Skip to main content

Immunotoxic Effects of Mercury

  • Chapter
  • First Online:
Environmental Influences on the Immune System

Abstract

Mercury is a ubiquitous environmental contaminant. Exposures to mercury occur globally and pose significant threats to human health. Mercury toxicity to the nervous system has been extensively studied, and risks to human health as a result of mercury exposure have been evaluated on this basis, especially for exposures at high doses. Data from experimental models, such as rodent systems, suggest that mercury may also have a significant effect on the function of the immune system. However, little is known about the risks posed to human health as a result of mercury immunotoxicity, mainly due to variations in dose, route of exposure, and differences between the rodent and human immune systems.

The evidence for mercury as an immunotoxic agent is reviewed here, specifically in the context of human exposures to mercury and the relevance of models of mercury immunotoxicity to human health. In light of evidence that mercury may affect the immune system, the influence of the immune system in other organ systems targeted by mercury is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelouahab N, Vanier C, Baldwin M, Garceau S, Lucotte M, Mergler D (2008) Ecosystem matters: fish consumption, mercury intake and exposure among fluvial lake fish-eaters. Sci Total Environ 407(1):154–164

    Article  CAS  PubMed  Google Scholar 

  • Abedi-Valugerdi M, Moller G (2000) Contribution of H-2 and non-H-2 genes in the control of mercury-induced autoimmunity. Int Immunol 12(10):1425–1430

    Article  CAS  PubMed  Google Scholar 

  • Abedi-Valugerdi M, Hu H, Moller G (1997) Mercury-induced renal immune complex deposits in young (NZB x NZW)F1 mice: characterization of antibodies/autoantibodies. Clin Exp Immunol 110(1):86–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abedi-Valugerdi M, Hansson M, Moller G (2001) Genetic control of resistance to mercury-induced immune/autoimmune activation. Scand J Immunol 54(1–2):190–197

    Article  CAS  PubMed  Google Scholar 

  • Abedi-Valugerdi M, Nilsson C, Zargari A, Gharibdoost F, DePierre JW, Hassan M (2005) Bacterial lipopolysaccharide both renders resistant mice susceptible to mercury-induced autoimmunity and exacerbates such autoimmunity in susceptible mice. Clin Exp Immunol 141(2):238–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • al-Balaghi S, Moller E, Moller G, Abedi-Valugerdi M (1996) Mercury induces polyclonal B cell activation, autoantibody production and renal immune complex deposits in young (NZB x NZW)F1 hybrids. Eur J Immunol 26(7):1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Allen BC, Hack CE, Clewell HJ (2007) Use of Markov chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age. Risk Anal 27(4):947–959

    Article  PubMed  Google Scholar 

  • Alves MF, Fraiji NA, Barbosa AC, De Lima DS, Souza JR, Dorea JG, Cordeiro GW (2006) Fish consumption, mercury exposure and serum antinuclear antibody in Amazonians. Int J Environ Health Res 16(4):255–262

    Article  CAS  PubMed  Google Scholar 

  • Apostolakis S, Vogiatzi K, Krambovitis E, Spandidos DA (2008) IL-1 cytokines in cardiovascular disease: diagnostic, prognostic and therapeutic implications. Cardiovasc Hematol Agents Med Chem 6(2):150–158

    Article  CAS  PubMed  Google Scholar 

  • Arnett FC, Reveille JD, Goldstein R, Pollard KM, Leaird K, Smith EA, Leroy EC, Fritzler MJ (1996) Autoantibodies to fibrillarin in systemic sclerosis (scleroderma). An immunogenetic, serologic, and clinical analysis. Arthritis Rheum 39(7):1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes – integrating cell survival and death. J Biosci 32(3):595–610

    Article  CAS  PubMed  Google Scholar 

  • Aucott M, McLinden M, Winka M (2003) Release of mercury from broken fluorescent bulbs. J Air Waste Manag Assoc 53(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Bach JF (2005) Infections and autoimmune diseases. J Autoimmun 25(Suppl):74–80

    Article  CAS  PubMed  Google Scholar 

  • Bagenstose LM, Salgame P, Monestier M (1998a) IL-12 down-regulates autoantibody production in mercury-induced autoimmunity. J Immunol 160(4):1612–1617

    CAS  PubMed  Google Scholar 

  • Bagenstose LM, Salgame P, Monestier M (1998b) Mercury-induced autoimmunity in the absence of IL-4. Clin Exp Immunol 114(1):9–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagenstose LM, Salgame P, Monestier M (1999) Cytokine regulation of a rodent model of mercuric chloride-induced autoimmunity. Environ Health Perspect 107(Suppl 5):807–810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY, Tikriti S, Dahahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Methylmercury poisoning in Iraq. Science 181(96):230–241

    Article  CAS  PubMed  Google Scholar 

  • Ballatori N, Wang W, Lieberman MW (1998) Accelerated methylmercury elimination in gamma-glutamyl transpeptidase-deficient mice. Am J Pathol 152(4):1049–1055

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P (2005) Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 99(4):105–110

    Article  CAS  Google Scholar 

  • Bariety J, Druet P, Laliberte F, Sapin C (1971) Glomerulonephritis with – and 1C-globulin deposits induced in rats by mercuric chloride. Am J Pathol 65(2):293–302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barr RD, Rees PH, Cordy PE, Kungu A, Woodger BA, Cameron HM (1972) Nephrotic syndrome in adult Africans in Nairobi. Br Med J 2(5806):131–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barr RD, Woodger BA, Rees PH (1973) Levels of mercury in urine correlated with the use of skin lightening creams. Am J Clin Pathol 59(1):36–40

    CAS  PubMed  Google Scholar 

  • Beere HM (2004) “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117(Pt 13):2641–2651

    Article  CAS  PubMed  Google Scholar 

  • Bernaudin JF, Druet E, Belair MF, Pinchon MC, Sapin C, Druet P (1979) Extrarenal immune complex type deposits induced by mercuric chloride in the Brown Norway rat. Clin Exp Immunol 38(2):265–273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berry TG, Summitt JB, Chung AK, Osborne JW (1998) Amalgam at the new millennium. J Am Dent Assoc 129(11):1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Biancone L, Andres G, Ahn H, Lim A, Dai C, Noelle R, Yagita H, De Martino C, Stamenkovic I (1996) Distinct regulatory roles of lymphocyte costimulatory pathways on T helper type-2 mediated autoimmune disease. J Exp Med 183(4):1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Bigazzi PE (1999) Metals and kidney autoimmunity. Environ Health Perspect 107(Suppl 5):753–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bigazzi PE, Kosuda LL, Hannigan MO, Whalen B, Greiner DL (2003) Lack of graft-versus-host-like pathology in mercury-induced autoimmunity of Brown Norway rats. Clin Immunol 109(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Bjornberg KA, Vahter M, Grawe KP, Berglund M (2005) Methyl mercury exposure in Swedish women with high fish consumption. Sci Total Environ 341(1–3):45–52

    Article  PubMed  CAS  Google Scholar 

  • Boyd AS, Seger D, Vannucci S, Langley M, Abraham JL, King LE Jr (2000) Mercury exposure and cutaneous disease. J Am Acad Dermatol 43(1 Pt 1):81–90

    Article  CAS  PubMed  Google Scholar 

  • Boyle JJ (2005) Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol 3(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Braga MC, Shaw G, Lester JN (2000) Mercury modeling to predict contamination and bioaccumulation in aquatic ecosystems. Rev Environ Contam Toxicol 164:69–92

    CAS  PubMed  Google Scholar 

  • Braun WE (1992) HLA molecules in autoimmune diseases. Clin Biochem 25(3):187–191

    Article  CAS  PubMed  Google Scholar 

  • Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y (2010) Epigenetics and autoimmunity. J Autoimmun 34(3):J207–J219

    Article  CAS  PubMed  Google Scholar 

  • Brown DL, Reuhl KR, Bormann S, Little JE (1988) Effects of methyl mercury on the microtubule system of mouse lymphocytes. Toxicol Appl Pharmacol 94(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Brunet S, Guertin F, Flipo D, Fournier M, Krzystyniak K (1993) Cytometric profiles of bone marrow and spleen lymphoid cells after mercury exposure in mice. Int J Immunopharmacol 15(7):811–819

    Article  CAS  PubMed  Google Scholar 

  • Cameron JS, Trounce JR (1965) Membranous glomerulonephritis and the nephrotic syndrome appearing during mersalyl therapy. Guys Hosp Rep 114:101–107

    CAS  PubMed  Google Scholar 

  • Cardenas A, Roels H, Bernard AM, Barbon R, Buchet JP, Lauwerys RR, Rosello J, Hotter G, Mutti A, Franchini I et al (1993) Markers of early renal changes induced by industrial pollutants. I. Application to workers exposed to mercury vapour. Br J Ind Med 50(1):17–27

    PubMed Central  CAS  PubMed  Google Scholar 

  • Castilhos ZC, Bidone ED, Lacerda LD (1998) Increase of the background human exposure to mercury through fish consumption due to gold mining at the Tapajos River region, Para State, Amazon. Bull Environ Contam Toxicol 61(2):202–209

    Article  CAS  PubMed  Google Scholar 

  • Charleston JS, Bolender RP, Mottet NK, Body RL, Vahter ME, Burbacher TM (1994) Increases in the number of reactive glia in the visual cortex of Macaca fascicularis following subclinical long-term methyl mercury exposure. Toxicol Appl Pharmacol 129(2):196–206

    Article  CAS  PubMed  Google Scholar 

  • Choi AL, Cordier S, Weihe P, Grandjean P (2008) Negative confounding in the evaluation of toxicity: the case of methylmercury in fish and seafood. Crit Rev Toxicol 38(10):877–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TW, Vyas JB, Ballatori N (2007) Mechanisms of mercury disposition in the body. Am J Ind Med 50(10):757–764

    Article  CAS  PubMed  Google Scholar 

  • Cooke A, Ferraccioli GF, Herrmann M, Romani L, Schulze C, Zampieri S, Doria A (2008) Induction and protection of autoimmune rheumatic diseases. The role of infections. Clin Exp Rheumatol 26(1 Suppl 48):S1–S7

    CAS  PubMed  Google Scholar 

  • Cooper GS, Miller FW, Pandey JP (1999) The role of genetic factors in autoimmune disease: implications for environmental research. Environ Health Perspect 107(Suppl 5):693–700

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooper GS, Parks CG, Treadwell EL, St Clair EW, Gilkeson GS, Dooley MA (2004) Occupational risk factors for the development of systemic lupus erythematosus. J Rheumatol 31(10):1928–1933

    PubMed  Google Scholar 

  • Crompton P, Ventura AM, de Souza JM, Santos E, Strickland GT, Silbergeld E (2002) Assessment of mercury exposure and malaria in a Brazilian Amazon riverine community. Environ Res 90(2):69–75

    Article  CAS  PubMed  Google Scholar 

  • Custodio HM, Broberg K, Wennberg M, Jansson JH, Vessby B, Hallmans G, Stegmayr B, Skerfving S (2004) Polymorphisms in glutathione-related genes affect methylmercury retention. Arch Environ Health 59(11):588–595

    Article  CAS  PubMed  Google Scholar 

  • Custodio HM, Harari R, Gerhardsson L, Skerfving S, Broberg K (2005) Genetic influences on the retention of inorganic mercury. Arch Environ Occup Health 60(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Dantas DC, Queiroz ML (1997) Immunoglobulin E and autoantibodies in mercury-exposed workers. Immunopharmacol Immunotoxicol 19(3):383–392

    Article  CAS  PubMed  Google Scholar 

  • de Andrade Lima LR, Bernardez LA, Barbosa LA (2008) Characterization and treatment of artisanal gold mine tailings. J Hazard Mater 150(3):747–753

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147

    CAS  PubMed  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256(5512):50–52

    Article  CAS  PubMed  Google Scholar 

  • Dominique Y, Muresan B, Duran R, Richard S, Boudou A (2007) Simulation of the chemical fate and bioavailability of liquid elemental mercury drops from gold mining in Amazonian freshwater systems. Environ Sci Technol 41(21):7322–7329

    Article  CAS  PubMed  Google Scholar 

  • Donkor AK, Bonzongo JC, Nartey VK, Adotey DK (2006) Mercury in different environmental compartments of the Pra River Basin, Ghana. Sci Total Environ 368(1):164–176

    Article  CAS  PubMed  Google Scholar 

  • Dyall-Smith DJ, Scurry JP (1990) Mercury pigmentation and high mercury levels from the use of a cosmetic cream. Med J Aust 153(7):409–410, 414–415

    CAS  PubMed  Google Scholar 

  • Ebringer A, Wilson C (2000) HLA molecules, bacteria and autoimmunity. J Med Microbiol 49(4):305–311

    Article  CAS  PubMed  Google Scholar 

  • Ellingsen DG, Efskind J, Berg KJ, Gaarder PI, Thomassen Y (2000) Renal and immunologic markers for chloralkali workers with low exposure to mercury vapor. Scand J Work Environ Health 26(5):427–435

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z, Fu X (2008) Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environ Sci Technol 42(1):326–332

    Article  CAS  PubMed  Google Scholar 

  • Field AC, Caccavelli L, Fillion J, Kuhn J, Mandet C, Druet P, Bellon B (2000) Neonatal induction of tolerance to T(h)2-mediated autoimmunity in rats. Int Immunol 12(10):1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Field AC, Caccavelli L, Bloch MF, Bellon B (2003) Regulatory CD8+ T cells control neonatal tolerance to a Th2-mediated autoimmunity. J Immunol 170(5):2508–2515

    Article  CAS  PubMed  Google Scholar 

  • Fillion M, Mergler D, Sousa Passos CJ, Larribe F, Lemire M, Guimaraes JR (2006) A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon. Environ Health 5:29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frumkin H, Letz R, Williams PL, Gerr F, Pierce M, Sanders A, Elon L, Manning CC, Woods JS, Hertzberg VS, Mueller P, Taylor BB (2001) Health effects of long-term mercury exposure among chloralkali plant workers. Am J Ind Med 39(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Gadhia SR, Calabro AR, Barile FA (2012) Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells. Toxicol Lett 212(2):169–179

    Article  CAS  PubMed  Google Scholar 

  • Gammons CH, Slotton DG, Gerbrandt B, Weight W, Young CA, McNearny RL, Camac E, Calderon R, Tapia H (2006) Mercury concentrations of fish, river water, and sediment in the Rio Ramis-Lake Titicaca watershed, Peru. Sci Total Environ 368(2–3):637–648

    Article  CAS  PubMed  Google Scholar 

  • Gardner RM, Nyland JF, Evans SL, Wang SB, Doyle KM, Crainiceanu CM, Silbergeld EK (2009) Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect 117(12):1932–1938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardner RM, Nyland JF, Silbergeld EK (2010a) Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicol Lett 198(2):182–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardner RM, Nyland JF, Silva IA, Ventura AM, de Souza JM, Silbergeld EK (2010b) Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ Res 110(4):345–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20(3):269–287

    Article  CAS  PubMed  Google Scholar 

  • Ghodke Y, Joshi K, Chopra A, Patwardhan B (2005) HLA and disease. Eur J Epidemiol 20(6):475–488

    Article  PubMed  Google Scholar 

  • Gleichmann E, Gleichmann H (1985) Pathogenesis of graft-versus-host reactions (GVHR) and GVH-like diseases. J Invest Dermatol 85(1 Suppl):115s–120s

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez EN, Rothfield NF (1966) Immunoglobulin class and pattern of nuclear fluorescence in systemic lupus erythematosus. N Engl J Med 274(24):1333–1338

    Article  CAS  PubMed  Google Scholar 

  • Goodrich JM, Basu N, Franzblau A, Dolinoy DC (2013) Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ Mol Mutagen 54(3):195–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guallar E, Sanz-Gallardo MI, van't Veer P, Bode P, Aro A, Gomez-Aracena J, Kark JD, Riemersma RA, Martin-Moreno JM, Kok FJ (2002) Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347(22):1747–1754

    Article  CAS  PubMed  Google Scholar 

  • Guo TL, Miller MA, Shapiro IM, Shenker BJ (1998) Mercuric chloride induces apoptosis in human T lymphocytes: evidence of mitochondrial dysfunction. Toxicol Appl Pharmacol 153(2):250–257

    Article  CAS  PubMed  Google Scholar 

  • Haggqvist B, Hultman P (2005) Interleukin-10 in murine metal-induced systemic autoimmunity. Clin Exp Immunol 141(3):422–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haggqvist B, Havarinasab S, Bjorn E, Hultman P (2005) The immunosuppressive effect of methylmercury does not preclude development of autoimmunity in genetically susceptible mice. Toxicology 208(1):149–164

    Article  PubMed  CAS  Google Scholar 

  • Hand WC, Edwards BB, Caify ER (1943) Studies in the pathology of mercury III Histochemical demonstration and differentiation of metallic mercury, mercurous mercury, and mercuric mercury. J Lab Clin Med 28:1835–1841

    CAS  Google Scholar 

  • Hansson M, Abedi-Valugerdi M (2003) Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice. Clin Exp Immunol 131(3):405–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Rudd JW, Amyot M, Babiarz CL, Beaty KG, Blanchfield PJ, Bodaly RA, Branfireun BA, Gilmour CC, Graydon JA, Heyes A, Hintelmann H, Hurley JP, Kelly CA, Krabbenhoft DP, Lindberg SE, Mason RP, Paterson MJ, Podemski CL, Robinson A, Sandilands KA, Southworth GR, St Louis VL, Tate MT (2007) Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc Natl Acad Sci U S A 104(42):16586–16591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havarinasab S, Hultman P (2005) Organic mercury compounds and autoimmunity. Autoimmun Rev 4(5):270–275

    Article  CAS  PubMed  Google Scholar 

  • Havarinasab S, Hultman P (2006) Alteration of the spontaneous systemic autoimmune disease in (NZB x NZW)F1 mice by treatment with thimerosal (ethyl mercury). Toxicol Appl Pharmacol 214(1):43–54

    Article  CAS  PubMed  Google Scholar 

  • Havarinasab S, Haggqvist B, Bjorn E, Pollard KM, Hultman P (2005) Immunosuppressive and autoimmune effects of thimerosal in mice. Toxicol Appl Pharmacol 204(2):109–121

    Article  CAS  PubMed  Google Scholar 

  • Havarinasab S, Bjorn E, Ekstrand J, Hultman P (2007a) Dose and Hg species determine the T-helper cell activation in murine autoimmunity. Toxicology 229(1–2):23–32

    Article  CAS  PubMed  Google Scholar 

  • Havarinasab S, Bjorn E, Nielsen JB, Hultman P (2007b) Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice. Toxicol Appl Pharmacol 221(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Hemdan NY (2008) The role of interleukin-12 in the heavy metal-elicited immunomodulation: relevance of various evaluation methods. J Occup Med Toxicol 3(1):25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hemdan NY, Emmrich F, Faber S, Lehmann J, Sack U (2007a) Alterations of TH1/TH2 reactivity by heavy metals: possible consequences include induction of autoimmune diseases. Ann N Y Acad Sci 1109:129–137

    Article  CAS  PubMed  Google Scholar 

  • Hemdan NY, Lehmann I, Wichmann G, Lehmann J, Emmrich F, Sack U (2007b) Immunomodulation by mercuric chloride in vitro: application of different cell activation pathways. Clin Exp Immunol 148(2):325–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heyer NJ, Echeverria D, Bittner AC Jr, Farin FM, Garabedian CC, Woods JS (2004) Chronic low-level mercury exposure, BDNF polymorphism, and associations with self-reported symptoms and mood. Toxicol Sci 81(2):354–363

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1998) The immunogenetics of human infectious diseases. Annu Rev Immunol 16:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (2001) Immunogenetics and genomics. Lancet 357(9273):2037–2041

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa K, Hayashi Y (1980) Acute methyl mercury intoxication in mice – effect on the immune system. Acta Pathol Jpn 30(1):23–32

    CAS  PubMed  Google Scholar 

  • Ho KT, Reveille JD (2003) The clinical relevance of autoantibodies in scleroderma. Arthritis Res Ther 5(2):80–93

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Moller G, Abedi-Valugerdi M (1997) Major histocompatibility complex class II antigens are required for both cytokine production and proliferation induced by mercuric chloride in vitro. J Autoimmun 10(5):441–446

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Moller G, Abedi-Valugerdi M (1998) Non-responsiveness to mercury-induced autoimmunity in resistant DBA/2 mice is not due to immunosuppression or biased Th1-type response. Scand J Immunol 48(5):515–521

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Moller G, Abedi-Valugerdi M (1999) Mechanism of mercury-induced autoimmunity: both T helper 1- and T helper 2-type responses are involved. Immunology 96(3):348–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hultman P, Enestrom S (1988) Mercury induced antinuclear antibodies in mice: characterization and correlation with renal immune complex deposits. Clin Exp Immunol 71(2):269–274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hultman P, Hansson-Georgiadis H (1999) Methyl mercury-induced autoimmunity in mice. Toxicol Appl Pharmacol 154(3):203–211

    Article  CAS  PubMed  Google Scholar 

  • Hultman P, Nielsen JB (2001) The effect of dose, gender, and non-H-2 genes in murine mercury-induced autoimmunity. J Autoimmun 17(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Hultman P, Enestrom S, Pollard KM, Tan EM (1989) Anti-fibrillarin autoantibodies in mercury-treated mice. Clin Exp Immunol 78(3):470–477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hultman P, Bell LJ, Enestrom S, Pollard KM (1992) Murine susceptibility to mercury. I. Autoantibody profiles and systemic immune deposits in inbred, congenic, and intra-H-2 recombinant strains. Clin Immunol Immunopathol 65(2):98–109

    Article  CAS  PubMed  Google Scholar 

  • Hultman P, Johansson U, Turley SJ, Lindh U, Enestrom S, Pollard KM (1994) Adverse immunological effects and autoimmunity induced by dental amalgam and alloy in mice. FASEB J 8(14):1183–1190

    CAS  PubMed  Google Scholar 

  • Hultman P, Johansson U, Dagnaes-Hansen F (1995) Murine mercury-induced autoimmunity: the role of T-helper cells. J Autoimmun 8(6):809–823

    Article  CAS  PubMed  Google Scholar 

  • Hultman P, Lindh U, Horsted-Bindslev P (1998) Activation of the immune system and systemic immune-complex deposits in Brown Norway rats with dental amalgam restorations. J Dent Res 77(6):1415–1425

    Article  CAS  PubMed  Google Scholar 

  • Hultman P, Taylor A, Yang JM, Pollard KM (2006) The effect of xenobiotic exposure on spontaneous autoimmunity in (SWR x SJL)F1 hybrid mice. J Toxicol Environ Health A 69(6):505–523

    Article  CAS  PubMed  Google Scholar 

  • Hursh JB, Cherian MG, Clarkson TW, Vostal JJ, Mallie RV (1976) Clearance of mercury (HG-197, HG-203) vapor inhaled by human subjects. Arch Environ Health 31(6):302–309

    Article  CAS  PubMed  Google Scholar 

  • Icard P, Pelletier L, Vial MC, Mandet C, Pasquier R, Michel A, Druet P (1993) Evidence for a role of antilaminin-producing B cell clones that escape tolerance in the pathogenesis of HgCl2-induced membranous glomerulopathy. Nephrol Dial Transplant 8(2):122–127

    CAS  PubMed  Google Scholar 

  • Ilback NG, Lindh U, Fohlman J, Friman G (1995) New aspects of murine coxsackie B3 myocarditis – focus on heavy metals. Eur Heart J 16 Suppl O:20–24

    Article  CAS  PubMed  Google Scholar 

  • Ilback NG, Wesslen L, Fohlman J, Friman G (1996) Effects of methyl mercury on cytokines, inflammation and virus clearance in a common infection (coxsackie B3 myocarditis). Toxicol Lett 89(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Inadera H (2006) The immune system as a target for environmental chemicals: xenoestrogens and other compounds. Toxicol Lett 164(3):191–206

    Article  CAS  PubMed  Google Scholar 

  • James SJ, Slikker W 3rd, Melnyk S, New E, Pogribna M, Jernigan S (2005) Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology 26(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Moller G (1995) In vitro effects of HgCl2 on murine lymphocytes. I. Preferable activation of CD4+ T cells in a responder strain. J Immunol 154(7):3138–3146

    CAS  PubMed  Google Scholar 

  • Jiang Y, Moller G (1996) Unresponsiveness of CD4+ T cells from a non-responder strain to HgCl2 is not due to CD8(+)-mediated immunosuppression: an analysis of the very early activation antigen CD69. Scand J Immunol 44(6):565–570

    Article  CAS  PubMed  Google Scholar 

  • Johansson U, Sander B, Hultman P (1997) Effects of the murine genotype on T cell activation and cytokine production in murine mercury-induced autoimmunity. J Autoimmun 10(4):347–355

    Article  CAS  PubMed  Google Scholar 

  • Johansson U, Hansson-Georgiadis H, Hultman P (1998) The genotype determines the B cell response in mercury-treated mice. Int Arch Allergy Immunol 116(4):295–305

    Article  CAS  PubMed  Google Scholar 

  • Kono DH, Balomenos D, Pearson DL, Park MS, Hildebrandt B, Hultman P, Pollard KM (1998) The prototypic Th2 autoimmunity induced by mercury is dependent on IFN-gamma and not Th1/Th2 imbalance. J Immunol 161(1):234–240

    CAS  PubMed  Google Scholar 

  • Kono DH, Park MS, Szydlik A, Haraldsson KM, Kuan JD, Pearson DL, Hultman P, Pollard KM (2001) Resistance to xenobiotic-induced autoimmunity maps to chromosome 1. J Immunol 167(4):2396–2403

    Article  CAS  PubMed  Google Scholar 

  • Kosuda LL, Greiner DL, Bigazzi PE (1994) Mercury-induced renal autoimmunity in BN → LEW.1N chimeric rats. Cell Immunol 155(1):77–94

    Article  CAS  PubMed  Google Scholar 

  • Krensky AM (1997) The HLA system, antigen processing and presentation. Kidney Int Suppl 58:S2–S7

    CAS  PubMed  Google Scholar 

  • Kubicka-Muranyi M, Behmer O, Uhrberg M, Klonowski H, Bister J, Gleichmann E (1993) Murine systemic autoimmune disease induced by mercuric chloride (HgCl2): Hg-specific helper T-cells react to antigen stored in macrophages. Int J Immunopharmacol 15(2):151–161

    Article  CAS  PubMed  Google Scholar 

  • Laiosa MD, Eckles KG, Langdon M, Rosenspire AJ, McCabe MJ Jr (2007) Exposure to inorganic mercury in vivo attenuates extrinsic apoptotic signaling in Staphylococcal aureus enterotoxin B stimulated T-cells. Toxicol Appl Pharmacol 225(3):238–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence DA, McCabe MJ Jr (2002) Immunomodulation by metals. Int Immunopharmacol 2(2–3):293–302

    Article  CAS  PubMed  Google Scholar 

  • Leaner JJ, Mason RP (2002) Methylmercury accumulation and fluxes across the intestine of channel catfish, Ictalurus punctatus. Comp Biochem Physiol C Toxicol Pharmacol 132(2):247–259

    Article  PubMed  Google Scholar 

  • Li P, Feng X, Yuan X, Chan HM, Qiu G, Sun GX, Zhu YG (2012) Rice consumption contributes to low level methylmercury exposure in southern China. Environ Int 49:18–23

    Article  CAS  PubMed  Google Scholar 

  • Limbong D, Kumampung J, Rimper J, Arai T, Miyazaki N (2003) Emissions and environmental implications of mercury from artisanal gold mining in North Sulawesi, Indonesia. Sci Total Environ 302(1–3):227–236

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, Qian X, Tang Y, Lau YL, de Vries N, Tak PP, Tsao BP, Shen N (2011) A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet 7(6):e1002128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maas C, Bruck W, Haffner HT, Schweinsberg F (1996) Study on the significance of mercury accumulation in the brain from dental amalgam fillings through direct mouth-nose-brain transport. Zentralbl Hyg Umweltmed 198(3):275–291

    CAS  PubMed  Google Scholar 

  • Mahaffey KR, Clickner RP, Bodurow CC (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect 112(5):562–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandic L, Radmila M, Jelena A, Dubravka D (2002) Change in the iso-enzyme profiles of urinary N-acetyl-beta-D-glucosaminidase in workers exposed to mercury. Toxicol Ind Health 18(5):207–214

    CAS  PubMed  Google Scholar 

  • Martin MP, Carrington M (2005) Immunogenetics of viral infections. Curr Opin Immunol 17(5):510–516

    Article  CAS  PubMed  Google Scholar 

  • Mason RP, Abbott ML, Bodaly RA, Bullock OR Jr, Driscoll CT, Evers D, Lindberg SE, Murray M, Swain EB (2005) Monitoring the response to changing mercury deposition. Environ Sci Technol 39(1):14A–22A

    Article  CAS  PubMed  Google Scholar 

  • Mathers C, Fat DM, Boerma JT, World Health Organization (2008) The global burden of disease: 2004 update. World Health Organization, Geneva

    Book  Google Scholar 

  • Mattingly RR, Felczak A, Chen CC, McCabe MJ Jr, Rosenspire AJ (2001) Low concentrations of inorganic mercury inhibit Ras activation during T cell receptor-mediated signal transduction. Toxicol Appl Pharmacol 176(3):162–168

    Article  CAS  PubMed  Google Scholar 

  • McCabe MJ Jr, Santini RP, Rosenspire AJ (1999) Low and nontoxic levels of ionic mercury interfere with the regulation of cell growth in the WEHI-231 B-cell lymphoma. Scand J Immunol 50(3):233–241

    Article  CAS  PubMed  Google Scholar 

  • McCabe MJ Jr, Whitekus MJ, Hyun J, Eckles KG, McCollum G, Rosenspire AJ (2003) Inorganic mercury attenuates CD95-mediated apoptosis by interfering with formation of the death inducing signaling complex. Toxicol Appl Pharmacol 190(2):146–156

    Article  CAS  PubMed  Google Scholar 

  • McCabe MJ Jr, Eckles KG, Langdon M, Clarkson TW, Whitekus MJ, Rosenspire AJ (2005) Attenuation of CD95-induced apoptosis by inorganic mercury: caspase-3 is not a direct target of low levels of Hg2+. Toxicol Lett 155(1):161–170

    Article  CAS  PubMed  Google Scholar 

  • McCabe MJ Jr, Laiosa MD, Li L, Menard SL, Mattingly RR, Rosenspire AJ (2007) Low and nontoxic inorganic mercury burdens attenuate BCR-mediated signal transduction. Toxicol Sci 99(2):512–521

    Article  CAS  PubMed  Google Scholar 

  • Molina A, Sanchez-Madrid F, Bricio T, Martin A, Escudero E, Alvarez V, Mampaso F (1995) Abrogation of mercuric chloride-induced nephritis in the Brown Norway rat by treatment with antibodies against TNFalpha. Mediators Inflamm 4(6):444–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moszczynski P, Rutowski J, Slowinski S, Bem S, Jakus-Stoga D (1996) Effects of occupational exposure to mercury vapors on T-cell and NK-cell populations. Arch Med Res 27(4):503–507

    CAS  PubMed  Google Scholar 

  • National Research Council (U.S.) Board on Environmental Studies and Toxicology (2000) Toxicological effects of methylmercury. National Academy Press, Washington, DC

    Google Scholar 

  • Nielsen JB, Hultman P (2002) Mercury-induced autoimmunity in mice. Environ Health Perspect 110(Suppl 5):877–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nyland JF, Fillion M, Barbosa F Jr, Shirley DL, Chine C, Lemire M, Mergler D, Silbergeld EK (2011a) Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ Health Perspect 119(12):1733–1738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nyland JF, Wang SB, Shirley DL, Santos EO, Ventura AM, de Souza JM, Silbergeld EK (2011b) Fetal and maternal immune responses to methylmercury exposure: a cross-sectional study. Environ Res 111(4):584–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nyland JF, Fairweather D, Shirley DL, Davis SE, Rose NR, Silbergeld EK (2012) Low-dose inorganic mercury increases severity and frequency of chronic coxsackievirus-induced autoimmune myocarditis in mice. Toxicol Sci 125(1):134–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohi G, Fukuda M, Seto H, Yagyu H (1976) Effect of methylmercury on humoral immune responses in mice under conditions simulated to practical situations. Bull Environ Contam Toxicol 15(2):175–180

    Article  CAS  PubMed  Google Scholar 

  • Oskarsson A, Schultz A, Skerfving S, Hallen IP, Ohlin B, Lagerkvist BJ (1996) Total and inorganic mercury in breast milk in relation to fish consumption and amalgam in lactating women. Arch Environ Health 51(3):234–241

    Article  CAS  PubMed  Google Scholar 

  • Passos CJ, Da Silva DS, Lemire M, Fillion M, Guimaraes JR, Lucotte M, Mergler D (2008) Daily mercury intake in fish-eating populations in the Brazilian Amazon. J Expo Sci Environ Epidemiol 18(1):76–87

    Article  CAS  PubMed  Google Scholar 

  • Pelletier L, Pasquier R, Vial MC, Mandet C, Moutier R, Salomon JC, Druet P (1987) Mercury-induced autoimmune glomerulonephritis: requirement for T-cells. Nephrol Dial Transplant 1(4):211–218

    CAS  PubMed  Google Scholar 

  • Pelletier L, Pasquier R, Rossert J, Vial MC, Mandet C, Druet P (1988) Autoreactive T cells in mercury-induced autoimmunity. Ability to induce the autoimmune disease. J Immunol 140(3):750–754

    CAS  PubMed  Google Scholar 

  • Pelletier L, Rossert J, Pasquier R, Vial MC, Druet P (1990) Role of CD8+ T cells in mercury-induced autoimmunity or immunosuppression in the rat. Scand J Immunol 31(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Pilsner JR, Lazarus AL, Nam DH, Letcher RJ, Sonne C, Dietz R, Basu N (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19(2):307–314

    Article  CAS  PubMed  Google Scholar 

  • Pollard KM, Landberg GP (2001) The in vitro proliferation of murine lymphocytes to mercuric chloride is restricted to mature T cells and is interleukin 1 dependent. Int Immunopharmacol 1(3):581–593

    Article  CAS  PubMed  Google Scholar 

  • Pollard KM, Reimer G, Tan EM (1989) Autoantibodies in scleroderma. Clin Exp Rheumatol 7(Suppl 3):S57–S62

    PubMed  Google Scholar 

  • Pollard KM, Lee DK, Casiano CA, Bluthner M, Johnston MM, Tan EM (1997) The autoimmunity-inducing xenobiotic mercury interacts with the autoantigen fibrillarin and modifies its molecular and antigenic properties. J Immunol 158(7):3521–3528

    CAS  PubMed  Google Scholar 

  • Pollard KM, Pearson DL, Hultman P, Hildebrandt B, Kono DH (1999) Lupus-prone mice as models to study xenobiotic-induced acceleration of systemic autoimmunity. Environ Health Perspect 107(Suppl 5):729–735

    Article  PubMed Central  PubMed  Google Scholar 

  • Pollard KM, Pearson DL, Hultman P, Deane TN, Lindh U, Kono DH (2001) Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxsb mice. Environ Health Perspect 109(1):27–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pollard KM, Arnush M, Hultman P, Kono DH (2004) Costimulation requirements of induced murine systemic autoimmune disease. J Immunol 173(9):5880–5887

    Article  CAS  PubMed  Google Scholar 

  • Pollard KM, Hultman P, Kono DH (2005) Immunology and genetics of induced systemic autoimmunity. Autoimmun Rev 4(5):282–288

    Article  CAS  PubMed  Google Scholar 

  • Portanova JP, Arndt RE, Kotzin BL (1988) Selective production of autoantibodies in graft-vs-host-induced and spontaneous murine lupus. Predominant reactivity with histone regions accessible in chromatin. J Immunol 140(3):755–760

    CAS  PubMed  Google Scholar 

  • Queiroz ML, Dantas DC (1997a) B lymphocytes in mercury-exposed workers. Pharmacol Toxicol 81(3):130–133

    Article  CAS  PubMed  Google Scholar 

  • Queiroz ML, Dantas DC (1997b) T lymphocytes in mercury-exposed workers. Immunopharmacol Immunotoxicol 19(4):499–510

    Article  CAS  PubMed  Google Scholar 

  • Queiroz ML, Perlingeiro RC, Dantas DC, Bizzacchi JM, De Capitani EM (1994) Immunoglobulin levels in workers exposed to inorganic mercury. Pharmacol Toxicol 74(2):72–75

    Article  CAS  PubMed  Google Scholar 

  • Reardon CL, Lucas DO (1987) Heavy-metal mitogenesis: Zn++ and Hg++ induce cellular cytotoxicity and interferon production in murine T lymphocytes. Immunobiology 175(5):455–469

    Article  CAS  PubMed  Google Scholar 

  • Rioux JD, Abbas AK (2005) Paths to understanding the genetic basis of autoimmune disease. Nature 435(7042):584–589

    Article  CAS  PubMed  Google Scholar 

  • Rodey GE, Fuller TC (1987) Public epitopes and the antigenic structure of the HLA molecules. Crit Rev Immunol 7(3):229–267

    CAS  PubMed  Google Scholar 

  • Salonen JT, Seppanen K, Nyyssonen K, Korpela H, Kauhanen J, Kantola M, Tuomilehto J, Esterbauer H, Tatzber F, Salonen R (1995) Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 91(3):645–655

    Article  CAS  PubMed  Google Scholar 

  • Sapin C, Druet E, Druet P (1977) Induction of anti-glomerular basement membrane antibodies in the Brown-Norway rat by mercuric chloride. Clin Exp Immunol 28(1):173–179

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sass JB, Haselow DT, Silbergeld EK (2001) Methylmercury-induced decrement in neuronal migration may involve cytokine-dependent mechanisms: a novel method to assess neuronal movement in vitro. Toxicol Sci 63(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Schlawicke Engstrom K, Stromberg U, Lundh T, Johansson I, Vessby B, Hallmans G, Skerfving S, Broberg K (2008) Genetic variation in glutathione-related genes and body burden of methylmercury. Environ Health Perspect 116(6):734–739

    Article  PubMed  CAS  Google Scholar 

  • Schneider U, Schwenk HU, Bornkamm G (1977) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 19(5):621–626

    Article  CAS  PubMed  Google Scholar 

  • Schober SE, Sinks TH, Jones RL, Bolger PM, McDowell M, Osterloh J, Garrett ES, Canady RA, Dillon CF, Sun Y, Joseph CB, Mahaffey KR (2003) Blood mercury levels in US children and women of childbearing age, 1999–2000. JAMA 289(13):1667–1674

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Berthold P, Decker S, Mayro J, Rooney C, Vitale L, Shapiro IM (1992a) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. II. Alterations in cell viability. Immunopharmacol Immunotoxicol 14(3):555–577

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Rooney C, Vitale L, Shapiro IM (1992b) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. I. Suppression of T-cell activation. Immunopharmacol Immunotoxicol 14(3):539–553

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Berthold P, Rooney C, Vitale L, DeBolt K, Shapiro IM (1993a) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. III. Alterations in B-cell function and viability. Immunopharmacol Immunotoxicol 15(1):87–112

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Mayro JS, Rooney C, Vitale L, Shapiro IM (1993b) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. IV. Alterations in cellular glutathione content. Immunopharmacol Immunotoxicol 15(2–3):273–290

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Datar S, Mansfield K, Shapiro IM (1997) Induction of apoptosis in human T-cells by organomercuric compounds: a flow cytometric analysis. Toxicol Appl Pharmacol 143(2):397–406

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Guo TL, Shapiro IM (1998) Low-level methylmercury exposure causes human T-cells to undergo apoptosis: evidence of mitochondrial dysfunction. Environ Res 77(2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Guo TL, Shapiro IM (2000) Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent. Environ Res 84(2):89–99

    Article  CAS  PubMed  Google Scholar 

  • Shenker BJ, Pankoski L, Zekavat A, Shapiro IM (2002) Mercury-induced apoptosis in human lymphocytes: caspase activation is linked to redox status. Antioxid Redox Signal 4(3):379–389

    Article  CAS  PubMed  Google Scholar 

  • Silbergeld EK, Silva IA, Nyland JF (2005) Mercury and autoimmunity: implications for occupational and environmental health. Toxicol Appl Pharmacol 207(2 Suppl):282–292

    Article  PubMed  CAS  Google Scholar 

  • Silva IA, Nyland JF, Gorman A, Perisse A, Ventura AM, Santos EC, Souza JM, Burek CL, Rose NR, Silbergeld EK (2004) Mercury exposure, malaria, and serum antinuclear/antinucleolar antibodies in Amazon populations in Brazil: a cross-sectional study. Environ Health 3(1):11

    Article  PubMed Central  PubMed  Google Scholar 

  • Silva IA, Graber J, Nyland JF, Silbergeld EK (2005) In vitro HgCl2 exposure of immune cells at different stages of maturation: effects on phenotype and function. Environ Res 98(3):341–348

    Article  CAS  PubMed  Google Scholar 

  • Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N (2002) Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J 367(Pt 1):239–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh N, Agrawal S, Rastogi AK (1997) Infectious diseases and immunity: special reference to major histocompatibility complex. Emerg Infect Dis 3(1):41–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorensen N, Murata K, Budtz-Jorgensen E, Weihe P, Grandjean P (1999) Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age. Epidemiology 10(4):370–375

    Article  CAS  PubMed  Google Scholar 

  • Stiller-Winkler R, Radaszkiewicz T, Gleichmann E (1988) Immunopathological signs in mice treated with mercury compounds – I. Identification by the popliteal lymph node assay of responder and nonresponder strains. Int J Immunopharmacol 10(4):475–484

    Article  CAS  PubMed  Google Scholar 

  • Suda I, Hirayama K (1992) Degradation of methyl and ethyl mercury into inorganic mercury by hydroxyl radical produced from rat liver microsomes. Arch Toxicol 66(6):398–402

    Article  CAS  PubMed  Google Scholar 

  • Suda I, Totoki S, Uchida T, Takahashi H (1992) Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells. Arch Toxicol 66(1):40–44

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Tsuruta S, Arimoto M, Tanaka H, Yoshida M (2003) Placental transfer of mercury in pregnant rats which received dental amalgam restorations. Toxicology 185(1–2):23–33

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Naganuma A, Imura N (1990) Role of gamma-glutamyltranspeptidase in renal uptake and toxicity of inorganic mercury in mice. Toxicology 60(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Tanaka-Kagawa T, Naganuma A, Imura N (1993) Tubular secretion and reabsorption of mercury compounds in mouse kidney. J Pharmacol Exp Ther 264(2):776–782

    CAS  PubMed  Google Scholar 

  • Taylor H, Appleton JD, Lister R, Smith B, Chitamweba D, Mkumbo O, Machiwa JF, Tesha AL, Beinhoff C (2005) Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania. Sci Total Environ 343(1–3):111–133

    Article  CAS  PubMed  Google Scholar 

  • Thompson SA, Roellich KL, Grossmann A, Gilbert SG, Kavanagh TJ (1998) Alterations in immune parameters associated with low level methylmercury exposure in mice. Immunopharmacol Immunotoxicol 20(2):299–314

    Article  CAS  PubMed  Google Scholar 

  • Thurston SW, Bovet P, Myers GJ, Davidson PW, Georger LA, Shamlaye C, Clarkson TW (2007) Does prenatal methylmercury exposure from fish consumption affect blood pressure in childhood? Neurotoxicology 28(5):924–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tubbs RR, Gephardt GN, McMahon JT, Pohl MC, Vidt DG, Barenberg SA, Valenzuela R (1982) Membranous glomerulonephritis associated with industrial mercury exposure. Study of pathogenetic mechanisms. Am J Clin Pathol 77(4):409–413

    CAS  PubMed  Google Scholar 

  • Turk JL, Baker H (1968) Nephrotic syndrome due to ammoniated mercury. Br J Dermatol 80(9):623–624

    Article  CAS  PubMed  Google Scholar 

  • UNEP (2002) Global mercury assessment. United Nations Environment Programme, Geneva

    Google Scholar 

  • Vahter M, Mottet NK, Friberg L, Lind B, Shen DD, Burbacher T (1994) Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol Appl Pharmacol 124(2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Van Vleet TR, Schnellmann RG (2003) Toxic nephropathy: environmental chemicals. Semin Nephrol 23(5):500–508

    Article  PubMed  CAS  Google Scholar 

  • Via CS, Shearer GM (1988) Murine graft-versus-host disease as a model for the development of autoimmunity. Relevance of cytotoxic T lymphocytes. Ann N Y Acad Sci 532:44–50

    Article  CAS  PubMed  Google Scholar 

  • Via CS, Nguyen P, Niculescu F, Papadimitriou J, Hoover D, Silbergeld EK (2003) Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus. Environ Health Perspect 111(10):1273–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen TP, Korhonen MJ, Valkonen VP, Seppanen K, Laukkanen JA, Salonen JT (2005) Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 25(1):228–233

    CAS  PubMed  Google Scholar 

  • Vupputuri S, Longnecker MP, Daniels JL, Guo X, Sandler DP (2005) Blood mercury level and blood pressure among US women: results from the National Health and Nutrition Examination Survey 1999–2000. Environ Res 97(2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Walker SJ, Segal J, Aschner M (2006) Cultured lymphocytes from autistic children and non-autistic siblings up-regulate heat shock protein RNA in response to thimerosal challenge. Neurotoxicology 27(5):685–692

    Article  CAS  PubMed  Google Scholar 

  • Warkany J (1966) Acrodynia – postmortem of a disease. Am J Dis Child 112(2):147–156

    CAS  PubMed  Google Scholar 

  • Warkany J, Hubbard DM (1953) Acrodynia and mercury. J Pediatr 42(3):365–386

    Article  CAS  PubMed  Google Scholar 

  • Watras CJ, Back RC, Halvorsen S, Hudson RJ, Morrison KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219(2–3):183–208

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Qiu L, Divine KK, Ashbaugh MD, McIntyre LC Jr, Fernando Q, Gandolfi AJ (1999) Toxicity and transport of three synthesized mercury-thiol-complexes in isolated rabbit renal proximal tubule suspensions. Drug Chem Toxicol 22(2):323–341

    Article  CAS  PubMed  Google Scholar 

  • Weldon MM, Smolinski MS, Maroufi A, Hasty BW, Gilliss DL, Boulanger LL, Balluz LS, Dutton RJ (2000) Mercury poisoning associated with a Mexican beauty cream. West J Med 173(1):15–18; discussion 19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitekus MJ, Santini RP, Rosenspire AJ, McCabe MJ Jr (1999) Protection against CD95-mediated apoptosis by inorganic mercury in Jurkat T cells. J Immunol 162(12):7162–7170

    CAS  PubMed  Google Scholar 

  • WHO (1990) Environmental health criteria 101. Methylmercury. International Program on Chemical Safety, World Health Organization, Geneva

    Google Scholar 

  • WHO (1991) Environmental health criteria 118. Inorganic mercury. International Programme on Chemical Safety, World Health Organization, Geneva

    Google Scholar 

  • Zalups RK, Barfuss DW, Lash LH (1999) Relationships between alterations in glutathione metabolism and the disposition of inorganic mercury in rats: effects of biliary ligation and chemically induced modulation of glutathione status. Chem Biol Interact 123(3):171–195

    Article  CAS  PubMed  Google Scholar 

  • Zdolsek JM, Soder O, Hultman P (1994) Mercury induces in vivo and in vitro secretion of interleukin-1 in mice. Immunopharmacology 28(3):201–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Feng X, Larssen T, Qiu G, Vogt RD (2010) In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ Health Perspect 118(9):1183–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35(1):86–99

    Article  PubMed  Google Scholar 

  • Ziemba SE, McCabe MJ Jr, Rosenspire AJ (2005) Inorganic mercury dissociates preassembled Fas/CD95 receptor oligomers in T lymphocytes. Toxicol Appl Pharmacol 206(3):334–342

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer F. Nyland PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Gardner, R.M., Nyland, J.F. (2016). Immunotoxic Effects of Mercury. In: Esser, C. (eds) Environmental Influences on the Immune System. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1890-0_12

Download citation

Publish with us

Policies and ethics