reprod Toxicol 23(3):290–296. doi: 10.1016/j.reprotox.2006.12.010 PubMedCentralPubMedCrossRefGoogle Scholar
  130. Ng SP, Zelikoff JT (2007) Smoking during pregnancy: subsequent effects on offspring immune competence and disease vulnerability in later life. Reprod Toxicol 23(3):428–437. doi: 10.1016/j.reprotox.2006.11.008 PubMedCrossRefGoogle Scholar
  131. Ng SP, Zelikoff JT (2008) The effects of prenatal exposure of mice to cigarette smoke on offspring immune parameters. J Toxicol Environ Health A 71(7):445–453. doi: 10.1080/15287390701839281 PubMedCrossRefGoogle Scholar
  132. Ng SP, Silverstone AE, Lai ZW, Zelikoff JT (2006) Effects of prenatal exposure to cigarette smoke on offspring tumor susceptibility and associated immune mechanisms. Toxicol Sci 89(1):135–144. doi: 10.1093/toxsci/kfj006 PubMedCrossRefGoogle Scholar
  133. Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21(1):102–116. doi: 10.1021/tx7001965 PubMedCentralPubMedCrossRefGoogle Scholar
  134. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK (2012) Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One 7(5), e36129. doi: 10.1371/journal.pone.0036129 PubMedCentralPubMedCrossRefGoogle Scholar
  135. Noakes PS, Holt PG, Prescott SL (2003) Maternal smoking in pregnancy alters neonatal cytokine responses. Allergy 58(10):1053–1058PubMedCrossRefGoogle Scholar
  136. Noakes PS, Hale J, Thomas R, Lane C, Devadason SG, Prescott SL (2006) Maternal smoking is associated with impaired neonatal toll-like-receptor-mediated immune responses. Eur Respir J 28(4):721–729. doi: 10.1183/09031936.06.00050206 PubMedCrossRefGoogle Scholar
  137. Noller KL, Blair PB, O’Brien PC, Melton LJ 3rd, Offord JR, Kaufman RH, Colton T (1988) Increased occurrence of autoimmune disease among women exposed in utero to diethylstilbestrol. Fertil Steril 49(6):1080–1082PubMedGoogle Scholar
  138. O’Brien E, Bergin IL, Dolinoy DC, Zaslona Z, Little RJ, Tao Y, Peters-Golden M, Mancuso P (2014) Perinatal bisphenol A exposure beginning before gestation enhances allergen sensitization, but not pulmonary inflammation, in adult mice. J Dev Orig Health Dis 5(2):121–131. doi: 10.1017/S204017441400004X PubMedCentralPubMedCrossRefGoogle Scholar
  139. Odaka Y, Nakano M, Tanaka T, Kaburagi T, Yoshino H, Sato-Mito N, Sato K (2010) The influence of a high-fat dietary environment in the fetal period on postnatal metabolic and immune function. Obesity (Silver Spring) 18(9):1688–1694. doi: 10.1038/oby.2009.513 CrossRefGoogle Scholar
  140. Ohshima Y, Yamada A, Tokuriki S, Yasutomi M, Omata N, Mayumi M (2007) Transmaternal exposure to bisphenol a modulates the development of oral tolerance. Pediatr Res 62(1):60–64. doi: 10.1203/PDR.0b013e3180674dae PubMedCrossRefGoogle Scholar
  141. Padgett EL, Seelig LL Jr (2002) Effects on T-cell maturation and proliferation induced by lactational transfer of cyclosporine to nursing pups. Transplantation 73(6):867–874PubMedCrossRefGoogle Scholar
  142. Papoutsis AJ, Selmin OI, Borg JL, Romagnolo DF (2013) Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: preventive effects of resveratrol. Mol Carcinog. doi: 10.1002/mc.22095 PubMedGoogle Scholar
  143. Park HY, Hertz-Picciotto I, Petrik J, Palkovicova L, Kocan A, Trnovec T (2008) Prenatal PCB exposure and thymus size at birth in neonates in Eastern Slovakia. Environ Health Perspect 116(1):104–109. doi: 10.1289/ehp.9769 PubMedCentralPubMedCrossRefGoogle Scholar
  144. Peden-Adams MM, Stuckey JE, Gaworecki KM, Berger-Ritchie J, Bryant K, Jodice PG, Scott TR, Ferrario JB, Guan B, Vigo C, Boone JS, McGuinn WD, DeWitt JC, Keil DE (2009) Developmental toxicity in white leghorn chickens following in ovo exposure to perfluorooctane sulfonate (PFOS). Reprod Toxicol 27(3–4):307–318. doi: 10.1016/j.reprotox.2008.10.009 PubMedCrossRefGoogle Scholar
  145. Penn AL, Rouse RL, Horohov DW, Kearney MT, Paulsen DB, Lomax L (2007) In utero exposure to environmental tobacco smoke potentiates adult responses to allergen in BALB/c mice. Environ Health Perspect 115(4):548–555. doi: 10.1289/ehp.9780 PubMedCentralPubMedCrossRefGoogle Scholar
  146. Pilarski LM, Yacyshyn BR, Lazarovits AI (1994) Analysis of peripheral blood lymphocyte populations and immune function from children exposed to cyclosporine or to azathioprine in utero. Transplantation 57(1):133–144PubMedCrossRefGoogle Scholar
  147. Pillet S, Rooney AA, Bouquegneau JM, Cyr DG, Fournier M (2005) Sex-specific effects of neonatal exposures to low levels of cadmium through maternal milk on development and immune functions of juvenile and adult rats. Toxicology 209(3):289–301. doi: 10.1016/j.tox.2004.12.007 PubMedCrossRefGoogle Scholar
  148. Pilones K, Lai ZW, Gavalchin J (2007) Prenatal HgCl(2) exposure alters fetal cell phenotypes. J Immunotoxicol 4(4):295–301. doi: 10.1080/15476910701680178 PubMedCrossRefGoogle Scholar
  149. Pilones K, Tatum A, Gavalchin J (2009) Gestational exposure to mercury leads to persistent changes in T-cell phenotype and function in adult DBF1 mice. J Immunotoxicol 6(3):161–170. doi: 10.1080/15476910903084021 PubMedCrossRefGoogle Scholar
  150. Pollard KM, Pearson DL, Hultman P, Deane TN, Lindh U, Kono DH (2001) Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxsb mice. Environ Health Perspect 109(1):27–33PubMedCentralPubMedCrossRefGoogle Scholar
  151. Prins GS, Birch L, Couse JF, Choi I, Katzenellenbogen B, Korach KS (2001) Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor alpha: studies with alphaERKO and betaERKO mice. Cancer Res 61(16):6089–6097PubMedGoogle Scholar
  152. Ramsey KA, Foong RE, Sly PD, Larcombe AN, Zosky GR (2013) Early life arsenic exposure and acute and long-term responses to influenza A infection in mice. Environ Health Perspect 121(10):1187–1193. doi: 10.1289/ehp.1306748 PubMedCentralPubMedGoogle Scholar
  153. Raqib R, Ahmed S, Sultana R, Wagatsuma Y, Mondal D, Hoque AM, Nermell B, Yunus M, Roy S, Persson LA, Arifeen SE, Moore S, Vahter M (2009) Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol Lett 185(3):197–202. doi: 10.1016/j.toxlet.2009.01.001 PubMedCrossRefGoogle Scholar
  154. Razzaghi H, Tinker SC, Crider K (2014) Blood mercury concentrations in pregnant and nonpregnant women in the United States: National Health and Nutrition Examination Survey 1999–2006. Am J Obstet Gynecol 210(4):357.e351–357.e359. doi: 10.1016/j.ajog.2013.10.884 CrossRefGoogle Scholar
  155. Rodriguez JW, Kirlin WG, Wirsiy YG, Matheravidathu S, Hodge TW, Urso P (1999) Maternal exposure to benzo[a]pyrene alters development of T lymphocytes in offspring. Immunopharmacol Immunotoxicol 21(2):379–396. doi: 10.3109/08923979909052769 PubMedCrossRefGoogle Scholar
  156. Rodriguez JW, Kohan MJ, King LC, Kirlin WG (2002) Detection of DNA adducts in developing CD4+ CD8+ thymocytes and splenocytes following in utero exposure to benzo[a]pyrene. Immunopharmacol Immunotoxicol 24(3):365–381. doi: 10.1081/IPH-120014723 PubMedCrossRefGoogle Scholar
  157. Rooney AA, Matulka RA, Luebke RW (2003) Developmental atrazine exposure suppresses immune function in male, but not female Sprague-Dawley rats. Toxicol Sci 76(2):366–375. doi: 10.1093/toxsci/kfg250 PubMedCrossRefGoogle Scholar
  158. Rowe AM, Brundage KM, Barnett JB (2008) Developmental immunotoxicity of atrazine in rodents. Basic Clin Pharmacol Toxicol 102(2):139–145. doi: 10.1111/j.1742-7843.2007.00175.x PubMedCrossRefGoogle Scholar
  159. Roy A, Bauer SM, Lawrence BP (2012) Developmental exposure to bisphenol A modulates innate but not adaptive immune responses to influenza A virus infection. PLoS One 7(6), e38448. doi: 10.1371/journal.pone.0038448 PubMedCentralPubMedCrossRefGoogle Scholar
  160. Roy A, Gaylo A, Cao W, Saubermann LJ, Lawrence BP (2013) Neither direct nor developmental exposure to bisphenol A alters the severity of experimental inflammatory colitis in mice. J Immunotoxicol 10(4):334–340. doi: 10.3109/1547691X.2012.747231 PubMedCentralPubMedCrossRefGoogle Scholar
  161. Sakaguchi S, Sakaguchi N (1989) Organ-specific autoimmune disease induced in mice by elimination of T cell subsets. V Neonatal administration of cyclosporin A causes autoimmune disease. J Immunol 142(2):471–480PubMedGoogle Scholar
  162. Sanders AP, Flood K, Chiang S, Herring AH, Wolf L, Fry RC (2012) Towards prenatal biomonitoring in North Carolina: assessing arsenic, cadmium, mercury, and lead levels in pregnant women. PLoS One 7(3), e31354. doi: 10.1371/journal.pone.0031354 PubMedCentralPubMedCrossRefGoogle Scholar
  163. Sanders AP, Smeester L, Rojas D, DeBussycher T, Wu MC, Wright FA, Zhou YH, Laine JE, Rager JE, Swamy GK, Ashley-Koch A, Lynn Miranda M, Fry RC (2014) Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 9(2):212–221. doi: 10.4161/epi.26798 PubMedCentralPubMedCrossRefGoogle Scholar
  164. Schlumpf M, Ramseier H, Lichtensteiger W (1989) Prenatal diazepam induced persisting depression of cellular immune responses. Life Sci 44(7):493–501PubMedCrossRefGoogle Scholar
  165. Schlumpf M, Lichtensteiger W, Ramseier H (1993) Diazepam treatment of pregnant rats differentially affects interleukin-1 and interleukin-2 secretion in their offspring during different phases of postnatal development. Pharmacol Toxicol 73(6):335–340PubMedCrossRefGoogle Scholar
  166. Schlumpf M, Butikofer EE, Schreiber AA, Parmar R, Ramseier HR, Lichtensteiger W (1994a) Delayed developmental immunotoxicity of prenatal benzodiazepines. Toxicol In Vitro 8(5):1061–1065PubMedCrossRefGoogle Scholar
  167. Schlumpf M, Lichtensteiger W, van Loveren H (1994b) Impaired host resistance to Trichinella spiralis as a consequence of prenatal treatment of rats with diazepam. Toxicology 94(1–3):223–230PubMedCrossRefGoogle Scholar
  168. Schmatz M, Madan J, Marino T, Davis J (2010) Maternal obesity: the interplay between inflammation, mother and fetus. J Perinatol 30(7):441–446. doi: 10.1038/jp.2009.182 PubMedCrossRefGoogle Scholar
  169. Schober SE, Sinks TH, Jones RL, Bolger PM, McDowell M, Osterloh J, Garrett ES, Canady RA, Dillon CF, Sun Y, Joseph CB, Mahaffey KR (2003) Blood mercury levels in US children and women of childbearing age, 1999–2000. JAMA 289(13):1667–1674. doi: 10.1001/jama.289.13.1667 PubMedCrossRefGoogle Scholar
  170. Schreiber AA, Frei K, Lichtensteiger W, Schlumpf M (1993a) Alterations in interleukin-6 production by LPS- and Con A-stimulated mixed splenocytes, spleen macrophages and lymphocytes in prenatally diazepam-exposed rats. Agents Actions 39(3–4):166–173PubMedCrossRefGoogle Scholar
  171. Schreiber AA, Frei K, Lichtensteiger W, Schlumpf M (1993b) The effect of prenatal diazepam exposure on TNF-alpha production by rat splenocytes. Agents Actions 38(3–4):265–272PubMedCrossRefGoogle Scholar
  172. Selgrade MK, Blain RB, Fedak KM, Cawley MA (2013) Potential risk of asthma associated with in utero exposure to xenobiotics. Birth Defects Res C Embryo Today 99(1):1–13. doi: 10.1002/bdrc.21028 PubMedCrossRefGoogle Scholar
  173. Shek LP, Chong MF, Lim JY, Soh SE, Chong YS (2012) Role of dietary long-chain polyunsaturated fatty acids in infant allergies and respiratory diseases. Clin Dev Immunol 2012:730568. doi: 10.1155/2012/730568 PubMedCentralPubMedCrossRefGoogle Scholar
  174. Silva IA, El Nabawi M, Hoover D, Silbergeld EK (2005) Prenatal HgCl2 exposure in BALB/c mice: gender-specific effects on the ontogeny of the immune system. Dev Comp Immunol 29(2):171–183. doi: 10.1016/j.dci.2004.05.008 PubMedCrossRefGoogle Scholar
  175. Silva SV, Garcia-Souza EP, Moura AS, Barja-Fidalgo C (2010) Maternal protein restriction during early lactation induces changes on neutrophil activation and TNF-alpha production of adult offspring. Inflammation 33(2):65–75. doi: 10.1007/s10753-009-9159-6 PubMedCrossRefGoogle Scholar
  176. Singh SP, Razani-Boroujerdi S, Pena-Philippides JC, Langley RJ, Mishra NC, Sopori ML (2006) Early postnatal exposure to cigarette smoke impairs the antigen-specific T-cell responses in the spleen. Toxicol Lett 167(3):231–237. doi: 10.1016/j.toxlet.2006.10.001 PubMedCrossRefGoogle Scholar
  177. Singh AK, Parashar A, Singh R (2013a) Pre-natal/juvenile chlorpyrifos exposure associated with immunotoxicity in adulthood in Swiss albino mice. J Immunotoxicol 10(2):141–149. doi: 10.3109/1547691X.2012.700653 PubMedCrossRefGoogle Scholar
  178. Singh SP, Gundavarapu S, Smith KR, Chand HS, Saeed AI, Mishra NC, Hutt J, Barrett EG, Husain M, Harrod KS, Langley RJ, Sopori ML (2013b) Gestational exposure of mice to secondhand cigarette smoke causes bronchopulmonary dysplasia blocked by the nicotinic receptor antagonist mecamylamine. Environ Health Perspect 121(8):957–964. doi: 10.1289/ehp.1306611 PubMedCentralPubMedGoogle Scholar
  179. Smialowicz RJ, Riddle MM, Rogers RR, Rowe DG, Luebke RW, Fogelson LD, Copeland CB (1988) Immunologic effects of perinatal exposure of rats to dioctyltin dichloride. J Toxicol Environ Health 25(4):403–422. doi: 10.1080/15287398809531220 PubMedCrossRefGoogle Scholar
  180. Smialowicz RJ, Riddle MM, Rogers RR, Luebke RW, Copeland CB (1989) Immunotoxicity of tributyltin oxide in rats exposed as adults or pre-weanlings. Toxicology 57(1):97–111PubMedCrossRefGoogle Scholar
  181. Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, Steinmaus C, Bates MN, Selvin S (2006) Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 114(8):1293–1296PubMedCentralPubMedCrossRefGoogle Scholar
  182. Soukupova D, Dostal M, Piza J (1991) Developmental toxicity of cadmium in mice. II. Immunotoxic effects. Funct Dev Morphol 1(4):31–36PubMedGoogle Scholar
  183. Spanier AJ, Kahn RS, Kunselman AR, Hornung R, Xu Y, Calafat AM, Lanphear BP (2012) Prenatal exposure to bisphenol A and child wheeze from birth to 3 years of age. Environ Health Perspect 120(6):916–920. doi: 10.1289/ehp.1104175 PubMedCentralPubMedCrossRefGoogle Scholar
  184. Sram RJ, Binkova B, Dostal M, Merkerova-Dostalova M, Libalova H, Milcova A, Rossner P Jr, Rossnerova A, Schmuczerova J, Svecova V, Topinka J, Votavova H (2013) Health impact of air pollution to children. Int J Hyg Environ Health 216(5):533–540. doi: 10.1016/j.ijheh.2012.12.001 PubMedCrossRefGoogle Scholar
  185. Stern AH, Gochfeld M, Weisel C, Burger J (2001) Mercury and methylmercury exposure in the New Jersey pregnant population. Arch Environ Health 56(1):4–10. doi: 10.1080/00039890109604048 PubMedCrossRefGoogle Scholar
  186. Stolevik SB, Nygaard UC, Namork E, Haugen M, Meltzer HM, Alexander J, Knutsen HK, Aaberge I, Vainio K, van Loveren H, Lovik M, Granum B (2013) Prenatal exposure to polychlorinated biphenyls and dioxins from the maternal diet may be associated with immunosuppressive effects that persist into early childhood. Food Chem Toxicol 51:165–172. doi: 10.1016/j.fct.2012.09.027 PubMedCrossRefGoogle Scholar
  187. Sugita-Konishi Y, Kobayashi K, Naito H, Miura K, Suzuki Y (2003) Effect of lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on the susceptibility to Listeria infection. Biosci Biotechnol Biochem 67(1):89–93PubMedCrossRefGoogle Scholar
  188. Sunyer J, Garcia-Esteban R, Alvarez M, Guxens M, Goni F, Basterrechea M, Vrijheid M, Guerra S, Anto JM (2010) DDE in mothers’ blood during pregnancy and lower respiratory tract infections in their infants. Epidemiology 21(5):729–735. doi: 10.1097/EDE.0b013e3181e5ea96 PubMedCrossRefGoogle Scholar
  189. Tebow G, Sherrill DL, Lohman IC, Stern DA, Wright AL, Martinez FD, Halonen M, Guerra S (2008) Effects of parental smoking on interferon gamma production in children. Pediatrics 121(6):e1563–e1569. doi: 10.1542/peds.2007-2795 PubMedCrossRefGoogle Scholar
  190. Thomas PT, Hinsdill RD (1979) The effect of perinatal exposure to tetrachlorodibenzo-p-dioxin on the immune response of young mice. Drug Chem Toxicol 2(1–2):77–98. doi: 10.3109/01480547908993183 PubMedCrossRefGoogle Scholar
  191. Thuvander A, Sundberg J, Oskarsson A (1996) Immunomodulating effects after perinatal exposure to methylmercury in mice. Toxicology 114(2):163–175PubMedCrossRefGoogle Scholar
  192. Tonk EC, de Groot DM, Penninks AH, Waalkens-Berendsen ID, Wolterbeek AP, Slob W, Piersma AH, van Loveren H (2010) Developmental immunotoxicity of methylmercury: the relative sensitivity of developmental and immune parameters. Toxicol Sci 117(2):325–335. doi: 10.1093/toxsci/kfq223 PubMedCrossRefGoogle Scholar
  193. Tonk EC, de Groot DM, Penninks AH, Waalkens-Berendsen ID, Wolterbeek AP, Piersma AH, van Loveren H (2011a) Developmental immunotoxicity of di-n-octyltin dichloride (DOTC) in an extended one-generation reproductive toxicity study. Toxicol Lett 204(2–3):156–163. doi: 10.1016/j.toxlet.2011.04.027 PubMedCrossRefGoogle Scholar
  194. Tonk EC, Verhoef A, de la Fonteyne LJ, Waalkens-Berendsen ID, Wolterbeek AP, van Loveren H, Piersma AH (2011b) Developmental immunotoxicity in male rats after juvenile exposure to di-n-octyltin dichloride (DOTC). Reprod Toxicol 32(3):341–348. doi: 10.1016/j.reprotox.2011.08.005 PubMedCrossRefGoogle Scholar
  195. Torres-Duque C, Maldonado D, Perez-Padilla R, Ezzati M, Viegi G (2008) Biomass fuels and respiratory diseases: a review of the evidence. Proc Am Thorac Soc 5(5):577–590. doi: 10.1513/pats.200707-100RP PubMedCrossRefGoogle Scholar
  196. Trevor J, Antony V, Jindal SK (2014) The effect of biomass fuel exposure on the prevalence of asthma in adults in India – review of current evidence. J Asthma 51(2):136–141. doi: 10.3109/02770903.2013.849269 PubMedCrossRefGoogle Scholar
  197. U.S. Department of Health and Human Services (1999) Toxicological profile for mercury. Agency for toxic substances and disease registry. Division of Toxicology/Toxicology Information Branch, AtlantaGoogle Scholar
  198. U.S. Department of Health and Human Services (2009) Toxicological profile for cadmium. Agency for toxic substances and disease registry. Division of Toxicology and Human Health Sciences, AtlantaGoogle Scholar
  199. Ugaz EM, Pinheiro SR, Guerra JL, Palermo-Neto J (1999) Effects of prenatal diazepam treatment on Mycobacterium bovis-induced infection in hamsters. Immunopharmacology 41(3):209–217PubMedCrossRefGoogle Scholar
  200. United States Environmental Protection Agency (2007) Atrazine. US EPA, Washington, D.CGoogle Scholar
  201. Urso P, Gengozian N (1982) Alterations in the humoral immune response and tumor frequencies in mice exposed to benzo[a]pyrene and X-rays before or after birth. J Toxicol Environ Health 10(4–5):817–835. doi: 10.1080/15287398209530297 PubMedCrossRefGoogle Scholar
  202. Urso P, Gengozian N (1984) Subnormal expression of cell-mediated and humoral immune responses in progeny disposed toward a high incidence of tumors after in utero exposure to benzo[a]pyrene. J Toxicol Environ Health 14(4):569–584. doi: 10.1080/15287398409530606 PubMedCrossRefGoogle Scholar
  203. Urso P, Johnson RA (1987) Early changes in T lymphocytes and subsets of mouse progeny defective as adults in controlling growth of a syngeneic tumor after in utero insult with benzo(a)pyrene. Immunopharmacology 14(1):1–10PubMedCrossRefGoogle Scholar
  204. Vahter M (2008) Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol 102(2):204–211. doi: 10.1111/j.1742-7843.2007.00168.x PubMedCrossRefGoogle Scholar
  205. Vaidya SV, Kulkarni H (2012) Association of urinary bisphenol A concentration with allergic asthma: results from the National Health and Nutrition Examination Survey 2005–2006. J Asthma 49(8):800–806. doi: 10.3109/02770903.2012.721041 PubMedCrossRefGoogle Scholar
  206. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455. doi: 10.1210/er.2011-1050 PubMedCentralPubMedCrossRefGoogle Scholar
  207. Via CS, Nguyen P, Niculescu F, Papadimitriou J, Hoover D, Silbergeld EK (2003) Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus. Environ Health Perspect 111(10):1273–1277PubMedCentralPubMedCrossRefGoogle Scholar
  208. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS (2008) Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371(9609):340–357. doi: 10.1016/S0140-6736(07)61692-4 PubMedCentralPubMedCrossRefGoogle Scholar
  209. Vorderstrasse BA, Cundiff JA, Lawrence BP (2004) Developmental exposure to the potent aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin Impairs the cell-mediated immune response to infection with influenza a virus, but enhances elements of innate immunity. J Immunotoxicol 1(2):103–112. doi: 10.1080/15476910490509244 PubMedCrossRefGoogle Scholar
  210. Vorderstrasse BA, Cundiff JA, Lawrence BP (2006) A dose-response study of the effects of prenatal and lactational exposure to TCDD on the immune response to influenza a virus. J Toxicol Environ Health A 69(6):445–463. doi: 10.1080/15287390500246985 PubMedCrossRefGoogle Scholar
  211. Vos JG, Moore JA (1974) Suppression of cellular immunity in rats and mice by maternal treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Int Arch Allergy Appl Immunol 47(5):777–794PubMedCrossRefGoogle Scholar
  212. Vos JG, De Klerk A, Krajnc EI, Van Loveren H, Rozing J (1990) Immunotoxicity of bis(tri-n-butyltin)oxide in the rat: effects on thymus-dependent immunity and on nonspecific resistance following long-term exposure in young versus aged rats. Toxicol Appl Pharmacol 105(1):144–155PubMedCrossRefGoogle Scholar
  213. Walker DB, Williams WC, Copeland CB, Smialowicz RJ (2004) Persistent suppression of contact hypersensitivity, and altered T-cell parameters in F344 rats exposed perinatally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicology 197(1):57–66. doi: 10.1016/j.tox.2003.12.012 PubMedCrossRefGoogle Scholar
  214. Wang IJ, Hsieh WS, Chen CY, Fletcher T, Lien GW, Chiang HL, Chiang CF, Wu TN, Chen PC (2011) The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res 111(6):785–791. doi: 10.1016/j.envres.2011.04.006 PubMedCrossRefGoogle Scholar
  215. Watanabe W, Yoshida H, Hirose A, Akashi T, Takeshita T, Kuroki N, Shibata A, Hongo S, Hashiguchi S, Konno K, Kurokawa M (2013) Perinatal exposure to insecticide methamidophos suppressed production of proinflammatory cytokines responding to virus infection in lung tissues in mice. Biomed Res Int 2013:151807. doi: 10.1155/2013/151807 PubMedCentralPubMedCrossRefGoogle Scholar
  216. Webster G (2010) Potential human health effects of perfluorinated chemicals (PFCs). National Collaborating Centre for Environmental Health, VancouverGoogle Scholar
  217. Weisglas-Kuperus N, Patandin S, Berbers GA, Sas TC, Mulder PG, Sauer PJ, Hooijkaas H (2000) Immunologic effects of background exposure to polychlorinated biphenyls and dioxins in Dutch preschool children. Environ Health Perspect 108(12):1203–1207PubMedCentralPubMedCrossRefGoogle Scholar
  218. Weisglas-Kuperus N, Vreugdenhil HJ, Mulder PG (2004) Immunological effects of environmental exposure to polychlorinated biphenyls and dioxins in Dutch school children. Toxicol Lett 149(1–3):281–285. doi: 10.1016/j.toxlet.2003.12.039 PubMedCrossRefGoogle Scholar
  219. World Health Organization (1999) Tributyltin oxide. World Health Organization, GenevaGoogle Scholar
  220. World Health Organization (2004) Dialkyltins in drinking-water. World Health Organization, GenevaGoogle Scholar
  221. World Health Organization (2014) Tobacco fact sheet number 339. Accessed May 2014
  222. Wu ZX, Hunter DD, Kish VL, Benders KM, Batchelor TP, Dey RD (2009) Prenatal and early, but not late, postnatal exposure of mice to sidestream tobacco smoke increases airway hyperresponsiveness later in life. Environ Health Perspect 117(9):1434–1440. doi: 10.1289/ehp.0800511 PubMedCentralPubMedCrossRefGoogle Scholar
  223. Yamamoto S, Tin Tin Win S, Yoshida Y, Kunugita N, Arashidani K, Fujimaki H (2009a) Children’s immunology, what can we learn from animal studies (2): Modulation of systemic Th1/Th2 immune response in infant mice after prenatal exposure to low-level toluene and toll-like receptor (TLR) 2 ligand. J Toxicol Sci 34(Suppl 2):SP341–SP348PubMedGoogle Scholar
  224. Yamamoto S, Win-Shwe TT, Yoshida Y, Kunugita N, Arashidani K, Fujimaki H (2009b) Suppression of Th1- and Th2-type immune responses in infant mouse spleen after prenatal and postnatal exposure to low-level toluene and peptidoglycan. Inhal Toxicol 21(9):793–802. doi: 10.1080/08958370902798448 PubMedCrossRefGoogle Scholar
  225. Yan H, Takamoto M, Sugane K (2008) Exposure to Bisphenol A prenatally or in adulthood promotes T(H)2 cytokine production associated with reduction of CD4CD25 regulatory T cells. Environ Health Perspect 116(4):514–519. doi: 10.1289/ehp.10829 PubMedCentralPubMedGoogle Scholar
  226. Yoshino S, Yamaki K, Li X, Sai T, Yanagisawa R, Takano H, Taneda S, Hayashi H, Mori Y (2004) Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice. Immunology 112(3):489–495. doi: 10.1111/j.1365-2567.2004.01900.x PubMedCentralPubMedCrossRefGoogle Scholar
  227. Zhai L, Liao X, Chen T, Yan X, Xie H, Wu B, Wang L (2008) Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities: a case study in Chenzhou City, China. J Environ Sci (China) 20(6):696–703CrossRefGoogle Scholar
  228. Zhang Y, Gao D, Bolivar VJ, Lawrence DA (2011) Induction of autoimmunity to brain antigens by developmental mercury exposure. Toxicol Sci 119(2):270–280. doi: 10.1093/toxsci/kfq334 PubMedCentralPubMedCrossRefGoogle Scholar
  229. Zhang WL, Du Y, Zhai MM, Shang Q (2014) Cadmium exposure and its health effects: a 19-year follow-up study of a polluted area in China. Sci Total Environ 470–471:224–228. doi: 10.1016/j.scitotenv.2013.09.070 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Environmental MedicineUniversity of Rochester School of Medicine & DentistryRochesterUSA

Personalised recommendations