Skip to main content

Technologies to Study Genetics and Molecular Pathways

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstract

Over the last decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Secondly, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, as well as the analysis of the transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benian GM, Epstein HF (2011) Caenorhabditis elegans muscle: a genetic and molecular model for protein interactions in the heart. Circ Res 109:1082–1095

    Article  CAS  PubMed  Google Scholar 

  2. Reim I, Frasch M (2010) Genetic and genomic dissection of cardiogenesis in the Drosophila model. Pediatr Cardiol 31:325–334

    Article  PubMed  Google Scholar 

  3. Sperling SR (2011) Systems biology approaches to heart development and congenital heart disease. Cardiovasc Res 91:269–278

    Article  CAS  PubMed  Google Scholar 

  4. Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729

    CAS  PubMed  Google Scholar 

  5. Schoenebeck JJ, Yelon D (2007) Illuminating cardiac development: advances in imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol 18:27–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Molina G, Vogt A, Bakan A et al (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol 5:680–687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Major RJ, Poss KD (2007) Zebrafish heart regeneration as a model for cardiac tissue repair. Drug Discov Today Dis Models 4:219–225

    Article  PubMed Central  PubMed  Google Scholar 

  8. Warkman AS, Krieg PA (2007) Xenopus as a model system for vertebrate heart development. Semin Cell Dev Biol 18:46–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kain KH, Miller JWI, Jones-Paris CR et al (2014) The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn 243:216–228

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gill TJ, Smith GJ, Wissler RW et al (1989) The rat as an experimental animal. Science 245:269–276

    Article  PubMed  Google Scholar 

  11. Snider P, Conway SJ (2011) Probing human cardiovascular congenital disease using transgenic mouse models. Prog Mol Biol Transl Sci 100:83–110

    Article  CAS  PubMed  Google Scholar 

  12. Bradley A, Anastassiadis K, Ayadi A et al (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23:580–586

    Article  PubMed Central  PubMed  Google Scholar 

  13. Andersen TA, Troelsen Kde LL, Larsen LA (2014) Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 71:1327–1352

    Google Scholar 

  14. Winston JB, Erlich JM, Green CA et al (2010) Heterogeneity of genetic modifiers ensures normal cardiac development. Circulation 121:1313–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Siddiqui AS, Khattra J, Delaney AD et al (2005) A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Proc Natl Acad Sci U S A 102:18485–18490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Claycomb WC, Lanson NA, Stallworth BS et al (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95:2979–2984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gonnerman EA, Kelkhoff DO, McGregor LM, Harley BAC (2012) The promotion of HL-1 cardiomyocyte beating using anisotropic collagen-GAG scaffolds. Biomaterials 33:8812–8821

    Article  CAS  PubMed  Google Scholar 

  18. Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381

    Article  CAS  PubMed  Google Scholar 

  19. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  20. McBurney MW, Jones-Villeneuve EM, Edwards MK, Anderson PJ (1982) Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299:165–167

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528

    Article  CAS  PubMed  Google Scholar 

  22. Moore JC, Spijker R, Martens AC et al (2004) A P19Cl6 GFP reporter line to quantify cardiomyocyte differentiation of stem cells. Int J Dev Biol 48:47–55

    Article  CAS  PubMed  Google Scholar 

  23. Dambrot C, Passier R, Atsma D et al (2011) Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem J 434:25–35

    Article  CAS  PubMed  Google Scholar 

  24. Wada R, Muraoka N, Inagawa K et al (2013) Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A 110:12667–12672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Schott JJ, Benson DW, Basson CT et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  26. Garg V, Kathiriya IS, Barnes R et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  CAS  PubMed  Google Scholar 

  27. Park I-H, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Moretti A, Bellin M, Welling A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409

    Article  CAS  PubMed  Google Scholar 

  29. Carvajal-Vergara X, Sevilla A, D’Souza SL et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Friedel RH, Wurst W, Wefers B et al (2011) Generating conditional knockout mice. Methods Mol Biol 693:205–231

    Article  CAS  PubMed  Google Scholar 

  31. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Probst FJ, Justice MJ (2010) Mouse mutagenesis with the chemical supermutagen ENU. Methods Enzymol 477:297–312

    Article  CAS  PubMed  Google Scholar 

  33. Mohr SE, Perrimon N (2012) RNAi screening: new approaches, understandings, and organisms. Wiley Interdiscip Rev RNA 3:145–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bedell VM, Westcot SE, Ekker SC (2011) Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics 10:181–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bentham J, Michell AC, Lockstone H et al (2010) Maternal high-fat diet interacts with embryonic Cited2 genotype to reduce Pitx2c expression and enhance penetrance of left-right patterning defects. Hum Mol Genet 19:3394–3401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rockman HA, Ross RS, Harris AN et al (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci U S A 88:8277–8281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yue TL, Gu JL, Wang C et al (2000) Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J Biol Chem 275:37895–37901

    Article  CAS  PubMed  Google Scholar 

  38. Brown SDM, Moore MW (2012) The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome 23:632–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ayadi A, Birling M-C, Bottomley J et al (2012) Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome 23:600–610

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gates H, Mallon A-M, Brown SDM, EUMODIC Consortium (2011) High-throughput mouse phenotyping. Methods 53:394–404

    Article  CAS  PubMed  Google Scholar 

  41. Gregg CL, Butcher JT (2012) Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation 84:149–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bamforth SD, Schneider JE, Bhattacharya S (2012) High-throughput analysis of mouse embryos by magnetic resonance imaging. Cold Spring Harb Protoc 2012:93–101

    Article  PubMed  Google Scholar 

  43. Phoon CKL (2006) Imaging tools for the developmental biologist: ultrasound biomicroscopy of mouse embryonic development. Pediatr Res 60:14–21

    Article  PubMed  Google Scholar 

  44. Veuthey T, Herrera G, Dodero VI (2014) Dyes and stains: from molecular structure to histological application. Front Biosci (Landmark Ed) 19:91–112

    Article  CAS  Google Scholar 

  45. Mohun TJ, Weninger WJ (2011) Imaging heart development using high-resolution episcopic microscopy. Curr Opin Genet Dev 21:573–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Norris FC, Wong MD, Greene NDE et al (2013) A coming of age: advanced imaging technologies for characterising the developing mouse. Trends Genet 29:700–711

    Article  CAS  PubMed  Google Scholar 

  47. Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102:096101

    Article  PubMed  Google Scholar 

  48. Herzenberg LA, Parks D, Sahaf B et al (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48:1819–1827

    CAS  PubMed  Google Scholar 

  49. Bébarová M (2012) Advances in patch clamp technique: towards higher quality and quantity. Gen Physiol Biophys 31:131–140

    Article  PubMed  Google Scholar 

  50. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Xiao W, Oefner PJ (2001) Denaturing high-performance liquid chromatography: a review. Hum Mutat 17:439–474

    Article  CAS  PubMed  Google Scholar 

  52. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  53. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  55. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  56. Etheridge S. What’s so special about next generation sequencing? Available at: www.oxbridgebiotech.com/review/research-and-policy/whats-so-special-about-next-generation-sequencing. Accessed 05 Feb 2015

  57. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  58. Gijsbers ACJ, Ruivenkamp CAL (2011) Molecular karyotyping: from microscope to SNP arrays. Horm Res Paediatr 76:208–213

    Article  CAS  PubMed  Google Scholar 

  59. Maskos U, Southern EM (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 20:1679–1684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Shendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  CAS  PubMed  Google Scholar 

  62. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Wetterstrand KA. DNA sequencing costs: data from the NHGRI genome sequencing program (GSP). Available at: www.genome.gov/sequencingcosts. Accessed 05 Feb 2015

  64. Dorn C, Grunert M, Sperling SR (2013) Application of high-throughput sequencing for studying genomic variations in congenital heart disease. Brief Funct Genomics 13:51–65

    Article  PubMed  Google Scholar 

  65. Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2:231–239

    Article  CAS  PubMed  Google Scholar 

  66. 1000 Genomes Project Consortium, Abecasis GR, Auton A, et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Google Scholar 

  67. Barriot R, Breckpot J, Thienpont B et al (2010) Collaboratively charting the gene-to-phenotype network of human congenital heart defects. Genome Med 2:16

    Article  PubMed Central  PubMed  Google Scholar 

  68. Cardiovascular gene annotation. Cardiovascular Gene Annotation group. Available at: www.ucl.ac.uk/functional-gene-annotation/cardiovascular. Accessed 05 Feb 2015

  69. Pediatric Cardiac Genomics Consortium, Gelb B, Brueckner M, et al (2013) The Congenital Heart Disease Genetic Network Study: rationale, design, and early results. Circ Res 112:698–706

    Google Scholar 

  70. Zaidi S, Choi M, Wakimoto H et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Firth HV, Wright CF, DDD Study (2011) The Deciphering Developmental Disorders (DDD) study. Dev Med Child Neurol 53:702–703

    Article  PubMed  Google Scholar 

  72. The Deciphering Developmental Disorders Study (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519(7542):223–8

    Google Scholar 

  73. Wright CF, Fitzgerald TW, Jones WD et al (2015) Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 385(9975):1305–14

    Article  PubMed Central  PubMed  Google Scholar 

  74. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Google Scholar 

  75. Saliba A-E, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860

    Article  PubMed Central  PubMed  Google Scholar 

  76. Junker JP, Noël ES, Guryev V et al (2014) Genome-wide RNA Tomography in the zebrafish embryo. Cell 159:662–675

    Article  CAS  PubMed  Google Scholar 

  77. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  PubMed  Google Scholar 

  78. Han Y, Garcia BA (2013) Combining genomic and proteomic approaches for epigenetics research. Epigenomics 5:439–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distant-acting enhancers. Nature 461:199–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Furlan-Magaril M, Rincón-Arano H, Recillas-Targa F (2009) Sequential chromatin immunoprecipitation protocol: ChIP-reChIP. Methods Mol Biol 543:253–266

    Article  CAS  PubMed  Google Scholar 

  81. Greil F, Moorman C, van Steensel B (2006) DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol 410:342–359

    Article  CAS  PubMed  Google Scholar 

  82. Serra-Juhé C, Cuscó I, Homs A et al (2015) DNA methylation abnormalities in congenital heart disease. Epigenetics

    Google Scholar 

  83. Hsu H-K, Weng Y-I, Hsu P-Y et al (2014) Detection of DNA methylation by MeDIP and MBDCap assays: an overview of techniques. Methods Mol Biol 1105:61–70

    Article  CAS  PubMed  Google Scholar 

  84. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  CAS  PubMed  Google Scholar 

  85. Thurman RE, Rynes E, Humbert R et al (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Meyer CA, Liu XS (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 15:709–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Belmont AS (2014) Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr Opin Cell Biol 26:69–78

    Article  CAS  PubMed  Google Scholar 

  88. Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. König J, Zarnack K, Luscombe NM, Ule J (2011) Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13:77–83

    Article  Google Scholar 

  90. Matkovich SJ, Van Booven DJ, Eschenbacher WH, Dorn GW (2011) RISC RNA sequencing for context-specific identification of in vivo microRNA targets. Circ Res 108:18–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Xia Y, Hong H, Ye L et al (2013) Label-free quantitative proteomic analysis of right ventricular remodeling in infant Tetralogy of Fallot patients. J Proteomics 84:78–91

    Article  CAS  PubMed  Google Scholar 

  92. Bahado-Singh RO, Ertl R, Mandal R et al (2014) Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol 211:240.e1–240.e14

    Article  CAS  Google Scholar 

  93. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  94. Krüger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  Google Scholar 

  95. Sury MD, Chen J-X, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Ong S-E, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  97. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  98. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  99. Bonzon-Kulichenko E, Pérez-Hernández D, Núñez E et al (2011) A robust method for quantitative high-throughput analysis of proteomes by 18O labeling. Mol Cell Proteomics 10:M110.003335

    Article  PubMed Central  PubMed  Google Scholar 

  100. Beckonert O, Keun HC, Ebbels TMD et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703

    Article  CAS  PubMed  Google Scholar 

  101. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  102. Ravasi T, Suzuki H, Cannistraci CV et al (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:744–752

    Article  CAS  PubMed  Google Scholar 

  103. Volkmer R, Tapia V, Landgraf C (2012) Synthetic peptide arrays for investigating protein interaction domains. FEBS Lett 586:2780–2786

    Article  CAS  PubMed  Google Scholar 

  104. Lara-Pezzi E, Dopazo A, Manzanares M (2012) Understanding cardiovascular disease: a journey through the genome (and what we found there). Dis Model Mech 5:434–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Community’s Seventh Framework Programme contract (“CardioNeT”) grant 289600 to S.R.S and the German Research Foundation (Heisenberg professorship and grant 574157 to S.R.S.). This work was also supported by the Berlin Institute of Health (BIH-CRG2-ConDi to S.R.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silke Rickert-Sperling or Enrique Lara-Pezzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Dorn, C. et al. (2016). Technologies to Study Genetics and Molecular Pathways. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_18

Download citation

Publish with us

Policies and ethics