Skip to main content

Neural Crest

  • Chapter

Abstract

Cardiac neural crest cells (CNCCs) are a subpopulation of cranial neural crest cells that was first described 30 years ago to be required for cardiac outflow septation. Since then the role of the CNCCs in heart development and congenital heart disease has been explored extensively. This chapter will discuss the contributions of the CNCCs to cardiovascular development, the signaling pathways involved in neural crest development, and some of the human congenital heart diseases attributed to aberrant CNCC development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061

    Article  CAS  PubMed  Google Scholar 

  2. Kirby ML, Turnage KL 3rd, Hays BM (1985) Characterization of conotruncal malformations following ablation of “cardiac” neural crest. Anat Rec 213:87–93

    Article  CAS  PubMed  Google Scholar 

  3. Brown CB, Feiner L, Lu MM et al (2001) PlexinA2 and semaphorin signaling during cardiac neural crest development. Development 128:3071–3080

    CAS  PubMed  Google Scholar 

  4. Jiang X, Rowitch DH, Soriano P et al (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    CAS  PubMed  Google Scholar 

  5. Lee M, Brennan A, Blanchard A et al (1997) P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively. Mol Cell Neurosci 8:336–350

    Article  CAS  PubMed  Google Scholar 

  6. Bockman DE, Kirby ML (1984) Dependence of thymus development on derivatives of the neural crest. Science 223:498–500

    Article  CAS  PubMed  Google Scholar 

  7. Bockman DE, Redmond ME, Waldo K et al (1987) Effect of neural crest ablation on development of the heart and arch arteries in the chick. Am J Anat 180:332–341

    Article  CAS  PubMed  Google Scholar 

  8. Waldo K, Miyagawa-Tomita S, Kumiski D et al (1998) Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol 196:129–144

    Article  CAS  PubMed  Google Scholar 

  9. Bajolle F, Zaffran S, Meilhac SM et al (2008) Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field. Dev Biol 313:25–34

    Article  CAS  PubMed  Google Scholar 

  10. Arima Y, Miyagawa-Tomita S, Maeda K et al (2012) Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat Commun 3:1267

    Article  PubMed  Google Scholar 

  11. Miyagawa-Tomita S, Waldo K et al (1991) Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras. Am J Anat 192:79–88

    Article  CAS  PubMed  Google Scholar 

  12. Gurjarpadhye A, Hewett KW, Justus C et al (2007) Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol 292:H1291–H1300

    Article  CAS  PubMed  Google Scholar 

  13. Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9:557–568

    Article  CAS  PubMed  Google Scholar 

  14. Van de Putte T, Maruhashi M, Francis A et al (2003) Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 72:465–470

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hamblet NS, Lijam N, Ruiz-Lozano P et al (2002) Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129:5827–5838

    Article  CAS  PubMed  Google Scholar 

  16. Toyofuku T, Yoshida J, Sugimoto T et al (2008) Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells. Dev Biol 321:251–262

    Article  CAS  PubMed  Google Scholar 

  17. Bergwerff M, Verberne ME, DeRuiter MC et al (1998) Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82:221–231

    Article  CAS  PubMed  Google Scholar 

  18. Clouthier DE, Williams SC, Hammer RE et al (2003) Cell-autonomous and nonautonomous actions of endothelin-A receptor signaling in craniofacial and cardiovascular development. Dev Biol 261:506–519

    Article  CAS  PubMed  Google Scholar 

  19. Clouthier DE, Williams SC, Yanagisawa H et al (2000) Signaling pathways crucial for craniofacial development revealed by endothelin-A receptor-deficient mice. Dev Biol 217:10–24

    Article  CAS  PubMed  Google Scholar 

  20. Clouthier DE, Hosoda K, Richardson JA et al (1998) Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125:813–824

    CAS  PubMed  Google Scholar 

  21. Morishima M, Yanagisawa H, Yanagisawa M et al (2003) Ece1 and Tbx1 define distinct pathways to aortic arch morphogenesis. Dev Dyn 228:95–104

    Article  CAS  PubMed  Google Scholar 

  22. Yanagisawa T, Urade M, Yamamoto Y et al (1998) Increased expression of human DNA repair genes, XRCC1, XRCC3 and RAD51, in radioresistant human KB carcinoma cell line N10. Oral Oncol 34:524–528

    Article  CAS  PubMed  Google Scholar 

  23. Papangeli I, Scambler PJ (2013) Tbx1 genetically interacts with the transforming growth factor-beta/bone morphogenetic protein inhibitor Smad7 during great vessel remodeling. Circ Res 112:90–102

    Article  CAS  PubMed  Google Scholar 

  24. Kochilas L, Merscher-Gomez S, Lu MM et al (2002) The role of neural crest during cardiac development in a mouse model of DiGeorge syndrome. Dev Biol 251:157–166

    Article  CAS  PubMed  Google Scholar 

  25. Lindsay EA, Vitelli F, Su H et al (2001) Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    Article  CAS  PubMed  Google Scholar 

  26. Ward C, Stadt H, Hutson M et al (2005) Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol 284:72–83

    Article  CAS  PubMed  Google Scholar 

  27. Keyte A, Hutson MR (2012) The neural crest in cardiac congenital anomalies. Differentiation 84:25–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Waldo KL, Lo CW, Kirby ML (1999) Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 208:307–323

    Article  CAS  PubMed  Google Scholar 

  29. van den Hoff MJ, Moorman AF, Ruijter JM et al (1999) Myocardialization of the cardiac outflow tract. Dev Biol 212:477–490

    Article  PubMed  Google Scholar 

  30. Jain R, Engleka KA, Rentschler SL et al (2011) Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J Clin Invest 121:422–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Phillips HM, Mahendran P, Singh E et al (2013) Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc Res 99:452–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yelbuz TM, Waldo KL, Kumiski DH et al (2002) Shortened outflow tract leads to altered cardiac looping after neural crest ablation. Circulation 106:504–510

    Article  PubMed  Google Scholar 

  33. Waldo KL, Hutson MR, Stadt HA et al (2005) Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field. Dev Biol 281:66–77

    Article  CAS  PubMed  Google Scholar 

  34. Hutson MR, Zhang P, Stadt HA et al (2006) Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx. Dev Biol 295:486–497

    Article  CAS  PubMed  Google Scholar 

  35. High FA, Jain R, Stoller JZ et al (2009) Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 119:1986–1996

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Miquerol L, Beyer S, Kelly RG (2011) Establishment of the mouse ventricular conduction system. Cardiovasc Res 91:232–242

    Article  CAS  PubMed  Google Scholar 

  37. Kirby ML, Stewart DE (1983) Neural crest origin of cardiac ganglion cells in the chick embryo: identification and extirpation. Dev Biol 97:433–443

    Article  CAS  PubMed  Google Scholar 

  38. Kitajima S, Miyagawa-Tomita S, Inoue T et al (2006) Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev Dyn 235:395–402

    Article  CAS  PubMed  Google Scholar 

  39. Poelmann RE, Gittenberger-de Groot AC (1999) A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development? Dev Biol 207:271–286

    Article  CAS  PubMed  Google Scholar 

  40. Poelmann RE, Jongbloed MR, Molin DG et al (2004) The neural crest is contiguous with the cardiac conduction system in the mouse embryo: a role in induction? Anat Embryol (Berl) 208:389–393

    Article  CAS  Google Scholar 

  41. Nakamura T, Colbert MC, Robbins J (2006) Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res 98:1547–1554

    Article  CAS  PubMed  Google Scholar 

  42. St Amand TR, Lu JT, Zamora M et al (2006) Distinct roles of HF-1b/Sp4 in ventricular and neural crest cells lineages affect cardiac conduction system development. Dev Biol 291:208–217

    Article  CAS  PubMed  Google Scholar 

  43. Shprintzen RJ (2008) Velo-cardio-facial syndrome: 30 years of study. Dev Disabil Res Rev 14:3–10

    Article  PubMed Central  PubMed  Google Scholar 

  44. Scambler PJ (2010) 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 31:378–390

    Article  PubMed  Google Scholar 

  45. Bergman JE, Janssen N, Hoefsloot LH et al (2011) CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet 48:334–342

    Article  CAS  PubMed  Google Scholar 

  46. Bajpai R, Chen DA, Rada-Iglesias A et al (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:958–962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Randall V, McCue K, Roberts C et al (2009) Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 119:3301–3310

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Diman NY, Remacle S, Bertrand N et al (2011) A retinoic acid responsive Hoxa3 transgene expressed in embryonic pharyngeal endoderm, cardiac neural crest and a subdomain of the second heart field. PLoS One 6, e27624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Lepore AC, Neuhuber B, Connors TM et al (2006) Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience 139:513–530

    Article  CAS  PubMed  Google Scholar 

  50. Hutson M, Kirby M (2010) Role of cardiac neural crest in the development of the caudal pharyngeal arches, the cardiac outflow and disease. In: Rosenthal N, Harvey RP (eds) Heart development and regeneration. Academic Press, Amsterdam, pp 441–462

    Chapter  Google Scholar 

  51. Kirby M (2007) Cardiac development. Oxford University Press, Oxford, pp 1–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Hutson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Thattaliyath, B., Hutson, M. (2016). Neural Crest. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_4

Download citation

Publish with us

Policies and ethics