Skip to main content

Human Genetics of Atrial Septal Defect

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstract

Atrial septal defects and other interatrial communications share the physiologic phenotype of shunting blood from the left to the right atrium, but their genetics and development have important differences. Secundum ASDs are the most common and usually the type implied by clinicians when not otherwise specified. The distinction is important because the development and genetics of ostium primum ASDs, the second most common type, are related to atrioventricular septal defects. Sinus venosus and coronary sinus defects are rare. Their anatomy and development are more properly considered as an interatrial communication rather than a true septal defect. Little is known about their genetics. This chapter focuses on the human genetics of secundum ASD and sinus venosus and coronary sinus defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber FP (1911) Congenital heart disease without murmur, and with a family history of congenital cyanosis. Proc R Soc Med 4(Sect Study Dis Child):159–160

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Zetterqvist P (1960) Multiple occurrence of atrial septal defect in a family. Acta Paediatr 49:741–747

    Article  CAS  PubMed  Google Scholar 

  3. Johansson BW, Sievers J (1967) Inheritance of atrial septal defect. Lancet 1:1224–1225

    Article  CAS  PubMed  Google Scholar 

  4. Bizarro RO, Callahan JA, Feldt RH et al (1970) Familial atrial septal defect with prolonged atrioventricular conduction. A syndrome showing the autosomal dominant pattern of inheritance. Circulation 41:677–683

    Article  CAS  PubMed  Google Scholar 

  5. Amarasingham R, Fleming HA (1967) Congenital heart disease with arrhythmia in a family. Br Heart J 29:78–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Howitt G (1961) Atrial septal defect in three generations. Br Heart J 23:494–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Holt M, Oram S (1960) Familial heart disease with skeletal manifestations. Br Heart J 22:236–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Schott JJ, Benson DW, Basson CT et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  9. Basson CT, Bachinsky DR, Lin RC et al (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35

    Article  CAS  PubMed  Google Scholar 

  10. Li QY, Newbury-Ecob RA, Terrett JA et al (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15:21–29

    Article  PubMed  Google Scholar 

  11. Benson DW, Silberbach GM, Kavanaugh-McHugh A et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. McElhinney DB, Geiger E, Blinder J et al (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650–1655

    Article  CAS  PubMed  Google Scholar 

  13. Bruneau BG, Logan M, Davis N et al (1999) Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 211:100–108

    Article  CAS  PubMed  Google Scholar 

  14. Zaidi S, Choi M, Wakimoto H et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Matsson H, Eason J, Bookwalter CS et al (2008) Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet 17:256–265

    Article  CAS  PubMed  Google Scholar 

  16. Ching YH, Ghosh TK, Cross SJ et al (2005) Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet 37:423–428

    Article  CAS  PubMed  Google Scholar 

  17. Budde BS, Binner P, Waldmuller S et al (2007) Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One 2, e1362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Rodriguez-Viciana P, Tetsu O, Tidyman WE et al (2006) Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311:1287–1290

    Article  CAS  PubMed  Google Scholar 

  19. Niihori T, Aoki Y, Narumi Y et al (2006) Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38:294–296

    Article  CAS  PubMed  Google Scholar 

  20. Fitzky BU, Witsch-Baumgartner M, Erdel M et al (1998) Mutations in the Delta7-sterol reductase gene in patients with the Smith-Lemli-Opitz syndrome. Proc Natl Acad Sci U S A 95:8181–8186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wassif CA, Maslen C, Kachilele-Linjewile S et al (1998) Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome. Am J Hum Genet 63:55–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lin AE, Ardinger HH, Ardinger RH Jr et al (1997) Cardiovascular malformations in Smith-Lemli-Opitz syndrome. Am J Med Genet 68:270–278

    Article  CAS  PubMed  Google Scholar 

  23. Emerick KM, Rand EB, Goldmuntz E et al (1999) Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829

    Article  CAS  PubMed  Google Scholar 

  24. Tartaglia M, Mehler EL, Goldberg R et al (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468

    Article  CAS  PubMed  Google Scholar 

  25. Aoki Y, Niihori T, Banjo T et al (2013) Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 93:173–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tartaglia M, Pennacchio LA, Zhao C et al (2007) Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 39:75–79

    Article  CAS  PubMed  Google Scholar 

  27. Pasutto F, Sticht H, Hammersen G et al (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 80:550–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sperling S, Grimm CH, Dunkel I et al (2005) Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat 26:575–582

    Article  CAS  PubMed  Google Scholar 

  29. Gripp KW, Hopkins E, Jenny K et al (2013) Cardiac anomalies in Axenfeld-Rieger syndrome due to a novel FOXC1 mutation. Am J Med Genet A 161A:114–119

    Article  PubMed  CAS  Google Scholar 

  30. Garg V, Kathiriya IS, Barnes R et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  CAS  PubMed  Google Scholar 

  31. Kodo K, Nishizawa T, Furutani M et al (2009) GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A 106:13933–13938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yuan F, Zhao L, Wang J et al (2013) PITX2c loss-of-function mutations responsible for congenital atrial septal defects. Int J Med Sci 10:1422–1429

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Surka WS, Kohlhase J, Neunert CE et al (2001) Unique family with Townes-Brocks syndrome, SALL1 mutation, and cardiac defects. Am J Med Genet 102:250–257

    Article  CAS  PubMed  Google Scholar 

  34. Kohlhase J, Heinrich M, Schubert L et al (2002) Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet 11:2979–2987

    Article  CAS  PubMed  Google Scholar 

  35. Kohlhase J, Schubert L, Liebers M et al (2003) Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J Med Genet 40:473–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Yagi H, Furutani Y, Hamada H et al (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373

    Article  CAS  PubMed  Google Scholar 

  37. Kirk EP, Sunde M, Costa MW et al (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ware SM, Peng J, Zhu L et al (2004) Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 74:93–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ng D, Thakker N, Corcoran CM et al (2004) Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet 36:411–416

    Article  CAS  PubMed  Google Scholar 

  40. Hilton E, Johnston J, Whalen S et al (2009) BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects. Eur J Hum Genet 17:1325–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Corsten-Janssen N, Kerstjens-Frederikse WS, du Marchie Sarvaas GJ et al (2013) The cardiac phenotype in patients with a CHD7 mutation. Circ Cardiovasc Genet 6:248–254

    Article  CAS  PubMed  Google Scholar 

  42. Stevens CA, Bhakta MG (1995) Cardiac abnormalities in the Rubinstein-Taybi syndrome. Am J Med Genet 59:346–348

    Article  CAS  PubMed  Google Scholar 

  43. Petrij F, Giles RH, Dauwerse HG et al (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376:348–351

    Article  CAS  PubMed  Google Scholar 

  44. Kleefstra T, van Zelst-Stams WA, Nillesen WM et al (2009) Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet 46:598–606

    Article  CAS  PubMed  Google Scholar 

  45. Lederer D, Grisart B, Digilio MC et al (2012) Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet 90:119–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ng SB, Bigham AW, Buckingham KJ et al (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Cecconi M, Forzano F, Milani D et al (2005) Mutation analysis of the NSD1 gene in a group of 59 patients with congenital overgrowth. Am J Med Genet A 134:247–253

    Article  CAS  PubMed  Google Scholar 

  48. Kurotaki N, Imaizumi K, Harada N et al (2002) Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet 30:365–366

    Article  CAS  PubMed  Google Scholar 

  49. Gripp KW, Hopkins E, Johnston JJ et al (2011) Long-term survival in TARP syndrome and confirmation of RBM10 as the disease-causing gene. Am J Med Genet A 155A:2516–2520

    Article  PubMed  CAS  Google Scholar 

  50. Abdollahpour H, Appaswamy G, Kotlarz D et al (2012) The phenotype of human STK4 deficiency. Blood 119:3450–3457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Perrot A, Schmitt KR, Roth EM et al (2015) CCN1 mutation is associated with atrial septal defect. Pediatr Cardiol 36:295–299

    Article  PubMed  Google Scholar 

  52. Leonardi ML, Pai GS, Wilkes B et al (2001) Ritscher-Schinzel cranio-cerebello-cardiac (3C) syndrome: report of four new cases and review. Am J Med Genet 102:237–242

    Article  CAS  PubMed  Google Scholar 

  53. Elliott AM, Simard LR, Coghlan G et al (2013) A novel mutation in KIAA0196: identification of a gene involved in Ritscher-Schinzel/3C syndrome in a First Nations cohort. J Med Genet 50:819–822

    Article  CAS  PubMed  Google Scholar 

  54. Thorsson T, Russell WW, El-Kashlan N et al (2015) Chromosomal imbalances in patients with congenital cardiac defects: a meta-analysis reveals novel potential critical regions involved in heart development. Congenit Heart Dis 10:193–208

    Google Scholar 

  55. Zollino M, Di SC, Zampino G et al (2000) Genotype-phenotype correlations and clinical diagnostic criteria in Wolf-Hirschhorn syndrome. Am J Med Genet 94:254–261

    Article  CAS  PubMed  Google Scholar 

  56. Xu W, Ahmad A, Dagenais S et al (2012) Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3. Am J Med Genet A 158A:635–640

    Article  PubMed  CAS  Google Scholar 

  57. Hills C, Moller JH, Finkelstein M et al (2006) Cri du chat syndrome and congenital heart disease: a review of previously reported cases and presentation of an additional 21 cases from the Pediatric Cardiac Care Consortium. Pediatrics 117:e924–e927

    Article  PubMed  Google Scholar 

  58. Ye M, Coldren C, Liang X et al (2010) Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet 19:648–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Musewe NN, Alexander DJ, Teshima I et al (1990) Echocardiographic evaluation of the spectrum of cardiac anomalies associated with trisomy 13 and trisomy 18. J Am Coll Cardiol 15:673–677

    Article  CAS  PubMed  Google Scholar 

  60. Soemedi R, Wilson IJ, Bentham J et al (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91:489–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ballif BC, Theisen A, Rosenfeld JA et al (2010) Identification of a recurrent microdeletion at 17q23.1q23.2 flanked by segmental duplications associated with heart defects and limb abnormalities. Am J Hum Genet 86:454–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Freeman SB, Bean LH, Allen EG et al (2008) Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet Med 10:173–180

    Article  PubMed  Google Scholar 

  63. Breckpot J, Thienpont B, Bauters M et al (2012) Congenital heart defects in a novel recurrent 22q11.2 deletion harboring the genes CRKL and MAPK1. Am J Med Genet A 158A:574–580

    Article  PubMed  CAS  Google Scholar 

  64. Verhagen JM, Diderich KE, Oudesluijs G et al (2012) Phenotypic variability of atypical 22q11.2 deletions not including TBX1. Am J Med Genet A 158A:2412–2420

    Article  PubMed  CAS  Google Scholar 

  65. Glessner JT, Bick AG, Ito K et al (2014) Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res 115:884–896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Cordell HJ, Bentham J, Topf A et al (2013) Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat Genet 45:822–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zhao B, Lin Y, Xu J et al (2014) Replication of the 4p16 susceptibility locus in congenital heart disease in Han Chinese populations. PLoS One 9, e107411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Zhao L, Li B, Dian K et al (2015) Association between the European GWAS-identified susceptibility locus at chromosome 4p16 and the risk of atrial septal defect: a case-control study in Southwest China and a meta-analysis. PLoS One 10:e0123959

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Hu Z, Shi Y, Mo X et al (2013) A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet 45:818–821

    Article  CAS  PubMed  Google Scholar 

  70. Winston JB, Erlich JM, Green CA et al (2010) Heterogeneity of genetic modifiers ensures normal cardiac development. Circulation 121:1313–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Parisot P, Mesbah K, Theveniau-Ruissy M et al (2011) Tbx1, subpulmonary myocardium and conotruncal congenital heart defects. Birth Defects Res A Clin Mol Teratol 91:477–484

    Article  CAS  PubMed  Google Scholar 

  72. Snarr BS, O’Neal JL, Chintalapudi MR et al (2007) Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development. Circ Res 101:971–974

    Article  CAS  PubMed  Google Scholar 

  73. Sun Y, Liang X, Najafi N et al (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304:286–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Huynh T, Chen L, Terrell P et al (2007) A fate map of Tbx1 expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475

    Article  CAS  PubMed  Google Scholar 

  75. Brown CB, Wenning JM, Lu MM et al (2004) Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol 267:190–202

    Article  CAS  PubMed  Google Scholar 

  76. Rana MS, Theveniau-Ruissy M, De BC et al (2014) Tbx1 coordinates addition of posterior second heart field progenitor cells to the arterial and venous poles of the heart. Circ Res 115:790–799

    Article  CAS  PubMed  Google Scholar 

  77. Elliott DA, Kirk EP, Yeoh T et al (2003) Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol 41:2072–2076

    Article  CAS  PubMed  Google Scholar 

  78. Posch MG, Perrot A, Schmitt K et al (2008) Mutations in GATA4, NKX2.5, CRELD1, and BMP4 are infrequently found in patients with congenital cardiac septal defects. Am J Med Genet A 146A:251–253

    Article  CAS  PubMed  Google Scholar 

  79. Liu XY, Wang J, Zheng JH et al (2011) Involvement of a novel GATA4 mutation in atrial septal defects. Int J Mol Med 28:17–23

    PubMed  Google Scholar 

  80. Butler TL, Esposito G, Blue GM et al (2010) GATA4 mutations in 357 unrelated patients with congenital heart malformation. Genet Test Mol Biomarkers 14:797–802

    Article  CAS  PubMed  Google Scholar 

  81. Hamanoue H, Rahayuningsih SE, Hirahara Y et al (2009) Genetic screening of 104 patients with congenitally malformed hearts revealed a fresh mutation of GATA4 in those with atrial septal defects. Cardiol Young 19:482–485

    Article  PubMed  Google Scholar 

  82. Tomita-Mitchell A, Maslen CL, Morris CD et al (2007) GATA4 sequence variants in patients with congenital heart disease. J Med Genet 44:779–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Jay PY, Bielinska M, Erlich JM et al (2007) Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol 301:602–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Rajagopal SK, Ma Q, Obler D et al (2007) Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol 43:677–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Bossert T, Walther T, Gummert J et al (2002) Cardiac malformations associated with the Holt-Oram syndrome--report on a family and review of the literature. Thorac Cardiovasc Surg 50:312–314

    Article  CAS  PubMed  Google Scholar 

  86. Sletten LJ, Pierpont ME (1996) Variation in severity of cardiac disease in Holt-Oram syndrome. Am J Med Genet 65:128–132

    Article  CAS  PubMed  Google Scholar 

  87. Newbury-Ecob RA, Leanage R, Raeburn JA et al (1996) Holt-Oram syndrome: a clinical genetic study. J Med Genet 33:300–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Basson CT, Cowley GS, Solomon SD et al (1994) The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med 330:885–891

    Article  CAS  PubMed  Google Scholar 

  89. Harvey SA, Logan MP (2006) sall4 acts downstream of tbx5 and is required for pectoral fin outgrowth. Development 133:1165–1173

    Article  CAS  PubMed  Google Scholar 

  90. Koshiba-Takeuchi K, Takeuchi JK, Arruda EP et al (2006) Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat Genet 38:175–183

    Article  CAS  PubMed  Google Scholar 

  91. Greenway SC, McLeod R, Hume S et al (2014) Exome sequencing identifies a novel variant in ACTC1 associated with familial atrial septal defect. Can J Cardiol 30:181–187

    Article  PubMed  Google Scholar 

  92. Monserrat L, Hermida-Prieto M, Fernandez X et al (2007) Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J 28:1953–1961

    Article  CAS  PubMed  Google Scholar 

  93. Granados-Riveron JT, Ghosh TK, Pope M et al (2010) Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet 19:4007–4016

    Article  CAS  PubMed  Google Scholar 

  94. Posch MG, Waldmuller S, Muller M et al (2011) Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One 6, e28872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Arrington CB, Bleyl SB, Matsunami N et al (2012) Exome analysis of a family with pleiotropic congenital heart disease. Circ Cardiovasc Genet 5:175–182

    Article  PubMed Central  PubMed  Google Scholar 

  96. Klaassen S, Probst S, Oechslin E et al (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117:2893–2901

    Article  CAS  PubMed  Google Scholar 

  97. Poussin C, Ibberson M, Hall D et al (2011) Oxidative phosphorylation flexibility in the liver of mice resistant to high-fat diet-induced hepatic steatosis. Diabetes 60:2216–2224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Pignatelli RH, McMahon CJ, Dreyer WJ et al (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108:2672–2678

    Article  PubMed  Google Scholar 

  99. Granados-Riveron JT, Brook JD (2012) The impact of mechanical forces in heart morphogenesis. Circ Cardiovasc Genet 5:132–142

    Article  CAS  PubMed  Google Scholar 

  100. Butts RJ, Crean AM, Hlavacek AM et al (2011) Veno-venous bridges: the forerunners of the sinus venosus defect. Cardiol Young 21:623–630

    Article  PubMed Central  PubMed  Google Scholar 

  101. Degenhardt K, Singh MK, Aghajanian H et al (2013) Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nat Med 19:760–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Watanabe Y, Benson DW, Yano S et al (2002) Two novel frameshift mutations in NKX2.5 result in novel features including visceral inversus and sinus venosus type ASD. J Med Genet 39:807–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Jay PY, Harris BS, Maguire CT et al (2004) Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 113:1130–1137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Feenstra B, Geller F, Krogh C et al (2012) Common variants near MBNL1 and NKX2-5 are associated with infantile hypertrophic pyloric stenosis. Nat Genet 44:334–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Mohan RA, van Engelen K, Stefanovic S et al (2014) A mutation in the Kozak sequence of GATA4 hampers translation in a family with atrial septal defects. Am J Med Genet A 164A:2732–2738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Y. Jay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Khan, R., Jay, P.Y. (2016). Human Genetics of Atrial Septal Defect. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_20

Download citation

Publish with us

Policies and ethics