Skip to main content

Molecular Pathways and Animal Models of Atrioventricular Septal Defect

  • Chapter
  • 2201 Accesses

Abstract

The development of a properly functioning 4-chambered heart relies on the correct formation of the septal structures that separate the atrial and ventricular chambers. Perturbation of this septation process results in a spectrum of cardiac malformations involving the atrial and ventricular septal structures. Atrioventricular septal defects (AVSDs) form a class of congenital heart defects that are characterized by the presence of a primary atrial septal defect, a common atrioventricular junction, and frequently also a ventricular septal defect. While AVSD were historically considered to result from failure of the endocardial atrioventricular cushions to properly develop and fuse, more recent studies have determined that inhibition of the development of the dorsal mesenchymal protrusion (DMP), a derivative of the second heart field, can lead to AVSDs as well. In this chapter, we review what is currently known about the molecular mechanisms and pathways that are involved in DMP development and the pathogenesis of AVSD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Briggs LE, Kakarla J, Wessels A (2012) The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation 84:117–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sharratt GP, Webb S, Anderson RH (2003) The vestibular defect: an interatrial communication due to a deficiency in the atrial septal component derived from the vestibular spine. Cardiol Young 13:184–190

    Article  PubMed  Google Scholar 

  3. Blom NA, Ottenkamp J, Wenink AG et al (2003) Deficiency of the vestibular spine in atrioventricular septal defects in human fetuses with down syndrome. Am J Cardiol 91:180–184

    Article  PubMed  Google Scholar 

  4. Briggs LE, Phelps AL, Brown E et al (2013) Expression of the BMP receptor Alk3 in the second heart field is essential for development of the dorsal mesenchymal protrusion and atrioventricular septation. Circ Res 112:1420–1432

    Article  CAS  PubMed  Google Scholar 

  5. Goddeeris MM, Rho S, Petiet A et al (2008) Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development 135:1887–1895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tian Y, Yuan L, Goss AM et al (2010) Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development. Dev Cell 18:275–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Barlow GM, Chen XN, Shi ZY et al (2001) Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med 3:91–101

    Article  CAS  PubMed  Google Scholar 

  8. Mommersteeg MT, Soufan AT, de Lange FJ et al (2006) Two distinct pools of mesenchyme contribute to the development of the atrial septum. Circ Res 99:351–353

    Article  CAS  PubMed  Google Scholar 

  9. Kim JS, Viragh S, Moorman AF et al (2001) Development of the myocardium of the atrioventricular canal and the vestibular spine in the human heart. Circ Res 88:395–402

    Article  CAS  PubMed  Google Scholar 

  10. Webb S, Anderson RH, Lamers W et al (1999) Mechanisms of deficient cardiac septation in the mouse with trisomy 16. Circ Res 84:897–905

    Article  CAS  PubMed  Google Scholar 

  11. Webb S, Brown NA, Anderson RH (1998) Formation of the atrioventricular septal structures in the normal mouse. Circ Res 82:645–656

    Article  CAS  PubMed  Google Scholar 

  12. Snarr BS, Kern CB, Wessels A (2008) Origin and fate of cardiac mesenchyme. Dev Dyn 237:2804–2819

    Article  PubMed  Google Scholar 

  13. Snarr BS, O’Neal JL, Chintalapudi MR et al (2007) Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development. Circ Res 101:971–974

    Article  CAS  PubMed  Google Scholar 

  14. Snarr BS, Wirrig EE, Phelps AL et al (2007) A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development. Dev Dyn 236:1287–1294

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wessels A, Anderson RH, Markwald RR et al (2000) Atrial development in the human heart: an immunohistochemical study with emphasis on the role of mesenchymal tissues. Anat Rec 259:288–300

    Article  CAS  PubMed  Google Scholar 

  16. Anderson RH, Brown NA, Webb S (2002) Development and structure of the atrial septum. Heart 88:104–110

    Article  PubMed Central  PubMed  Google Scholar 

  17. Affolter M, Weijer CJ (2005) Signaling to cytoskeletal dynamics during chemotaxis. Dev Cell 9:19–34

    Article  CAS  PubMed  Google Scholar 

  18. Allen WE, Jones GE, Pollard JW et al (1997) Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 110:707–720

    CAS  PubMed  Google Scholar 

  19. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  CAS  PubMed  Google Scholar 

  20. Zhao ZS, Manser E, Loo TH et al (2000) Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol 20:6354–6363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Somi S, Buffing AA, Moorman AF et al (2004) Dynamic patterns of expression of BMP isoforms 2, 4, 5, 6, and 7 during chicken heart development. Anat Rec A Discov Mol Cell Evol Biol 279:636–651

    Article  PubMed  Google Scholar 

  22. Sugi Y, Yamamura H, Okagawa H et al (2004) Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice. Dev Biol 269:505–518

    Article  CAS  PubMed  Google Scholar 

  23. Ma L, Lu MF, Schwartz RJ et al (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611

    Article  CAS  PubMed  Google Scholar 

  24. Liu W, Selever J, Wang D et al (2004) Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proc Natl Acad Sci U S A 101:4489–4494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. McCulley DJ, Kang JO, Martin JF et al (2008) BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn 237:3200–3209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Uchimura T, Komatsu Y, Tanaka M et al (2009) Bmp2 and Bmp4 genetically interact to support multiple aspects of mouse development including functional heart development. Genesis 47:374–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fujiwara T, Dehart DB, Sulik KK et al (2002) Distinct requirements for extra-embryonic and embryonic bone morphogenetic protein 4 in the formation of the node and primitive streak and coordination of left-right asymmetry in the mouse. Development 129:4685–4696

    CAS  PubMed  Google Scholar 

  28. Jiao K, Kulessa H, Tompkins K et al (2003) An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev 17:2362–2367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hoffmann AD, Peterson MA, Friedland-Little JM et al (2009) Sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 136:1761–1770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Goddeeris MM, Schwartz R, Klingensmith J et al (2007) Independent requirements for hedgehog signaling by both the anterior heart field and neural crest cells for outflow tract development. Development 134:1593–1604

    Article  CAS  PubMed  Google Scholar 

  31. Washington Smoak I, Byrd NA, Abu-Issa R et al (2005) Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 283:357–372

    Article  CAS  PubMed  Google Scholar 

  32. Hildreth V, Webb S, Chaudhry B et al (2009) Left cardiac isomerism in the sonic hedgehog null mouse. J Anat 214:894–904

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ai D, Fu X, Wang J et al (2007) Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci U S A 104:9319–9324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cohen ED, Wang Z, Lepore JJ et al (2007) Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest 117:1794–1804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lin L, Cui L, Zhou W et al (2007) Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci U S A 104:9313–9318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Watanabe Y, Kokubo H, Miyagawa-Tomita S et al (2006) Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse. Development 133:1625–1634

    Article  CAS  PubMed  Google Scholar 

  37. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124:2691–2700

    CAS  PubMed  Google Scholar 

  38. Tallquist MD, Soriano P (2003) Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development 130:507–518

    Article  CAS  PubMed  Google Scholar 

  39. Bax NA, Bleyl SB, Gallini R et al (2010) Cardiac malformations in pdgfralpha mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field. Dev Dyn 239:2307–2317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Basson CT, Bachinsky DR, Lin RC et al (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35

    Article  CAS  PubMed  Google Scholar 

  41. Li QY, Newbury-Ecob RA, Terrett JA et al (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15:21–29

    Article  PubMed  Google Scholar 

  42. Xie L, Hoffmann AD, Burnicka-Turek O et al (2012) Tbx5-hedgehog molecular networks are essential in the second heart field for atrial septation. Dev Cell 23:280–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang Q, Lan Y, Cho ES et al (2005) Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol 288:582–594

    Article  CAS  PubMed  Google Scholar 

  44. Frank V, Habbig S, Bartram MP et al (2013) Mutations in NEK8 link multiple organ dysplasia with altered Hippo signalling and increased c-MYC expression. Hum Mol Genet 22:2177–2185

    Article  CAS  PubMed  Google Scholar 

  45. Ripoll C, Rivals I, Ait Yahya-Graison E et al (2012) Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways. PLoS One 7:e41616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Friedland-Little JM, Hoffmann AD, Ocbina PJ et al (2011) A novel murine allele of intraflagellar transport protein 172 causes a syndrome including VACTERL-like features with hydrocephalus. Hum Mol Genet 20:3725–3737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Willaredt MA, Gorgas K, Gardner HA et al (2012) Multiple essential roles for primary cilia in heart development. Cilia 1:23

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Wessels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Wessels, A. (2016). Molecular Pathways and Animal Models of Atrioventricular Septal Defect. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_27

Download citation

Publish with us

Policies and ethics