Environment and Autoimmunity: Facts and Gaps

  • Angela Ceribelli
  • Elena Generali
  • Carlo Selmi


Autoimmune diseases are comprehensive models of complex conditions in which an individual’s genetic susceptibility is necessary but not sufficient to explain disease onset, perpetuation, and severity. This is well represented by the variable but invariably incomplete concordance rates for all autoimmune diseases in monozygotic twins. In the broad group of autoimmune diseases, heritability ranges between 0.008 and 1 with median values of approximately 0.60. A complementary term coined “environmentability” may well represent the environmental influence on the individual phenotype and can include dietary habits, chemicals, or hygienic conditions via several molecular and epigenetic mechanisms. Numerous environmental factors have been proposed for systemic and organ-specific autoimmune diseases. The National Institute of Environmental Health Sciences (NIEHS) convened an expert panel workshop to review the body of literature examining the role of the environment in the development of autoimmune disease and to identify conclusions, certainties, and critical knowledge gaps in this area. The results of the workshop and the literature illustrate that several kinds of epidemiological, mechanistic, and model evidence support specific chemical and physical factors as well as infectious agents.


Systemic Lupus Erythematosus Autoimmune Disease Rheumatic Fever Aryl Hydrocarbon Receptor Nicotine Pretreatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balandraud N, Roudier J, Roudier C (2004) Epstein-Barr virus and rheumatoid arthritis. Autoimmun Rev 3:362–367CrossRefPubMedGoogle Scholar
  2. Barzilai O, Ram M, Shoenfeld Y (2007) Viral infection can induce the production of autoantibodies. Curr Opin Rheumatol 19:636–643CrossRefPubMedGoogle Scholar
  3. Blank M, Shoenfeld Y (2004) Beta-2-glycoprotein-I, infections, antiphospholipid syndrome and therapeutic considerations. Clin Immunol 112:190–199CrossRefPubMedGoogle Scholar
  4. Blank M, Asherson RA, Cervera R, Shoenfeld Y (2004) Antiphospholipid syndrome infectious origin. J Clin Immunol 24:12–23CrossRefPubMedGoogle Scholar
  5. Bogdanos DP, Smyk DS, Rigopoulou EI, Mytilinaiou MG, Heneghan MA, Selmi C, Gershwin ME (2012) Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun 38:J156–J169CrossRefPubMedGoogle Scholar
  6. Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL, Taylor A, Calin A, Wordsworth P (1997) Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 40:1823–1828CrossRefPubMedGoogle Scholar
  7. Chandran V, Raychaudhuri SP (2010) Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun 34:J314–J321CrossRefPubMedGoogle Scholar
  8. Christensen K, Kyvik KO, Holm NV, Skytthe A (2011) Register-based research on twins. Scand J Public Health 39:185–190PubMedCentralCrossRefPubMedGoogle Scholar
  9. Costenbader KH, Gay S, Alarcon-Riquelme ME, Iaccarino L, Doria A (2012) Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun Rev 11:604–609CrossRefPubMedGoogle Scholar
  10. De Santis M, Selmi C (2012) The therapeutic potential of epigenetics in autoimmune diseases. Clin Rev Allergy Immunol 42:92–101CrossRefPubMedGoogle Scholar
  11. Di Cesare A, Di Meglio P, Nestle FO (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129:1339–1350CrossRefPubMedGoogle Scholar
  12. Ehrenfeld M (2010) Geoepidemiology: the environment and spondyloarthropathies. Autoimmun Rev 9:A325–A329CrossRefPubMedGoogle Scholar
  13. Engel ME, Stander R, Vogel J, Adeyemo AA, Mayosi BM (2011) Genetic susceptibility to acute rheumatic fever: a systematic review and meta-analysis of twin studies. PLoS One 6:e25326PubMedCentralCrossRefPubMedGoogle Scholar
  14. Feghali-Bostwick C, Medsger TA Jr, Wright TM (2003) Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 48:1956–1963CrossRefPubMedGoogle Scholar
  15. Gao F, Brant KA, Ward RM, Cattley RT, Barchowsky A, Fabisiak JP (2010) Multiple protein kinase pathways mediate amplified IL-6 release by human lung fibroblasts co-exposed to nickel and TLR-2 agonist, MALP-2. Toxicol Appl Pharmacol 247:146–157PubMedCentralCrossRefPubMedGoogle Scholar
  16. Gardner RM, Nyland JF, Evans SL, Wang SB, Doyle KM, Crainiceanu CM, Silbergeld EK (2009) Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect 117:1932–1938PubMedCentralCrossRefPubMedGoogle Scholar
  17. Grjibovski AM, Olsen AO, Magnus P, Harris JR (2007) Psoriasis in Norwegian twins: contribution of genetic and environmental effects. J Eur Acad Dermatol Venereol 21:1337–1343CrossRefPubMedGoogle Scholar
  18. Havarinasab S, Hultman P (2005) Organic mercury compounds and autoimmunity. Autoimmun Rev 4:270–275CrossRefPubMedGoogle Scholar
  19. Hawkes CH, Macgregor AJ (2009) Twin studies and the heritability of MS: a conclusion. Mult Scler 15:661–667CrossRefPubMedGoogle Scholar
  20. Hemminki K, Li X, Sundquist J, Sundquist K (2010) The epidemiology of Graves’ disease: evidence of a genetic and an environmental contribution. J Autoimmun 34:J307–J313CrossRefPubMedGoogle Scholar
  21. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52:1052–1055CrossRefPubMedGoogle Scholar
  22. Invernizzi P (2010) Geoepidemiology of autoimmune liver diseases. J Autoimmun 34:J300–J306CrossRefPubMedGoogle Scholar
  23. Lehmann P, Homey B (2009) Clinic and pathophysiology of photosensitivity in lupus erythematosus. Autoimmun Rev 8:456–461CrossRefPubMedGoogle Scholar
  24. Maeda A, Beissert S, Schwarz T, Schwarz A (2008) Phenotypic and functional characterization of ultraviolet radiation-induced regulatory T cells. J Immunol 180:3065–3071CrossRefPubMedGoogle Scholar
  25. Malkiel S, Liao L, Cunningham MW, Diamond B (2000) T-Cell-dependent antibody response to the dominant epitope of streptococcal polysaccharide, N-acetyl-glucosamine, is cross-reactive with cardiac myosin. Infect Immun 68:5803–5808PubMedCentralCrossRefPubMedGoogle Scholar
  26. Meroni PL (2011) Autoimmune or auto-inflammatory syndrome induced by adjuvants (ASIA): old truths and a new syndrome? J Autoimmun 36:1–3CrossRefPubMedGoogle Scholar
  27. Miller FW, Alfredsson L, Costenbader KH, Kamen DL, Nelson LM, Norris JM, De Roos AJ (2012a) Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J Autoimmun 39:259–271PubMedCentralCrossRefPubMedGoogle Scholar
  28. Miller FW, Pollard KM, Parks CG, Germolec DR, Leung PS, Selmi C, Humble MC, Rose NR (2012b) Criteria for environmentally associated autoimmune diseases. J Autoimmun 39:253–258PubMedCentralCrossRefPubMedGoogle Scholar
  29. Moroni L, Bianchi I, Lleo A (2012) Geoepidemiology, gender and autoimmune disease. Autoimmun Rev 11:A386–A392CrossRefPubMedGoogle Scholar
  30. Nistico L, Fagnani C, Coto I, Percopo S, Cotichini R, Limongelli MG, Paparo F, D’Alfonso S, Giordano M, Sferlazzas C, Magazzu G, Momigliano-Richiardi P, Greco L, Stazi MA (2006) Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut 55:803–808PubMedCentralCrossRefPubMedGoogle Scholar
  31. Padalko EY, Bossuyt X (2001) Anti-dsDNA antibodies associated with acute EBV infection in Sjogren’s syndrome. Ann Rheum Dis 60:992PubMedCentralCrossRefPubMedGoogle Scholar
  32. Parks CG, Miller FW, Pollard KM, Selmi C, Germolec D, Joyce K, Rose NR, Humble MC (2014) Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int J Mol Sci 15:14269–14297PubMedCentralCrossRefPubMedGoogle Scholar
  33. Pedersen OB, Svendsen AJ, Ejstrup L, Skytthe A, Junker P (2008) On the heritability of psoriatic arthritis. Disease concordance among monozygotic and dizygotic twins. Ann Rheum Dis 67:1417–1421CrossRefPubMedGoogle Scholar
  34. Pollard KM, Lee DK, Casiano CA, Bluthner M, Johnston MM, Tan EM (1997) The autoimmunity-inducing xenobiotic mercury interacts with the autoantigen fibrillarin and modifies its molecular and antigenic properties. J Immunol 158:3521–3528PubMedGoogle Scholar
  35. Prieto S, Grau JM (2010) The geoepidemiology of autoimmune muscle disease. Autoimmun Rev 9:A330–A334CrossRefPubMedGoogle Scholar
  36. Quintana FJ, Weiner HL (2009) Environmental control of Th17 differentiation. Eur J Immunol 39:655–657PubMedCentralCrossRefPubMedGoogle Scholar
  37. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71CrossRefPubMedGoogle Scholar
  38. Rose NR (2008) The adjuvant effect in infection and autoimmunity. Clin Rev Allergy Immunol 34:279–282CrossRefPubMedGoogle Scholar
  39. Sarkar S, Fox DA (2010) Targeting IL-17 and Th17 cells in rheumatoid arthritis. Rheum Dis Clin North Am 36:345–366CrossRefPubMedGoogle Scholar
  40. Segal BM (2010) Th17 cells in autoimmune demyelinating disease. Semin Immunopathol 32:71–77PubMedCentralCrossRefPubMedGoogle Scholar
  41. Selmi C, Tsuneyama K (2010) Nutrition, geoepidemiology, and autoimmunity. Autoimmun Rev 9:A267–A270CrossRefPubMedGoogle Scholar
  42. Selmi C, Mayo MJ, Bach N, Ishibashi H, Invernizzi P, Gish RG, Gordon SC, Wright HI, Zweiban B, Podda M, Gershwin ME (2004) Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 127:485–492CrossRefPubMedGoogle Scholar
  43. Selmi C, Maria Papini A, Pugliese P, Claudia Alcaro M, Gershwin ME (2011) Environmental pathways to autoimmune diseases: the cases of primary biliary cirrhosis and multiple sclerosis. Arch Med Sci 7:368–380PubMedCentralCrossRefPubMedGoogle Scholar
  44. Selmi C, Leung PS, Sherr DH, Diaz M, Nyland JF, Monestier M, Rose NR, Gershwin ME (2012a) Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 39:272–284CrossRefPubMedGoogle Scholar
  45. Selmi C, Lu Q, Humble MC (2012b) Heritability versus the role of the environment in autoimmunity. J Autoimmun 39:249–252CrossRefPubMedGoogle Scholar
  46. Shapira Y, Agmon-Levin N, Shoenfeld Y (2010) Defining and analyzing geoepidemiology and human autoimmunity. J Autoimmun 34:J168–J177CrossRefPubMedGoogle Scholar
  47. Shintani Y, Yasuda Y, Kobayashi K, Maeda A, Morita A (2008) Narrowband ultraviolet B radiation suppresses contact hypersensitivity. Photodermatol Photoimmunol Photomed 24:32–37CrossRefPubMedGoogle Scholar
  48. Shoenfeld Y, Blank M (2004) The infectious etiology of the antiphospholipid syndrome (APS). Autoimmun Rev 3(Suppl 1):S32–S34PubMedGoogle Scholar
  49. So HC, Gui AH, Cherny SS, Sham PC (2011) Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet Epidemiol 35:310–317CrossRefPubMedGoogle Scholar
  50. Su BY, Su CY, Yu SF, Chen CJ (2007) Incidental discovery of high systemic lupus erythematosus disease activity associated with cytomegalovirus viral activity. Med Microbiol Immunol 196:165–170CrossRefPubMedGoogle Scholar
  51. Sverrild A, Backer V, Kyvik KO, Kaprio J, Milman N, Svendsen CB, Thomsen SF (2008) Heredity in sarcoidosis: a registry-based twin study. Thorax 63:894–896CrossRefPubMedGoogle Scholar
  52. Tanaka A, Takikawa H (2013) Geoepidemiology of primary sclerosing cholangitis: a critical review. J Autoimmun 46:35–40CrossRefPubMedGoogle Scholar
  53. Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B (1988) Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29:990–996PubMedCentralCrossRefPubMedGoogle Scholar
  54. van der Woude D, Houwing-Duistermaat JJ, Toes RE, Huizinga TW, Thomson W, Worthington J, van der Helm-van Mil AH, de Vries RR (2009) Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum 60:916–923CrossRefPubMedGoogle Scholar
  55. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109CrossRefPubMedGoogle Scholar
  56. Yu H, Yang YH, Rajaiah R, Moudgil KD (2011) Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti-cyclic citrullinated peptide antibodies. Arthritis Rheum 63:981–991PubMedCentralCrossRefPubMedGoogle Scholar
  57. Zeki AA, Schivo M, Chan AL, Hardin KA, Kenyon NJ, Albertson TE, Rosenquist GL, Louie S (2010) Geoepidemiology of COPD and idiopathic pulmonary fibrosis. J Autoimmun 34:J327–J338CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Angela Ceribelli
    • 1
    • 2
  • Elena Generali
    • 1
  • Carlo Selmi
    • 3
  1. 1.Division of Rheumatology and Clinical ImmunologyHumanitas Research HospitalRozzano, MilanItaly
  2. 2.BIOMETRA DepartmentUniversity of MilanMilanItaly
  3. 3.Division of Rheumatology and Clinical ImmunologyHumanitas Clinical and Research CenterRozzano, MilanItaly

Personalised recommendations