Immunotoxic Effects of Mercury

  • Renee M. Gardner
  • Jennifer F. Nyland


Mercury is a ubiquitous environmental contaminant. Exposures to mercury occur globally and pose significant threats to human health. Mercury toxicity to the nervous system has been extensively studied, and risks to human health as a result of mercury exposure have been evaluated on this basis, especially for exposures at high doses. Data from experimental models, such as rodent systems, suggest that mercury may also have a significant effect on the function of the immune system. However, little is known about the risks posed to human health as a result of mercury immunotoxicity, mainly due to variations in dose, route of exposure, and differences between the rodent and human immune systems.

The evidence for mercury as an immunotoxic agent is reviewed here, specifically in the context of human exposures to mercury and the relevance of models of mercury immunotoxicity to human health. In light of evidence that mercury may affect the immune system, the influence of the immune system in other organ systems targeted by mercury is also reviewed.


Human Leukocyte Antigen Inorganic Mercury Mercury Exposure Elemental Mercury Dental Amalgam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdelouahab N, Vanier C, Baldwin M, Garceau S, Lucotte M, Mergler D (2008) Ecosystem matters: fish consumption, mercury intake and exposure among fluvial lake fish-eaters. Sci Total Environ 407(1):154–164PubMedCrossRefGoogle Scholar
  2. Abedi-Valugerdi M, Moller G (2000) Contribution of H-2 and non-H-2 genes in the control of mercury-induced autoimmunity. Int Immunol 12(10):1425–1430PubMedCrossRefGoogle Scholar
  3. Abedi-Valugerdi M, Hu H, Moller G (1997) Mercury-induced renal immune complex deposits in young (NZB x NZW)F1 mice: characterization of antibodies/autoantibodies. Clin Exp Immunol 110(1):86–91PubMedCentralPubMedCrossRefGoogle Scholar
  4. Abedi-Valugerdi M, Hansson M, Moller G (2001) Genetic control of resistance to mercury-induced immune/autoimmune activation. Scand J Immunol 54(1–2):190–197PubMedCrossRefGoogle Scholar
  5. Abedi-Valugerdi M, Nilsson C, Zargari A, Gharibdoost F, DePierre JW, Hassan M (2005) Bacterial lipopolysaccharide both renders resistant mice susceptible to mercury-induced autoimmunity and exacerbates such autoimmunity in susceptible mice. Clin Exp Immunol 141(2):238–247PubMedCentralPubMedCrossRefGoogle Scholar
  6. al-Balaghi S, Moller E, Moller G, Abedi-Valugerdi M (1996) Mercury induces polyclonal B cell activation, autoantibody production and renal immune complex deposits in young (NZB x NZW)F1 hybrids. Eur J Immunol 26(7):1519–1526PubMedCrossRefGoogle Scholar
  7. Allen BC, Hack CE, Clewell HJ (2007) Use of Markov chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age. Risk Anal 27(4):947–959PubMedCrossRefGoogle Scholar
  8. Alves MF, Fraiji NA, Barbosa AC, De Lima DS, Souza JR, Dorea JG, Cordeiro GW (2006) Fish consumption, mercury exposure and serum antinuclear antibody in Amazonians. Int J Environ Health Res 16(4):255–262PubMedCrossRefGoogle Scholar
  9. Apostolakis S, Vogiatzi K, Krambovitis E, Spandidos DA (2008) IL-1 cytokines in cardiovascular disease: diagnostic, prognostic and therapeutic implications. Cardiovasc Hematol Agents Med Chem 6(2):150–158PubMedCrossRefGoogle Scholar
  10. Arnett FC, Reveille JD, Goldstein R, Pollard KM, Leaird K, Smith EA, Leroy EC, Fritzler MJ (1996) Autoantibodies to fibrillarin in systemic sclerosis (scleroderma). An immunogenetic, serologic, and clinical analysis. Arthritis Rheum 39(7):1151–1160PubMedCrossRefGoogle Scholar
  11. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes – integrating cell survival and death. J Biosci 32(3):595–610PubMedCrossRefGoogle Scholar
  12. Aucott M, McLinden M, Winka M (2003) Release of mercury from broken fluorescent bulbs. J Air Waste Manag Assoc 53(2):143–151PubMedCrossRefGoogle Scholar
  13. Bach JF (2005) Infections and autoimmune diseases. J Autoimmun 25(Suppl):74–80PubMedCrossRefGoogle Scholar
  14. Bagenstose LM, Salgame P, Monestier M (1998a) IL-12 down-regulates autoantibody production in mercury-induced autoimmunity. J Immunol 160(4):1612–1617PubMedGoogle Scholar
  15. Bagenstose LM, Salgame P, Monestier M (1998b) Mercury-induced autoimmunity in the absence of IL-4. Clin Exp Immunol 114(1):9–12PubMedCentralPubMedCrossRefGoogle Scholar
  16. Bagenstose LM, Salgame P, Monestier M (1999) Cytokine regulation of a rodent model of mercuric chloride-induced autoimmunity. Environ Health Perspect 107(Suppl 5):807–810PubMedCentralPubMedCrossRefGoogle Scholar
  17. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Methylmercury poisoning in Iraq. Science 181(96):230–241PubMedCrossRefGoogle Scholar
  18. Ballatori N, Wang W, Lieberman MW (1998) Accelerated methylmercury elimination in gamma-glutamyl transpeptidase-deficient mice. Am J Pathol 152(4):1049–1055PubMedCentralPubMedGoogle Scholar
  19. Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P (2005) Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 99(4):105–110CrossRefGoogle Scholar
  20. Bariety J, Druet P, Laliberte F, Sapin C (1971) Glomerulonephritis with – and 1C-globulin deposits induced in rats by mercuric chloride. Am J Pathol 65(2):293–302PubMedCentralPubMedGoogle Scholar
  21. Barr RD, Rees PH, Cordy PE, Kungu A, Woodger BA, Cameron HM (1972) Nephrotic syndrome in adult Africans in Nairobi. Br Med J 2(5806):131–134PubMedCentralPubMedCrossRefGoogle Scholar
  22. Barr RD, Woodger BA, Rees PH (1973) Levels of mercury in urine correlated with the use of skin lightening creams. Am J Clin Pathol 59(1):36–40PubMedGoogle Scholar
  23. Beere HM (2004) “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117(Pt 13):2641–2651PubMedCrossRefGoogle Scholar
  24. Bernaudin JF, Druet E, Belair MF, Pinchon MC, Sapin C, Druet P (1979) Extrarenal immune complex type deposits induced by mercuric chloride in the Brown Norway rat. Clin Exp Immunol 38(2):265–273PubMedCentralPubMedGoogle Scholar
  25. Berry TG, Summitt JB, Chung AK, Osborne JW (1998) Amalgam at the new millennium. J Am Dent Assoc 129(11):1547–1556PubMedCrossRefGoogle Scholar
  26. Biancone L, Andres G, Ahn H, Lim A, Dai C, Noelle R, Yagita H, De Martino C, Stamenkovic I (1996) Distinct regulatory roles of lymphocyte costimulatory pathways on T helper type-2 mediated autoimmune disease. J Exp Med 183(4):1473–1481PubMedCrossRefGoogle Scholar
  27. Bigazzi PE (1999) Metals and kidney autoimmunity. Environ Health Perspect 107(Suppl 5):753–765PubMedCentralPubMedCrossRefGoogle Scholar
  28. Bigazzi PE, Kosuda LL, Hannigan MO, Whalen B, Greiner DL (2003) Lack of graft-versus-host-like pathology in mercury-induced autoimmunity of Brown Norway rats. Clin Immunol 109(2):229–237PubMedCrossRefGoogle Scholar
  29. Bjornberg KA, Vahter M, Grawe KP, Berglund M (2005) Methyl mercury exposure in Swedish women with high fish consumption. Sci Total Environ 341(1–3):45–52PubMedCrossRefGoogle Scholar
  30. Boyd AS, Seger D, Vannucci S, Langley M, Abraham JL, King LE Jr (2000) Mercury exposure and cutaneous disease. J Am Acad Dermatol 43(1 Pt 1):81–90PubMedCrossRefGoogle Scholar
  31. Boyle JJ (2005) Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol 3(1):63–68PubMedCrossRefGoogle Scholar
  32. Braga MC, Shaw G, Lester JN (2000) Mercury modeling to predict contamination and bioaccumulation in aquatic ecosystems. Rev Environ Contam Toxicol 164:69–92PubMedGoogle Scholar
  33. Braun WE (1992) HLA molecules in autoimmune diseases. Clin Biochem 25(3):187–191PubMedCrossRefGoogle Scholar
  34. Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y (2010) Epigenetics and autoimmunity. J Autoimmun 34(3):J207–J219PubMedCrossRefGoogle Scholar
  35. Brown DL, Reuhl KR, Bormann S, Little JE (1988) Effects of methyl mercury on the microtubule system of mouse lymphocytes. Toxicol Appl Pharmacol 94(1):66–75PubMedCrossRefGoogle Scholar
  36. Brunet S, Guertin F, Flipo D, Fournier M, Krzystyniak K (1993) Cytometric profiles of bone marrow and spleen lymphoid cells after mercury exposure in mice. Int J Immunopharmacol 15(7):811–819PubMedCrossRefGoogle Scholar
  37. Cameron JS, Trounce JR (1965) Membranous glomerulonephritis and the nephrotic syndrome appearing during mersalyl therapy. Guys Hosp Rep 114:101–107PubMedGoogle Scholar
  38. Cardenas A, Roels H, Bernard AM, Barbon R, Buchet JP, Lauwerys RR, Rosello J, Hotter G, Mutti A, Franchini I et al (1993) Markers of early renal changes induced by industrial pollutants. I. Application to workers exposed to mercury vapour. Br J Ind Med 50(1):17–27PubMedCentralPubMedGoogle Scholar
  39. Castilhos ZC, Bidone ED, Lacerda LD (1998) Increase of the background human exposure to mercury through fish consumption due to gold mining at the Tapajos River region, Para State, Amazon. Bull Environ Contam Toxicol 61(2):202–209PubMedCrossRefGoogle Scholar
  40. Charleston JS, Bolender RP, Mottet NK, Body RL, Vahter ME, Burbacher TM (1994) Increases in the number of reactive glia in the visual cortex of Macaca fascicularis following subclinical long-term methyl mercury exposure. Toxicol Appl Pharmacol 129(2):196–206PubMedCrossRefGoogle Scholar
  41. Choi AL, Cordier S, Weihe P, Grandjean P (2008) Negative confounding in the evaluation of toxicity: the case of methylmercury in fish and seafood. Crit Rev Toxicol 38(10):877–893PubMedCentralPubMedCrossRefGoogle Scholar
  42. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662PubMedCrossRefGoogle Scholar
  43. Clarkson TW, Vyas JB, Ballatori N (2007) Mechanisms of mercury disposition in the body. Am J Ind Med 50(10):757–764PubMedCrossRefGoogle Scholar
  44. Cooke A, Ferraccioli GF, Herrmann M, Romani L, Schulze C, Zampieri S, Doria A (2008) Induction and protection of autoimmune rheumatic diseases. The role of infections. Clin Exp Rheumatol 26(1 Suppl 48):S1–S7PubMedGoogle Scholar
  45. Cooper GS, Miller FW, Pandey JP (1999) The role of genetic factors in autoimmune disease: implications for environmental research. Environ Health Perspect 107(Suppl 5):693–700PubMedCentralPubMedCrossRefGoogle Scholar
  46. Cooper GS, Parks CG, Treadwell EL, St Clair EW, Gilkeson GS, Dooley MA (2004) Occupational risk factors for the development of systemic lupus erythematosus. J Rheumatol 31(10):1928–1933PubMedGoogle Scholar
  47. Crompton P, Ventura AM, de Souza JM, Santos E, Strickland GT, Silbergeld E (2002) Assessment of mercury exposure and malaria in a Brazilian Amazon riverine community. Environ Res 90(2):69–75PubMedCrossRefGoogle Scholar
  48. Custodio HM, Broberg K, Wennberg M, Jansson JH, Vessby B, Hallmans G, Stegmayr B, Skerfving S (2004) Polymorphisms in glutathione-related genes affect methylmercury retention. Arch Environ Health 59(11):588–595PubMedCrossRefGoogle Scholar
  49. Custodio HM, Harari R, Gerhardsson L, Skerfving S, Broberg K (2005) Genetic influences on the retention of inorganic mercury. Arch Environ Occup Health 60(1):17–23PubMedCrossRefGoogle Scholar
  50. Dantas DC, Queiroz ML (1997) Immunoglobulin E and autoantibodies in mercury-exposed workers. Immunopharmacol Immunotoxicol 19(3):383–392PubMedCrossRefGoogle Scholar
  51. de Andrade Lima LR, Bernardez LA, Barbosa LA (2008) Characterization and treatment of artisanal gold mine tailings. J Hazard Mater 150(3):747–753PubMedCrossRefGoogle Scholar
  52. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147PubMedGoogle Scholar
  53. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256(5512):50–52PubMedCrossRefGoogle Scholar
  54. Dominique Y, Muresan B, Duran R, Richard S, Boudou A (2007) Simulation of the chemical fate and bioavailability of liquid elemental mercury drops from gold mining in Amazonian freshwater systems. Environ Sci Technol 41(21):7322–7329PubMedCrossRefGoogle Scholar
  55. Donkor AK, Bonzongo JC, Nartey VK, Adotey DK (2006) Mercury in different environmental compartments of the Pra River Basin, Ghana. Sci Total Environ 368(1):164–176PubMedCrossRefGoogle Scholar
  56. Dyall-Smith DJ, Scurry JP (1990) Mercury pigmentation and high mercury levels from the use of a cosmetic cream. Med J Aust 153(7):409–410, 414–415PubMedGoogle Scholar
  57. Ebringer A, Wilson C (2000) HLA molecules, bacteria and autoimmunity. J Med Microbiol 49(4):305–311PubMedCrossRefGoogle Scholar
  58. Ellingsen DG, Efskind J, Berg KJ, Gaarder PI, Thomassen Y (2000) Renal and immunologic markers for chloralkali workers with low exposure to mercury vapor. Scand J Work Environ Health 26(5):427–435PubMedCrossRefGoogle Scholar
  59. Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z, Fu X (2008) Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environ Sci Technol 42(1):326–332PubMedCrossRefGoogle Scholar
  60. Field AC, Caccavelli L, Fillion J, Kuhn J, Mandet C, Druet P, Bellon B (2000) Neonatal induction of tolerance to T(h)2-mediated autoimmunity in rats. Int Immunol 12(10):1467–1477PubMedCrossRefGoogle Scholar
  61. Field AC, Caccavelli L, Bloch MF, Bellon B (2003) Regulatory CD8+ T cells control neonatal tolerance to a Th2-mediated autoimmunity. J Immunol 170(5):2508–2515PubMedCrossRefGoogle Scholar
  62. Fillion M, Mergler D, Sousa Passos CJ, Larribe F, Lemire M, Guimaraes JR (2006) A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon. Environ Health 5:29PubMedCentralPubMedCrossRefGoogle Scholar
  63. Frumkin H, Letz R, Williams PL, Gerr F, Pierce M, Sanders A, Elon L, Manning CC, Woods JS, Hertzberg VS, Mueller P, Taylor BB (2001) Health effects of long-term mercury exposure among chloralkali plant workers. Am J Ind Med 39(1):1–18PubMedCrossRefGoogle Scholar
  64. Gadhia SR, Calabro AR, Barile FA (2012) Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells. Toxicol Lett 212(2):169–179PubMedCrossRefGoogle Scholar
  65. Gammons CH, Slotton DG, Gerbrandt B, Weight W, Young CA, McNearny RL, Camac E, Calderon R, Tapia H (2006) Mercury concentrations of fish, river water, and sediment in the Rio Ramis-Lake Titicaca watershed, Peru. Sci Total Environ 368(2–3):637–648PubMedCrossRefGoogle Scholar
  66. Gardner RM, Nyland JF, Evans SL, Wang SB, Doyle KM, Crainiceanu CM, Silbergeld EK (2009) Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect 117(12):1932–1938PubMedCentralPubMedCrossRefGoogle Scholar
  67. Gardner RM, Nyland JF, Silbergeld EK (2010a) Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicol Lett 198(2):182–190PubMedCentralPubMedCrossRefGoogle Scholar
  68. Gardner RM, Nyland JF, Silva IA, Ventura AM, de Souza JM, Silbergeld EK (2010b) Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ Res 110(4):345–354PubMedCentralPubMedCrossRefGoogle Scholar
  69. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20(3):269–287PubMedCrossRefGoogle Scholar
  70. Ghodke Y, Joshi K, Chopra A, Patwardhan B (2005) HLA and disease. Eur J Epidemiol 20(6):475–488PubMedCrossRefGoogle Scholar
  71. Gleichmann E, Gleichmann H (1985) Pathogenesis of graft-versus-host reactions (GVHR) and GVH-like diseases. J Invest Dermatol 85(1 Suppl):115s–120sPubMedCrossRefGoogle Scholar
  72. Gonzalez EN, Rothfield NF (1966) Immunoglobulin class and pattern of nuclear fluorescence in systemic lupus erythematosus. N Engl J Med 274(24):1333–1338PubMedCrossRefGoogle Scholar
  73. Goodrich JM, Basu N, Franzblau A, Dolinoy DC (2013) Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ Mol Mutagen 54(3):195–203PubMedCentralPubMedCrossRefGoogle Scholar
  74. Guallar E, Sanz-Gallardo MI, van't Veer P, Bode P, Aro A, Gomez-Aracena J, Kark JD, Riemersma RA, Martin-Moreno JM, Kok FJ (2002) Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347(22):1747–1754PubMedCrossRefGoogle Scholar
  75. Guo TL, Miller MA, Shapiro IM, Shenker BJ (1998) Mercuric chloride induces apoptosis in human T lymphocytes: evidence of mitochondrial dysfunction. Toxicol Appl Pharmacol 153(2):250–257PubMedCrossRefGoogle Scholar
  76. Haggqvist B, Hultman P (2005) Interleukin-10 in murine metal-induced systemic autoimmunity. Clin Exp Immunol 141(3):422–431PubMedCentralPubMedCrossRefGoogle Scholar
  77. Haggqvist B, Havarinasab S, Bjorn E, Hultman P (2005) The immunosuppressive effect of methylmercury does not preclude development of autoimmunity in genetically susceptible mice. Toxicology 208(1):149–164PubMedCrossRefGoogle Scholar
  78. Hand WC, Edwards BB, Caify ER (1943) Studies in the pathology of mercury III Histochemical demonstration and differentiation of metallic mercury, mercurous mercury, and mercuric mercury. J Lab Clin Med 28:1835–1841Google Scholar
  79. Hansson M, Abedi-Valugerdi M (2003) Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice. Clin Exp Immunol 131(3):405–414PubMedCentralPubMedCrossRefGoogle Scholar
  80. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24PubMedCrossRefGoogle Scholar
  81. Harris RC, Rudd JW, Amyot M, Babiarz CL, Beaty KG, Blanchfield PJ, Bodaly RA, Branfireun BA, Gilmour CC, Graydon JA, Heyes A, Hintelmann H, Hurley JP, Kelly CA, Krabbenhoft DP, Lindberg SE, Mason RP, Paterson MJ, Podemski CL, Robinson A, Sandilands KA, Southworth GR, St Louis VL, Tate MT (2007) Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc Natl Acad Sci U S A 104(42):16586–16591PubMedCentralPubMedCrossRefGoogle Scholar
  82. Havarinasab S, Hultman P (2005) Organic mercury compounds and autoimmunity. Autoimmun Rev 4(5):270–275PubMedCrossRefGoogle Scholar
  83. Havarinasab S, Hultman P (2006) Alteration of the spontaneous systemic autoimmune disease in (NZB x NZW)F1 mice by treatment with thimerosal (ethyl mercury). Toxicol Appl Pharmacol 214(1):43–54PubMedCrossRefGoogle Scholar
  84. Havarinasab S, Haggqvist B, Bjorn E, Pollard KM, Hultman P (2005) Immunosuppressive and autoimmune effects of thimerosal in mice. Toxicol Appl Pharmacol 204(2):109–121PubMedCrossRefGoogle Scholar
  85. Havarinasab S, Bjorn E, Ekstrand J, Hultman P (2007a) Dose and Hg species determine the T-helper cell activation in murine autoimmunity. Toxicology 229(1–2):23–32PubMedCrossRefGoogle Scholar
  86. Havarinasab S, Bjorn E, Nielsen JB, Hultman P (2007b) Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice. Toxicol Appl Pharmacol 221(1):21–28PubMedCrossRefGoogle Scholar
  87. Hemdan NY (2008) The role of interleukin-12 in the heavy metal-elicited immunomodulation: relevance of various evaluation methods. J Occup Med Toxicol 3(1):25PubMedCentralPubMedCrossRefGoogle Scholar
  88. Hemdan NY, Emmrich F, Faber S, Lehmann J, Sack U (2007a) Alterations of TH1/TH2 reactivity by heavy metals: possible consequences include induction of autoimmune diseases. Ann N Y Acad Sci 1109:129–137PubMedCrossRefGoogle Scholar
  89. Hemdan NY, Lehmann I, Wichmann G, Lehmann J, Emmrich F, Sack U (2007b) Immunomodulation by mercuric chloride in vitro: application of different cell activation pathways. Clin Exp Immunol 148(2):325–337PubMedCentralPubMedCrossRefGoogle Scholar
  90. Heyer NJ, Echeverria D, Bittner AC Jr, Farin FM, Garabedian CC, Woods JS (2004) Chronic low-level mercury exposure, BDNF polymorphism, and associations with self-reported symptoms and mood. Toxicol Sci 81(2):354–363PubMedCrossRefGoogle Scholar
  91. Hill AV (1998) The immunogenetics of human infectious diseases. Annu Rev Immunol 16:593–617PubMedCrossRefGoogle Scholar
  92. Hill AV (2001) Immunogenetics and genomics. Lancet 357(9273):2037–2041PubMedCrossRefGoogle Scholar
  93. Hirokawa K, Hayashi Y (1980) Acute methyl mercury intoxication in mice – effect on the immune system. Acta Pathol Jpn 30(1):23–32PubMedGoogle Scholar
  94. Ho KT, Reveille JD (2003) The clinical relevance of autoantibodies in scleroderma. Arthritis Res Ther 5(2):80–93PubMedCrossRefGoogle Scholar
  95. Hu H, Moller G, Abedi-Valugerdi M (1997) Major histocompatibility complex class II antigens are required for both cytokine production and proliferation induced by mercuric chloride in vitro. J Autoimmun 10(5):441–446PubMedCrossRefGoogle Scholar
  96. Hu H, Moller G, Abedi-Valugerdi M (1998) Non-responsiveness to mercury-induced autoimmunity in resistant DBA/2 mice is not due to immunosuppression or biased Th1-type response. Scand J Immunol 48(5):515–521PubMedCrossRefGoogle Scholar
  97. Hu H, Moller G, Abedi-Valugerdi M (1999) Mechanism of mercury-induced autoimmunity: both T helper 1- and T helper 2-type responses are involved. Immunology 96(3):348–357PubMedCentralPubMedCrossRefGoogle Scholar
  98. Hultman P, Enestrom S (1988) Mercury induced antinuclear antibodies in mice: characterization and correlation with renal immune complex deposits. Clin Exp Immunol 71(2):269–274PubMedCentralPubMedGoogle Scholar
  99. Hultman P, Hansson-Georgiadis H (1999) Methyl mercury-induced autoimmunity in mice. Toxicol Appl Pharmacol 154(3):203–211PubMedCrossRefGoogle Scholar
  100. Hultman P, Nielsen JB (2001) The effect of dose, gender, and non-H-2 genes in murine mercury-induced autoimmunity. J Autoimmun 17(1):27–37PubMedCrossRefGoogle Scholar
  101. Hultman P, Enestrom S, Pollard KM, Tan EM (1989) Anti-fibrillarin autoantibodies in mercury-treated mice. Clin Exp Immunol 78(3):470–477PubMedCentralPubMedGoogle Scholar
  102. Hultman P, Bell LJ, Enestrom S, Pollard KM (1992) Murine susceptibility to mercury. I. Autoantibody profiles and systemic immune deposits in inbred, congenic, and intra-H-2 recombinant strains. Clin Immunol Immunopathol 65(2):98–109PubMedCrossRefGoogle Scholar
  103. Hultman P, Johansson U, Turley SJ, Lindh U, Enestrom S, Pollard KM (1994) Adverse immunological effects and autoimmunity induced by dental amalgam and alloy in mice. FASEB J 8(14):1183–1190PubMedGoogle Scholar
  104. Hultman P, Johansson U, Dagnaes-Hansen F (1995) Murine mercury-induced autoimmunity: the role of T-helper cells. J Autoimmun 8(6):809–823PubMedCrossRefGoogle Scholar
  105. Hultman P, Lindh U, Horsted-Bindslev P (1998) Activation of the immune system and systemic immune-complex deposits in Brown Norway rats with dental amalgam restorations. J Dent Res 77(6):1415–1425PubMedCrossRefGoogle Scholar
  106. Hultman P, Taylor A, Yang JM, Pollard KM (2006) The effect of xenobiotic exposure on spontaneous autoimmunity in (SWR x SJL)F1 hybrid mice. J Toxicol Environ Health A 69(6):505–523PubMedCrossRefGoogle Scholar
  107. Hursh JB, Cherian MG, Clarkson TW, Vostal JJ, Mallie RV (1976) Clearance of mercury (HG-197, HG-203) vapor inhaled by human subjects. Arch Environ Health 31(6):302–309PubMedCrossRefGoogle Scholar
  108. Icard P, Pelletier L, Vial MC, Mandet C, Pasquier R, Michel A, Druet P (1993) Evidence for a role of antilaminin-producing B cell clones that escape tolerance in the pathogenesis of HgCl2-induced membranous glomerulopathy. Nephrol Dial Transplant 8(2):122–127PubMedGoogle Scholar
  109. Ilback NG, Lindh U, Fohlman J, Friman G (1995) New aspects of murine coxsackie B3 myocarditis – focus on heavy metals. Eur Heart J 16 Suppl O:20–24PubMedCrossRefGoogle Scholar
  110. Ilback NG, Wesslen L, Fohlman J, Friman G (1996) Effects of methyl mercury on cytokines, inflammation and virus clearance in a common infection (coxsackie B3 myocarditis). Toxicol Lett 89(1):19–28PubMedCrossRefGoogle Scholar
  111. Inadera H (2006) The immune system as a target for environmental chemicals: xenoestrogens and other compounds. Toxicol Lett 164(3):191–206PubMedCrossRefGoogle Scholar
  112. James SJ, Slikker W 3rd, Melnyk S, New E, Pogribna M, Jernigan S (2005) Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology 26(1):1–8PubMedCrossRefGoogle Scholar
  113. Jiang Y, Moller G (1995) In vitro effects of HgCl2 on murine lymphocytes. I. Preferable activation of CD4+ T cells in a responder strain. J Immunol 154(7):3138–3146PubMedGoogle Scholar
  114. Jiang Y, Moller G (1996) Unresponsiveness of CD4+ T cells from a non-responder strain to HgCl2 is not due to CD8(+)-mediated immunosuppression: an analysis of the very early activation antigen CD69. Scand J Immunol 44(6):565–570PubMedCrossRefGoogle Scholar
  115. Johansson U, Sander B, Hultman P (1997) Effects of the murine genotype on T cell activation and cytokine production in murine mercury-induced autoimmunity. J Autoimmun 10(4):347–355PubMedCrossRefGoogle Scholar
  116. Johansson U, Hansson-Georgiadis H, Hultman P (1998) The genotype determines the B cell response in mercury-treated mice. Int Arch Allergy Immunol 116(4):295–305PubMedCrossRefGoogle Scholar
  117. Kono DH, Balomenos D, Pearson DL, Park MS, Hildebrandt B, Hultman P, Pollard KM (1998) The prototypic Th2 autoimmunity induced by mercury is dependent on IFN-gamma and not Th1/Th2 imbalance. J Immunol 161(1):234–240PubMedGoogle Scholar
  118. Kono DH, Park MS, Szydlik A, Haraldsson KM, Kuan JD, Pearson DL, Hultman P, Pollard KM (2001) Resistance to xenobiotic-induced autoimmunity maps to chromosome 1. J Immunol 167(4):2396–2403PubMedCrossRefGoogle Scholar
  119. Kosuda LL, Greiner DL, Bigazzi PE (1994) Mercury-induced renal autoimmunity in BN → LEW.1N chimeric rats. Cell Immunol 155(1):77–94PubMedCrossRefGoogle Scholar
  120. Krensky AM (1997) The HLA system, antigen processing and presentation. Kidney Int Suppl 58:S2–S7PubMedGoogle Scholar
  121. Kubicka-Muranyi M, Behmer O, Uhrberg M, Klonowski H, Bister J, Gleichmann E (1993) Murine systemic autoimmune disease induced by mercuric chloride (HgCl2): Hg-specific helper T-cells react to antigen stored in macrophages. Int J Immunopharmacol 15(2):151–161PubMedCrossRefGoogle Scholar
  122. Laiosa MD, Eckles KG, Langdon M, Rosenspire AJ, McCabe MJ Jr (2007) Exposure to inorganic mercury in vivo attenuates extrinsic apoptotic signaling in Staphylococcal aureus enterotoxin B stimulated T-cells. Toxicol Appl Pharmacol 225(3):238–250PubMedCentralPubMedCrossRefGoogle Scholar
  123. Lawrence DA, McCabe MJ Jr (2002) Immunomodulation by metals. Int Immunopharmacol 2(2–3):293–302PubMedCrossRefGoogle Scholar
  124. Leaner JJ, Mason RP (2002) Methylmercury accumulation and fluxes across the intestine of channel catfish, Ictalurus punctatus. Comp Biochem Physiol C Toxicol Pharmacol 132(2):247–259PubMedCrossRefGoogle Scholar
  125. Li P, Feng X, Yuan X, Chan HM, Qiu G, Sun GX, Zhu YG (2012) Rice consumption contributes to low level methylmercury exposure in southern China. Environ Int 49:18–23PubMedCrossRefGoogle Scholar
  126. Limbong D, Kumampung J, Rimper J, Arai T, Miyazaki N (2003) Emissions and environmental implications of mercury from artisanal gold mining in North Sulawesi, Indonesia. Sci Total Environ 302(1–3):227–236PubMedCrossRefGoogle Scholar
  127. Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, Qian X, Tang Y, Lau YL, de Vries N, Tak PP, Tsao BP, Shen N (2011) A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet 7(6):e1002128PubMedCentralPubMedCrossRefGoogle Scholar
  128. Maas C, Bruck W, Haffner HT, Schweinsberg F (1996) Study on the significance of mercury accumulation in the brain from dental amalgam fillings through direct mouth-nose-brain transport. Zentralbl Hyg Umweltmed 198(3):275–291PubMedGoogle Scholar
  129. Mahaffey KR, Clickner RP, Bodurow CC (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect 112(5):562–570PubMedCentralPubMedCrossRefGoogle Scholar
  130. Mandic L, Radmila M, Jelena A, Dubravka D (2002) Change in the iso-enzyme profiles of urinary N-acetyl-beta-D-glucosaminidase in workers exposed to mercury. Toxicol Ind Health 18(5):207–214PubMedGoogle Scholar
  131. Martin MP, Carrington M (2005) Immunogenetics of viral infections. Curr Opin Immunol 17(5):510–516PubMedCrossRefGoogle Scholar
  132. Mason RP, Abbott ML, Bodaly RA, Bullock OR Jr, Driscoll CT, Evers D, Lindberg SE, Murray M, Swain EB (2005) Monitoring the response to changing mercury deposition. Environ Sci Technol 39(1):14A–22APubMedCrossRefGoogle Scholar
  133. Mathers C, Fat DM, Boerma JT, World Health Organization (2008) The global burden of disease: 2004 update. World Health Organization, GenevaCrossRefGoogle Scholar
  134. Mattingly RR, Felczak A, Chen CC, McCabe MJ Jr, Rosenspire AJ (2001) Low concentrations of inorganic mercury inhibit Ras activation during T cell receptor-mediated signal transduction. Toxicol Appl Pharmacol 176(3):162–168PubMedCrossRefGoogle Scholar
  135. McCabe MJ Jr, Santini RP, Rosenspire AJ (1999) Low and nontoxic levels of ionic mercury interfere with the regulation of cell growth in the WEHI-231 B-cell lymphoma. Scand J Immunol 50(3):233–241PubMedCrossRefGoogle Scholar
  136. McCabe MJ Jr, Whitekus MJ, Hyun J, Eckles KG, McCollum G, Rosenspire AJ (2003) Inorganic mercury attenuates CD95-mediated apoptosis by interfering with formation of the death inducing signaling complex. Toxicol Appl Pharmacol 190(2):146–156PubMedCrossRefGoogle Scholar
  137. McCabe MJ Jr, Eckles KG, Langdon M, Clarkson TW, Whitekus MJ, Rosenspire AJ (2005) Attenuation of CD95-induced apoptosis by inorganic mercury: caspase-3 is not a direct target of low levels of Hg2+. Toxicol Lett 155(1):161–170PubMedCrossRefGoogle Scholar
  138. McCabe MJ Jr, Laiosa MD, Li L, Menard SL, Mattingly RR, Rosenspire AJ (2007) Low and nontoxic inorganic mercury burdens attenuate BCR-mediated signal transduction. Toxicol Sci 99(2):512–521PubMedCrossRefGoogle Scholar
  139. Molina A, Sanchez-Madrid F, Bricio T, Martin A, Escudero E, Alvarez V, Mampaso F (1995) Abrogation of mercuric chloride-induced nephritis in the Brown Norway rat by treatment with antibodies against TNFalpha. Mediators Inflamm 4(6):444–451PubMedCentralPubMedCrossRefGoogle Scholar
  140. Moszczynski P, Rutowski J, Slowinski S, Bem S, Jakus-Stoga D (1996) Effects of occupational exposure to mercury vapors on T-cell and NK-cell populations. Arch Med Res 27(4):503–507PubMedGoogle Scholar
  141. National Research Council (U.S.) Board on Environmental Studies and Toxicology (2000) Toxicological effects of methylmercury. National Academy Press, Washington, DCGoogle Scholar
  142. Nielsen JB, Hultman P (2002) Mercury-induced autoimmunity in mice. Environ Health Perspect 110(Suppl 5):877–881PubMedCentralPubMedCrossRefGoogle Scholar
  143. Nyland JF, Fillion M, Barbosa F Jr, Shirley DL, Chine C, Lemire M, Mergler D, Silbergeld EK (2011a) Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ Health Perspect 119(12):1733–1738PubMedCentralPubMedCrossRefGoogle Scholar
  144. Nyland JF, Wang SB, Shirley DL, Santos EO, Ventura AM, de Souza JM, Silbergeld EK (2011b) Fetal and maternal immune responses to methylmercury exposure: a cross-sectional study. Environ Res 111(4):584–589PubMedCentralPubMedCrossRefGoogle Scholar
  145. Nyland JF, Fairweather D, Shirley DL, Davis SE, Rose NR, Silbergeld EK (2012) Low-dose inorganic mercury increases severity and frequency of chronic coxsackievirus-induced autoimmune myocarditis in mice. Toxicol Sci 125(1):134–143PubMedCentralPubMedCrossRefGoogle Scholar
  146. Ohi G, Fukuda M, Seto H, Yagyu H (1976) Effect of methylmercury on humoral immune responses in mice under conditions simulated to practical situations. Bull Environ Contam Toxicol 15(2):175–180PubMedCrossRefGoogle Scholar
  147. Oskarsson A, Schultz A, Skerfving S, Hallen IP, Ohlin B, Lagerkvist BJ (1996) Total and inorganic mercury in breast milk in relation to fish consumption and amalgam in lactating women. Arch Environ Health 51(3):234–241PubMedCrossRefGoogle Scholar
  148. Passos CJ, Da Silva DS, Lemire M, Fillion M, Guimaraes JR, Lucotte M, Mergler D (2008) Daily mercury intake in fish-eating populations in the Brazilian Amazon. J Expo Sci Environ Epidemiol 18(1):76–87PubMedCrossRefGoogle Scholar
  149. Pelletier L, Pasquier R, Vial MC, Mandet C, Moutier R, Salomon JC, Druet P (1987) Mercury-induced autoimmune glomerulonephritis: requirement for T-cells. Nephrol Dial Transplant 1(4):211–218PubMedGoogle Scholar
  150. Pelletier L, Pasquier R, Rossert J, Vial MC, Mandet C, Druet P (1988) Autoreactive T cells in mercury-induced autoimmunity. Ability to induce the autoimmune disease. J Immunol 140(3):750–754PubMedGoogle Scholar
  151. Pelletier L, Rossert J, Pasquier R, Vial MC, Druet P (1990) Role of CD8+ T cells in mercury-induced autoimmunity or immunosuppression in the rat. Scand J Immunol 31(1):65–74PubMedCrossRefGoogle Scholar
  152. Pilsner JR, Lazarus AL, Nam DH, Letcher RJ, Sonne C, Dietz R, Basu N (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19(2):307–314PubMedCrossRefGoogle Scholar
  153. Pollard KM, Landberg GP (2001) The in vitro proliferation of murine lymphocytes to mercuric chloride is restricted to mature T cells and is interleukin 1 dependent. Int Immunopharmacol 1(3):581–593PubMedCrossRefGoogle Scholar
  154. Pollard KM, Reimer G, Tan EM (1989) Autoantibodies in scleroderma. Clin Exp Rheumatol 7(Suppl 3):S57–S62PubMedGoogle Scholar
  155. Pollard KM, Lee DK, Casiano CA, Bluthner M, Johnston MM, Tan EM (1997) The autoimmunity-inducing xenobiotic mercury interacts with the autoantigen fibrillarin and modifies its molecular and antigenic properties. J Immunol 158(7):3521–3528PubMedGoogle Scholar
  156. Pollard KM, Pearson DL, Hultman P, Hildebrandt B, Kono DH (1999) Lupus-prone mice as models to study xenobiotic-induced acceleration of systemic autoimmunity. Environ Health Perspect 107(Suppl 5):729–735PubMedCentralPubMedCrossRefGoogle Scholar
  157. Pollard KM, Pearson DL, Hultman P, Deane TN, Lindh U, Kono DH (2001) Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxsb mice. Environ Health Perspect 109(1):27–33PubMedCentralPubMedCrossRefGoogle Scholar
  158. Pollard KM, Arnush M, Hultman P, Kono DH (2004) Costimulation requirements of induced murine systemic autoimmune disease. J Immunol 173(9):5880–5887PubMedCrossRefGoogle Scholar
  159. Pollard KM, Hultman P, Kono DH (2005) Immunology and genetics of induced systemic autoimmunity. Autoimmun Rev 4(5):282–288PubMedCrossRefGoogle Scholar
  160. Portanova JP, Arndt RE, Kotzin BL (1988) Selective production of autoantibodies in graft-vs-host-induced and spontaneous murine lupus. Predominant reactivity with histone regions accessible in chromatin. J Immunol 140(3):755–760PubMedGoogle Scholar
  161. Queiroz ML, Dantas DC (1997a) B lymphocytes in mercury-exposed workers. Pharmacol Toxicol 81(3):130–133PubMedCrossRefGoogle Scholar
  162. Queiroz ML, Dantas DC (1997b) T lymphocytes in mercury-exposed workers. Immunopharmacol Immunotoxicol 19(4):499–510PubMedCrossRefGoogle Scholar
  163. Queiroz ML, Perlingeiro RC, Dantas DC, Bizzacchi JM, De Capitani EM (1994) Immunoglobulin levels in workers exposed to inorganic mercury. Pharmacol Toxicol 74(2):72–75PubMedCrossRefGoogle Scholar
  164. Reardon CL, Lucas DO (1987) Heavy-metal mitogenesis: Zn++ and Hg++ induce cellular cytotoxicity and interferon production in murine T lymphocytes. Immunobiology 175(5):455–469PubMedCrossRefGoogle Scholar
  165. Rioux JD, Abbas AK (2005) Paths to understanding the genetic basis of autoimmune disease. Nature 435(7042):584–589PubMedCrossRefGoogle Scholar
  166. Rodey GE, Fuller TC (1987) Public epitopes and the antigenic structure of the HLA molecules. Crit Rev Immunol 7(3):229–267PubMedGoogle Scholar
  167. Salonen JT, Seppanen K, Nyyssonen K, Korpela H, Kauhanen J, Kantola M, Tuomilehto J, Esterbauer H, Tatzber F, Salonen R (1995) Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 91(3):645–655PubMedCrossRefGoogle Scholar
  168. Sapin C, Druet E, Druet P (1977) Induction of anti-glomerular basement membrane antibodies in the Brown-Norway rat by mercuric chloride. Clin Exp Immunol 28(1):173–179PubMedCentralPubMedGoogle Scholar
  169. Sass JB, Haselow DT, Silbergeld EK (2001) Methylmercury-induced decrement in neuronal migration may involve cytokine-dependent mechanisms: a novel method to assess neuronal movement in vitro. Toxicol Sci 63(1):74–81PubMedCrossRefGoogle Scholar
  170. Schlawicke Engstrom K, Stromberg U, Lundh T, Johansson I, Vessby B, Hallmans G, Skerfving S, Broberg K (2008) Genetic variation in glutathione-related genes and body burden of methylmercury. Environ Health Perspect 116(6):734–739PubMedCrossRefGoogle Scholar
  171. Schneider U, Schwenk HU, Bornkamm G (1977) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 19(5):621–626PubMedCrossRefGoogle Scholar
  172. Schober SE, Sinks TH, Jones RL, Bolger PM, McDowell M, Osterloh J, Garrett ES, Canady RA, Dillon CF, Sun Y, Joseph CB, Mahaffey KR (2003) Blood mercury levels in US children and women of childbearing age, 1999–2000. JAMA 289(13):1667–1674PubMedCrossRefGoogle Scholar
  173. Shenker BJ, Berthold P, Decker S, Mayro J, Rooney C, Vitale L, Shapiro IM (1992a) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. II. Alterations in cell viability. Immunopharmacol Immunotoxicol 14(3):555–577PubMedCrossRefGoogle Scholar
  174. Shenker BJ, Rooney C, Vitale L, Shapiro IM (1992b) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. I. Suppression of T-cell activation. Immunopharmacol Immunotoxicol 14(3):539–553PubMedCrossRefGoogle Scholar
  175. Shenker BJ, Berthold P, Rooney C, Vitale L, DeBolt K, Shapiro IM (1993a) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. III. Alterations in B-cell function and viability. Immunopharmacol Immunotoxicol 15(1):87–112PubMedCrossRefGoogle Scholar
  176. Shenker BJ, Mayro JS, Rooney C, Vitale L, Shapiro IM (1993b) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. IV. Alterations in cellular glutathione content. Immunopharmacol Immunotoxicol 15(2–3):273–290PubMedCrossRefGoogle Scholar
  177. Shenker BJ, Datar S, Mansfield K, Shapiro IM (1997) Induction of apoptosis in human T-cells by organomercuric compounds: a flow cytometric analysis. Toxicol Appl Pharmacol 143(2):397–406PubMedCrossRefGoogle Scholar
  178. Shenker BJ, Guo TL, Shapiro IM (1998) Low-level methylmercury exposure causes human T-cells to undergo apoptosis: evidence of mitochondrial dysfunction. Environ Res 77(2):149–159PubMedCrossRefGoogle Scholar
  179. Shenker BJ, Guo TL, Shapiro IM (2000) Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent. Environ Res 84(2):89–99PubMedCrossRefGoogle Scholar
  180. Shenker BJ, Pankoski L, Zekavat A, Shapiro IM (2002) Mercury-induced apoptosis in human lymphocytes: caspase activation is linked to redox status. Antioxid Redox Signal 4(3):379–389PubMedCrossRefGoogle Scholar
  181. Silbergeld EK, Silva IA, Nyland JF (2005) Mercury and autoimmunity: implications for occupational and environmental health. Toxicol Appl Pharmacol 207(2 Suppl):282–292PubMedCrossRefGoogle Scholar
  182. Silva IA, Nyland JF, Gorman A, Perisse A, Ventura AM, Santos EC, Souza JM, Burek CL, Rose NR, Silbergeld EK (2004) Mercury exposure, malaria, and serum antinuclear/antinucleolar antibodies in Amazon populations in Brazil: a cross-sectional study. Environ Health 3(1):11PubMedCentralPubMedCrossRefGoogle Scholar
  183. Silva IA, Graber J, Nyland JF, Silbergeld EK (2005) In vitro HgCl2 exposure of immune cells at different stages of maturation: effects on phenotype and function. Environ Res 98(3):341–348PubMedCrossRefGoogle Scholar
  184. Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N (2002) Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J 367(Pt 1):239–246PubMedCentralPubMedCrossRefGoogle Scholar
  185. Singh N, Agrawal S, Rastogi AK (1997) Infectious diseases and immunity: special reference to major histocompatibility complex. Emerg Infect Dis 3(1):41–49PubMedCentralPubMedCrossRefGoogle Scholar
  186. Sorensen N, Murata K, Budtz-Jorgensen E, Weihe P, Grandjean P (1999) Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age. Epidemiology 10(4):370–375PubMedCrossRefGoogle Scholar
  187. Stiller-Winkler R, Radaszkiewicz T, Gleichmann E (1988) Immunopathological signs in mice treated with mercury compounds – I. Identification by the popliteal lymph node assay of responder and nonresponder strains. Int J Immunopharmacol 10(4):475–484PubMedCrossRefGoogle Scholar
  188. Suda I, Hirayama K (1992) Degradation of methyl and ethyl mercury into inorganic mercury by hydroxyl radical produced from rat liver microsomes. Arch Toxicol 66(6):398–402PubMedCrossRefGoogle Scholar
  189. Suda I, Totoki S, Uchida T, Takahashi H (1992) Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells. Arch Toxicol 66(1):40–44PubMedCrossRefGoogle Scholar
  190. Takahashi Y, Tsuruta S, Arimoto M, Tanaka H, Yoshida M (2003) Placental transfer of mercury in pregnant rats which received dental amalgam restorations. Toxicology 185(1–2):23–33PubMedCrossRefGoogle Scholar
  191. Tanaka T, Naganuma A, Imura N (1990) Role of gamma-glutamyltranspeptidase in renal uptake and toxicity of inorganic mercury in mice. Toxicology 60(3):187–198PubMedCrossRefGoogle Scholar
  192. Tanaka-Kagawa T, Naganuma A, Imura N (1993) Tubular secretion and reabsorption of mercury compounds in mouse kidney. J Pharmacol Exp Ther 264(2):776–782PubMedGoogle Scholar
  193. Taylor H, Appleton JD, Lister R, Smith B, Chitamweba D, Mkumbo O, Machiwa JF, Tesha AL, Beinhoff C (2005) Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania. Sci Total Environ 343(1–3):111–133PubMedCrossRefGoogle Scholar
  194. Thompson SA, Roellich KL, Grossmann A, Gilbert SG, Kavanagh TJ (1998) Alterations in immune parameters associated with low level methylmercury exposure in mice. Immunopharmacol Immunotoxicol 20(2):299–314PubMedCrossRefGoogle Scholar
  195. Thurston SW, Bovet P, Myers GJ, Davidson PW, Georger LA, Shamlaye C, Clarkson TW (2007) Does prenatal methylmercury exposure from fish consumption affect blood pressure in childhood? Neurotoxicology 28(5):924–930PubMedCentralPubMedCrossRefGoogle Scholar
  196. Tubbs RR, Gephardt GN, McMahon JT, Pohl MC, Vidt DG, Barenberg SA, Valenzuela R (1982) Membranous glomerulonephritis associated with industrial mercury exposure. Study of pathogenetic mechanisms. Am J Clin Pathol 77(4):409–413PubMedGoogle Scholar
  197. Turk JL, Baker H (1968) Nephrotic syndrome due to ammoniated mercury. Br J Dermatol 80(9):623–624PubMedCrossRefGoogle Scholar
  198. UNEP (2002) Global mercury assessment. United Nations Environment Programme, GenevaGoogle Scholar
  199. Vahter M, Mottet NK, Friberg L, Lind B, Shen DD, Burbacher T (1994) Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol Appl Pharmacol 124(2):221–229PubMedCrossRefGoogle Scholar
  200. Van Vleet TR, Schnellmann RG (2003) Toxic nephropathy: environmental chemicals. Semin Nephrol 23(5):500–508PubMedCrossRefGoogle Scholar
  201. Via CS, Shearer GM (1988) Murine graft-versus-host disease as a model for the development of autoimmunity. Relevance of cytotoxic T lymphocytes. Ann N Y Acad Sci 532:44–50PubMedCrossRefGoogle Scholar
  202. Via CS, Nguyen P, Niculescu F, Papadimitriou J, Hoover D, Silbergeld EK (2003) Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus. Environ Health Perspect 111(10):1273–1277PubMedCentralPubMedCrossRefGoogle Scholar
  203. Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen TP, Korhonen MJ, Valkonen VP, Seppanen K, Laukkanen JA, Salonen JT (2005) Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 25(1):228–233PubMedGoogle Scholar
  204. Vupputuri S, Longnecker MP, Daniels JL, Guo X, Sandler DP (2005) Blood mercury level and blood pressure among US women: results from the National Health and Nutrition Examination Survey 1999–2000. Environ Res 97(2):195–200PubMedCrossRefGoogle Scholar
  205. Walker SJ, Segal J, Aschner M (2006) Cultured lymphocytes from autistic children and non-autistic siblings up-regulate heat shock protein RNA in response to thimerosal challenge. Neurotoxicology 27(5):685–692PubMedCrossRefGoogle Scholar
  206. Warkany J (1966) Acrodynia – postmortem of a disease. Am J Dis Child 112(2):147–156PubMedGoogle Scholar
  207. Warkany J, Hubbard DM (1953) Acrodynia and mercury. J Pediatr 42(3):365–386PubMedCrossRefGoogle Scholar
  208. Watras CJ, Back RC, Halvorsen S, Hudson RJ, Morrison KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219(2–3):183–208PubMedCrossRefGoogle Scholar
  209. Wei H, Qiu L, Divine KK, Ashbaugh MD, McIntyre LC Jr, Fernando Q, Gandolfi AJ (1999) Toxicity and transport of three synthesized mercury-thiol-complexes in isolated rabbit renal proximal tubule suspensions. Drug Chem Toxicol 22(2):323–341PubMedCrossRefGoogle Scholar
  210. Weldon MM, Smolinski MS, Maroufi A, Hasty BW, Gilliss DL, Boulanger LL, Balluz LS, Dutton RJ (2000) Mercury poisoning associated with a Mexican beauty cream. West J Med 173(1):15–18; discussion 19PubMedCentralPubMedCrossRefGoogle Scholar
  211. Whitekus MJ, Santini RP, Rosenspire AJ, McCabe MJ Jr (1999) Protection against CD95-mediated apoptosis by inorganic mercury in Jurkat T cells. J Immunol 162(12):7162–7170PubMedGoogle Scholar
  212. WHO (1990) Environmental health criteria 101. Methylmercury. International Program on Chemical Safety, World Health Organization, GenevaGoogle Scholar
  213. WHO (1991) Environmental health criteria 118. Inorganic mercury. International Programme on Chemical Safety, World Health Organization, GenevaGoogle Scholar
  214. Zalups RK, Barfuss DW, Lash LH (1999) Relationships between alterations in glutathione metabolism and the disposition of inorganic mercury in rats: effects of biliary ligation and chemically induced modulation of glutathione status. Chem Biol Interact 123(3):171–195PubMedCrossRefGoogle Scholar
  215. Zdolsek JM, Soder O, Hultman P (1994) Mercury induces in vivo and in vitro secretion of interleukin-1 in mice. Immunopharmacology 28(3):201–208PubMedCrossRefGoogle Scholar
  216. Zhang H, Feng X, Larssen T, Qiu G, Vogt RD (2010) In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ Health Perspect 118(9):1183–1188PubMedCentralPubMedCrossRefGoogle Scholar
  217. Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35(1):86–99PubMedCrossRefGoogle Scholar
  218. Ziemba SE, McCabe MJ Jr, Rosenspire AJ (2005) Inorganic mercury dissociates preassembled Fas/CD95 receptor oligomers in T lymphocytes. Toxicol Appl Pharmacol 206(3):334–342PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Public Health SciencesKarolinska InstitutetStockholmSweden
  2. 2.Department of Pathology, Microbiology and ImmunologyUniversity of South Carolina School of MedicineColumbiaUSA

Personalised recommendations