Skip to main content

Human Genetics of d-Transposition of the Great Arteries

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstract

Dextro-transposition of the great arteries (d-TGA) is one of the rare congenital heart diseases (CHD) which benefits from early neonatal diagnosis because d-TGA requires rapid postnatal catheter procedure. In that respect, detecting parental genetic predisposing factors would contribute to focusing prenatal echographical attention to the early detection of d-TGA cases. A high male to female ratio and a high recurrence risk of d-TGA in the context of heterotaxy suggest the impact of genetic factors although familial cases of d-TGA are exceptional. Since the late 1990s, a growing list of genes and chromosomal regions was associated with d-TGA among which the ZIC3 gene. Although this gene is located on the X chromosome, ZIC3 (Zic family member 3) does not explain the male preponderance in d-TGA. d-TGA causal genes are involved in many different cellular pathways and can be provisionally sorted in two groups: those which disrupt the function of the embryonic node cilia and those which are downstream of this major embryological process of lateralization. Many more genes or gene factors remain to be discovered in d-TGA and related CHD because only a small percentage of d-TGA is yet genetically resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma L, Selamet Tierney ES, Lee T et al (2012) Mutations in ZIC3 and ACVR2B are a common cause of heterotaxy and associated cardiovascular anomalies. Cardiol Young 22:194–201

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kosaki R, Gebbia M, Kosaki K et al (1999) Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 82:70–76

    Article  CAS  PubMed  Google Scholar 

  3. Bamford RN, Roessler E, Burdine RD et al (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 26:365–369

    Article  CAS  PubMed  Google Scholar 

  4. Goldmuntz E, Bamford R, Karkera JD et al (2002) CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet 70:776–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kaasinen E, Aittomaki K, Eronen M et al (2010) Recessively inherited right atrial isomerism caused by mutations in growth/differentiation factor 1 (GDF1). Hum Mol Genet 19:2747–2753

    Article  CAS  PubMed  Google Scholar 

  6. Karkera JD, Lee JS, Roessler E et al (2007) Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet 81:987–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Muncke N, Jung C, Rudiger H et al (2003) Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108:2843–2850

    Article  CAS  PubMed  Google Scholar 

  8. Mohapatra B, Casey B, Li H et al (2009) Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 18:861–871

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Gebbia M, Ferrero GB, Pilia G et al (1997) X-linked situs abnormalities result from mutations in ZIC3. Nat Genet 17:305–308

    Article  CAS  PubMed  Google Scholar 

  10. Ferrero GB, Gebbia M, Pilia G et al (1997) A submicroscopic deletion in Xq26 associated with familial situs ambiguus. Am J Hum Genet 61:395–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Megarbane A, Salem N, Stephan E et al (2000) X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur J Hum Genet 8:704–708

    Article  CAS  PubMed  Google Scholar 

  12. Ware SM, Peng J, Zhu L et al (2004) Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 74:93–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chhin B, Hatayama M, Bozon D et al (2007) Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain. Hum Mutat 28:563–570

    Article  CAS  PubMed  Google Scholar 

  14. D’Alessandro LC, Latney BC, Paluru PC et al (2013) The phenotypic spectrum of ZIC3 mutations includes isolated d-transposition of the great arteries and double outlet right ventricle. Am J Med Genet A 161A:792–802

    Article  PubMed  Google Scholar 

  15. Cowan J, Tariq M, Ware SM (2014) Genetic and functional analyses of ZIC3 variants in congenital heart disease. Hum Mutat 35:66–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Digilio MC, Casey B, Toscano A et al (2001) Complete transposition of the great arteries: patterns of congenital heart disease in familial precurrence. Circulation 104:2809–2814

    Article  CAS  PubMed  Google Scholar 

  17. Harris JA, Francannet C, Pradat P et al (2003) The epidemiology of cardiovascular defects, part 2: a study based on data from three large registries of congenital malformations. Pediatr Cardiol 24:222–235

    Article  CAS  PubMed  Google Scholar 

  18. Chehab G, Chedid P, Saliba Z et al (2007) Congenital cardiac disease and inbreeding: specific defects escape higher risk due to parental consanguinity. Cardiol Young 17:414–422

    Article  PubMed  Google Scholar 

  19. Oyen N, Poulsen G, Boyd HA et al (2009) Recurrence of congenital heart defects in families. Circulation 120:295–301

    Article  PubMed  Google Scholar 

  20. Granados-Riveron JT, Ghosh TK, Pope M et al (2010) Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet 19:4007–4016

    Article  CAS  PubMed  Google Scholar 

  21. De Luca A, Sarkozy A, Consoli F et al (2010) Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart 96:673–677

    Article  PubMed  Google Scholar 

  22. D’Alessandro LC, Casey B, Siu VM (2013) Situs inversus totalis and a novel ZIC3 mutation in a family with X-linked heterotaxy. Congenit Heart Dis 8:E36–E40

    Article  PubMed  Google Scholar 

  23. Zaidi S, Choi M, Wakimoto H et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fakhro KA, Choi M, Ware SM et al (2011) Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A 108:2915–2920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Glessner JT, Bick AG, Ito K et al (2014) Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res 115:884–896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Osoegawa K, Schultz K, Yun K et al (2014) Haploinsufficiency of insulin gene enhancer protein 1 (ISL1) is associated with d-transposition of the great arteries. Mol Genet Genomic Med 2:341–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Boudjemline Y, Fermont L, Le Bidois J et al (2001) Prevalence of 22q11 deletion in fetuses with conotruncal cardiac defects: a 6-year prospective study. J Pediatr 138:520–524

    Article  CAS  PubMed  Google Scholar 

  28. French VM, van de Laar IM, Wessels MW et al (2012) NPHP4 variants are associated with pleiotropic heart malformations. Circ Res 110:1564–1574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kennedy MP, Omran H, Leigh MW et al (2007) Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115:2814–2821

    Article  PubMed  Google Scholar 

  30. Shapiro AJ, Davis SD, Ferkol T et al (2014) Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 146:1176–1186

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nakhleh N, Francis R, Giese RA et al (2012) High prevalence of respiratory ciliary dysfunction in congenital heart disease patients with heterotaxy. Circulation 125:2232–2242

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Bouvagnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Bouvagnet, P., Moreau de Bellaing, A. (2016). Human Genetics of d-Transposition of the Great Arteries. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_35

Download citation

Publish with us

Policies and ethics