Skip to main content

Human Genetics of Tetralogy of Fallot and Double Outlet Right Ventricle

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstract

Tetralogy of Fallot (TOF) and double outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferencz C, Rubin JD, McCarter RJ et al (1985) Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol 121:31–36

    CAS  PubMed  Google Scholar 

  2. Apitz C, Webb GD, Redington AN (2009) Tetralogy of Fallot. Lancet 374:1462–1471

    Article  CAS  PubMed  Google Scholar 

  3. Obler D, Juraszek AL, Smoot LB et al (2008) Double outlet right ventricle: aetiologies and associations. J Med Genet 45:481–497

    Article  CAS  PubMed  Google Scholar 

  4. Villafañe J, Feinstein JA, Jenkins KJ et al (2013) Hot topics in tetralogy of Fallot. J Am Coll Cardiol 62:2155–2166

    Article  PubMed  Google Scholar 

  5. Grunert M, Dorn C, Schueler M et al (2014) Rare and private variations in neural crest, apoptosis and sarcomere genes define the polygenic background of isolated Tetralogy of Fallot. Hum Mol Genet 23:3115–3128

    Article  CAS  PubMed  Google Scholar 

  6. Andersen TA, Troelsen Kde L, Larsen LA (2014) Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 71:1327–1352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sheng W, Qian Y, Zhang P et al (2014) Association of promoter methylation statuses of congenital heart defect candidate genes with Tetralogy of Fallot. J Transl Med 12:31

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fahed AC, Gelb BD, Seidman JG et al (2013) Genetics of congenital heart disease: the glass half empty. Circ Res 112:707–720

    Article  CAS  PubMed  Google Scholar 

  9. Boon AR, Farmer MB, Roberts DF (1972) A family study of Fallot’s tetralogy. J Med Genet 9:179–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chin-Yee NJ, Costain G, Swaby J-A et al (2014) Reproductive fitness and genetic transmission of tetralogy of Fallot in the molecular age. Circ Cardiovasc Genet 7:102–109

    Article  CAS  PubMed  Google Scholar 

  11. Nabulsi MM, Tamim H, Sabbagh M et al (2003) Parental consanguinity and congenital heart malformations in a developing country. Am J Med Genet A 116A:342–347

    Article  PubMed  Google Scholar 

  12. Rauch R, Hofbeck M, Zweier C et al (2010) Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet 47:321–331

    Article  CAS  PubMed  Google Scholar 

  13. Vergara P, Digilio MC, De Zorzi A et al (2006) Genetic heterogeneity and phenotypic anomalies in children with atrioventricular canal defect and tetralogy of Fallot. Clin Dysmorphol 15:65–70

    Article  PubMed  Google Scholar 

  14. Maeda J, Yamagishi H, Furutani Y et al (2011) The impact of cardiac surgery in patients with trisomy 18 and trisomy 13 in Japan. Am J Med Genet A 155A:2641–2646

    Article  PubMed  Google Scholar 

  15. Papp C, Beke A, Mezei G et al (2006) Prenatal diagnosis of Turner syndrome: report on 69 cases. J Ultrasound Med 25:711

    PubMed  Google Scholar 

  16. Kim N, Friedberg MK, Silverman NH (2006) Diagnosis and prognosis of fetuses with double outlet right ventricle. Prenat Diagn 26:740–745

    Article  PubMed  Google Scholar 

  17. Goldmuntz E, Clark BJ, Mitchell LE et al (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 32:492–498

    Article  CAS  PubMed  Google Scholar 

  18. Merscher S, Funke B, Epstein JA et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  CAS  PubMed  Google Scholar 

  19. Yagi H, Furutani Y, Hamada H et al (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373

    Article  CAS  PubMed  Google Scholar 

  20. Wat MJ, Shchelochkov OA, Holder AM et al (2009) Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 149A:1661–1677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hills C, Moller JH, Finkelstein M et al (2006) Cri du chat syndrome and congenital heart disease: a review of previously reported cases and presentation of an additional 21 cases from the Pediatric Cardiac Care Consortium. Pediatrics 117:e924–e927

    Article  PubMed  Google Scholar 

  22. Rosa RFM, Mombach R, Zen PRG et al (2010) Clinical characteristics of a sample of patients with cat eye syndrome. Rev Assoc Med Bras (1992) 56:462–465

    Article  Google Scholar 

  23. Del Pasqua A, Rinelli G, Toscano A et al (2009) New findings concerning cardiovascular manifestations emerging from long-term follow-up of 150 patients with the Williams-Beuren-Beuren syndrome. Cardiol Young 19:563–567

    Article  PubMed  Google Scholar 

  24. Podraza J, Fleenor J, Grossfeld P (2007) An 11q terminal deletion and tetralogy of Fallot. Am J Med Genet A 143A:1126–1128

    Article  CAS  PubMed  Google Scholar 

  25. Grossfeld PD, Mattina T, Lai Z et al (2004) The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 129A:51–61

    Article  PubMed  Google Scholar 

  26. Battaglia A, Hoyme HE, Dallapiccola B et al (2008) Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 121:404–410

    Article  PubMed  Google Scholar 

  27. Greenway SC, Pereira AC, Lin JC et al (2009) De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 41:931–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Soemedi R, Wilson IJ, Bentham J et al (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91:489–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Silversides CK, Lionel AC, Costain G et al (2012) Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet 8:e1002843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Glessner JT, Bick AG, Ito K et al (2014) Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res 115:884–896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Soemedi R, Topf A, Wilson IJ et al (2012) Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls. Hum Mol Genet 21:1513–1520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bansal V, Dorn C, Grunert M et al (2013) Outlier-based identification of copy number variations using targeted resequencing in a small cohort of patients with Tetralogy of Fallot. PLoS One 9:e85375

    Article  Google Scholar 

  33. Di Felice V, Zummo G (2009) Tetralogy of fallot as a model to study cardiac progenitor cell migration and differentiation during heart development. Trends Cardiovasc Med 19:130–135

    Article  PubMed  Google Scholar 

  34. Yang Y-Q, Gharibeh L, Li R-G et al (2013) GATA4 loss-of-function mutations underlie familial tetralogy of fallot. Hum Mutat 34:1662–1671

    Article  CAS  PubMed  Google Scholar 

  35. Maitra M, Koenig SN, Srivastava D, Garg V (2010) Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res 68:281–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Shen L, Li X-F, Shen A-D et al (2010) Transcription factor HAND2 mutations in sporadic Chinese patients with congenital heart disease. Chin Med J (Engl) 123:1623–1627

    CAS  Google Scholar 

  37. Pizzuti A, Sarkozy A, Newton AL et al (2003) Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat 22:372–377

    Article  CAS  PubMed  Google Scholar 

  38. De Luca A, Sarkozy A, Ferese R et al (2011) New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle. Clin Genet 80:184–190

    Article  PubMed  Google Scholar 

  39. Baban A, Postma AV, Marini M et al (2014) Identification of TBX5 mutations in a series of 94 patients with Tetralogy of Fallot. Am J Med Genet A 164A:3100–3107

    Article  PubMed  Google Scholar 

  40. Roessler E, Pei W, Ouspenskaia MV et al (2009) Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly. Mol Genet Metab 98:225–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Bamford RN, Roessler E, Burdine RD et al (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 26:365–369

    Article  CAS  PubMed  Google Scholar 

  42. Selamet Tierney ES, Marans Z, Rutkin MB, Chung WK (2007) Variants of the CFC1 gene in patients with laterality defects associated with congenital cardiac disease. Cardiol Young 17:268–274

    Article  PubMed  Google Scholar 

  43. Ware SM, Peng J, Zhu L et al (2004) Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 74:93–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Roessler E, Ouspenskaia MV, Karkera JD et al (2008) Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 83:18–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. French VM, van de Laar IMBH, Wessels MW et al (2012) NPHP4 variants are associated with pleiotropic heart malformations. Circ Res 110:1564–1574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. de la Pompa JL, Epstein JA (2012) Coordinating tissue interactions: notch signaling in cardiac development and disease. Dev Cell 22:244–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. McElhinney DB, Krantz ID, Bason L et al (2002) Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 106:2567–2574

    Article  PubMed  Google Scholar 

  48. Kola S, Koneti NR, Golla JP et al (2011) Mutational analysis of JAG1 gene in non-syndromic tetralogy of Fallot children. Clin Chim Acta 412:2232–2236

    Article  CAS  PubMed  Google Scholar 

  49. Eldadah ZA, Hamosh A, Biery NJ et al (2001) Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet 10:163–169

    Article  CAS  PubMed  Google Scholar 

  50. Digilio MC, Luca AD, Lepri F et al (2013) JAG1 mutation in a patient with deletion 22q11.2 syndrome and tetralogy of Fallot. Am J Med Genet A 161A:3133–3136

    Article  PubMed  Google Scholar 

  51. Marino B, Digilio MC, Toscano A et al (1999) Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr 135:703–706

    Article  CAS  PubMed  Google Scholar 

  52. Luo C, Yang Y-F, Yin B-L et al (2012) Microduplication of 3p25.2 encompassing RAF1 associated with congenital heart disease suggestive of Noonan syndrome. Am J Med Genet A 158A:1918–1923

    Article  PubMed  Google Scholar 

  53. Chang C-P, Bruneau BG (2012) Epigenetics and cardiovascular development. Annu Rev Physiol 74:41–68

    Article  CAS  PubMed  Google Scholar 

  54. Blake KD, Prasad C (2006) CHARGE syndrome. Orphanet J Rare Dis 1:34

    Article  PubMed Central  PubMed  Google Scholar 

  55. Jongmans MCJ, Admiraal RJ, van der Donk KP et al (2006) CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet 43:306–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Zaidi S, Choi M, Wakimoto H et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Cordell HJ, Topf A, Mamasoula C et al (2013) Genome-wide association study identifies loci on 12q24 and 13q32 associated with tetralogy of Fallot. Hum Mol Genet 22:1473–1481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Bentham J, Bhattacharya S (2008) Genetic mechanisms controlling cardiovascular development. Ann N Y Acad Sci 1123:10–19

    Article  CAS  PubMed  Google Scholar 

  59. Blue GM, Kirk EP, Sholler GF et al (2012) Congenital heart disease: current knowledge about causes and inheritance. Med J Aust 197:155–159

    Article  PubMed  Google Scholar 

  60. Hilton E, Johnston J, Whalen S et al (2009) BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects. Eur J Hum Genet 17:1325–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ng D, Thakker N, Corcoran CM et al (2004) Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet 36:411–416

    Article  CAS  PubMed  Google Scholar 

  62. Topf A, Griffin HR, Glen E et al (2014) Functionally significant, rare transcription factor variants in tetralogy of Fallot. PLoS One 9:e95453

    Article  PubMed Central  PubMed  Google Scholar 

  63. Nemer G, Fadlalah F, Usta J et al (2006) A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat 27:293–294

    Article  PubMed  Google Scholar 

  64. Tomita-Mitchell A, Maslen CL, Morris CD et al (2007) GATA4 sequence variants in patients with congenital heart disease. J Med Genet 44:779–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Peng T, Wang L, Zhou S-F, Li X (2010) Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica 138:1231–1240

    Article  CAS  PubMed  Google Scholar 

  66. Zhang W-M, Li X-F, Ma Z-Y et al (2009) GATA4 and NKX2.5 gene analysis in Chinese Uygur patients with congenital heart disease. Chin Med J (Engl) 122:416–419

    CAS  Google Scholar 

  67. Lin X, Huo Z, Liu X et al (2010) A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet 55:662–667

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Luo X-J, Xin Y-F et al (2012) Novel GATA6 mutations associated with congenital ventricular septal defect or tetralogy of fallot. DNA Cell Biol 31:1610–1617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Tischfield MA, Bosley TM, Salih MAM et al (2005) Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet 37:1035–1037

    Article  CAS  PubMed  Google Scholar 

  70. Holve S, Friedman B, Hoyme HE et al (2003) Athabascan brainstem dysgenesis syndrome. Am J Med Genet A 120A:169–173

    Article  PubMed  Google Scholar 

  71. Goldmuntz E, Geiger E, Benson DW (2001) NKX2.5 mutations in patients with tetralogy of fallot. Circulation 104:2565–2568

    Article  CAS  PubMed  Google Scholar 

  72. McElhinney DB, Geiger E, Blinder J et al (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650–1655

    Article  CAS  PubMed  Google Scholar 

  73. Benson DW, Silberbach GM, Kavanaugh-McHugh A et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Izumi K, Noon S, Wilkens A, Krantz ID (2014) NKX2.5 mutation identification on exome sequencing in a patient with heterotaxy. Eur J Med Genet 57:558–561

    Article  PubMed  Google Scholar 

  75. Zhao L, Ni S-H, Liu X-Y et al (2014) Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. Eur J Med Genet 57:579–586

    Article  PubMed  Google Scholar 

  76. Wang J, Xin Y-F, Xu W-J et al (2013) Prevalence and spectrum of PITX2c mutations associated with congenital heart disease. DNA Cell Biol 32:708–716

    Article  PubMed Central  PubMed  Google Scholar 

  77. Borozdin W, Wright MJ, Hennekam RCM et al (2004) Novel mutations in the gene SALL4 provide further evidence for acro-renal-ocular and Okihiro syndromes being allelic entities, and extend the phenotypic spectrum. J Med Genet 41:e102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Paylor R, Glaser B, Mupo A et al (2006) Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci U S A 103:7729–7734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. McDermott DA, Bressan MC, He J et al (2005) TBX5 genetic testing validates strict clinical criteria for Holt-Oram syndrome. Pediatr Res 58:981–986

    Article  CAS  PubMed  Google Scholar 

  80. Brassington A-ME, Sung SS, Toydemir RM et al (2003) Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet 73:74–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Liu C, Shen A, Li X et al (2008) T-box transcription factor TBX20 mutations in Chinese patients with congenital heart disease. Eur J Med Genet 51:580–587

    Article  PubMed  Google Scholar 

  82. Xiong F, Li Q, Zhang C et al (2013) Analyses of GATA4, NKX2.5, and TFAP2B genes in subjects from southern China with sporadic congenital heart disease. Cardiovasc Pathol 22:141–145

    Article  CAS  PubMed  Google Scholar 

  83. Huang X, Niu W, Zhang Z et al (2014) Identification of novel significant variants of ZFPM2/FOG2 in non-syndromic Tetralogy of Fallot and double outlet right ventricle in a Chinese Han population. Mol Biol Rep 41:2671–2677

    Article  CAS  PubMed  Google Scholar 

  84. Tan Z-P, Huang C, Xu Z-B et al (2012) Novel ZFPM2/FOG2 variants in patients with double outlet right ventricle. Clin Genet 82:466–471

    Article  CAS  PubMed  Google Scholar 

  85. D’Alessandro LCA, Latney BC, Paluru PC, Goldmuntz E (2013) The phenotypic spectrum of ZIC3 mutations includes isolated d-transposition of the great arteries and double outlet right ventricle. Am J Med Genet A 161A:792–802

    Article  PubMed  Google Scholar 

  86. Kosaki R, Gebbia M, Kosaki K et al (1999) Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 82:70–76

    Article  CAS  PubMed  Google Scholar 

  87. Pavan M, Ruiz VF, Silva FA et al (2009) ALDH1A2 (RALDH2) genetic variation in human congenital heart disease. BMC Med Genet 10:113

    Article  PubMed Central  PubMed  Google Scholar 

  88. Koudova M, Seemanova E, Zenker M (2009) Novel BRAF mutation in a patient with LEOPARD syndrome and normal intelligence. Eur J Med Genet 52:337–340

    Article  PubMed  Google Scholar 

  89. Goldmuntz E, Bamford R, Karkera JD et al (2002) CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet 70:776–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Karkera JD, Lee JS, Roessler E et al (2007) Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet 81:987–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Bauer RC, Laney AO, Smith R et al (2010) Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat 31:594–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Dentici ML, Sarkozy A, Pantaleoni F et al (2009) Spectrum of MEK1 and MEK2 gene mutations in cardio-facio-cutaneous syndrome and genotype-phenotype correlations. Eur J Hum Genet 17:733–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Mohapatra B, Casey B, Li H et al (2009) Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 18:861–871

    CAS  PubMed Central  PubMed  Google Scholar 

  94. McDaniell R, Warthen DM, Sanchez-Lara PA et al (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79:169–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Iqbal Z, Cejudo-Martin P, de Brouwer A et al (2010) Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome. Am J Hum Genet 86:254–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Sperling SR (2011) Systems biology approaches to heart development and congenital heart disease. Cardiovasc Res 91:269–278

    Article  CAS  PubMed  Google Scholar 

  97. Cohen JC, Kiss RS, Persemlidis A et al (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Community’s Seventh Framework Programme contract (“CardioNeT”) grant 289600 to S.R.S and the German Research Foundation (Heisenberg professorship and grant 574157 to S.R.S.). This work was also supported by the Berlin Institute of Health (BIH-CRG2-ConDi to S.R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Rickert-Sperling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Dorn, C., Perrot, A., Rickert-Sperling, S. (2016). Human Genetics of Tetralogy of Fallot and Double Outlet Right Ventricle. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_32

Download citation

Publish with us

Policies and ethics