Skip to main content

Inter- and Intracellular Signaling Pathways

  • Chapter
Congenital Heart Diseases: The Broken Heart
  • 2270 Accesses

Abstract

Congenital heart disease arises from defects during prenatal heart development. This process is coordinated through a complicated web of intercellular communication between the epicardium, the endocardium, and the myocardium. In the postnatal heart, similar crosstalk between cardiomyocytes, endothelial cells, and fibroblasts exists during pathological hemodynamic overload that emerges as a consequence of a congenital heart defect. Ultimately, communication between cells triggers the activation of select intracellular signaling circuits to mediate hypertrophy in cardiac myocytes. Here, I review the inter- and intracellular signaling mechanisms in the heart as they were discovered mainly in genetically modified mice. The hope is that in the future, targeted therapy of specific molecules or cascades will allow correction of defects that lead to the development of congenital heart disease or pathological hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Towbin JA (2010) Left ventricular noncompaction: a new form of heart failure. Heart Fail Clin 6:453–469

    Article  PubMed  Google Scholar 

  2. Lemmens K, Doggen K, De Keulenaer GW (2007) Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation 116:954–960

    Article  CAS  PubMed  Google Scholar 

  3. Tian Y, Morrisey EE (2012) Importance of myocyte-nonmyocyte interactions in cardiac development and disease. Circ Res 110:1023–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hertig CM, Kubalak SW, Wang Y et al (1999) Synergistic roles of neuregulin-1 and insulin-like growth factor-i in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis. J Biol Chem 274:37362–37369

    Article  CAS  PubMed  Google Scholar 

  5. Niessen K, Karsan A (2008) Notch signaling in cardiac development. Circ Res 102:1169–1181

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Zhang W, Sun X et al (2013) Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial notch1 activity. Development 140:1946–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lavine KJ, Yu K, White AC et al (2005) Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 8:85–95

    Article  CAS  PubMed  Google Scholar 

  8. Giordano FJ, Gerber HP, Williams SP et al (2001) A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A 98:5780–5785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  10. von Gise A, Pu WT (2012) Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 110:1628–1645

    Article  Google Scholar 

  11. Ma L, Lu MF, Schwartz RJ et al (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611

    Article  CAS  PubMed  Google Scholar 

  12. Chen H, Shi S, Acosta L, Li W et al (2004) Bmp10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lavine KJ, Ornitz DM (2009) Shared circuitry: developmental signaling cascades regulate both embryonic and adult coronary vasculature. Circ Res 104:159–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lavine KJ, White AC, Park C et al (2006) Fibroblast growth factor signals regulate a wave of hedgehog activation that is essential for coronary vascular development. Genes Dev 20:1651–1666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Duan J, Gherghe C, Liu D et al (2011) Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 31:429–442

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zhou B, Honor LB, He H et al (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 121:1894–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rudat C, Norden J, Taketo MM et al (2013) Epicardial function of canonical Wnt-, Hedgehog-, Fgfr1/2-, and Pdgfra-signalling. Cardiovasc Res 100:411–421

    Article  CAS  PubMed  Google Scholar 

  18. Vega-Hernandez M, Kovacs A, De Langhe S et al (2011) FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development 138:3331–3340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tirziu D, Giordano FJ, Simons M (2010) Cell communications in the heart. Circulation 122:928–937

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gu H, Smith FC, Taffet SM, Delmar M (2003) High incidence of cardiac malformations in connexin40-deficient mice. Circ Res 93:201–206

    Article  CAS  PubMed  Google Scholar 

  21. Biesemann N, Mendler L, Wietelmann A et al (2014) Myostatin regulates energy homeostasis in the heart and prevents heart failure. Circ Res 115:296–310

    Article  CAS  PubMed  Google Scholar 

  22. Heineke J (2012) Wag the dog: how endothelial cells regulate cardiomyocyte growth. Arterioscler Thromb Vasc Biol 32:545–547

    Article  CAS  PubMed  Google Scholar 

  23. Heineke J, Auger-Messier M, Xu J et al (2007) Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest 117:3198–3210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448

    Article  CAS  PubMed  Google Scholar 

  25. Moore-Morris T, Guimaraes-Camboa N, Banerjee I et al (2014) Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest 124:2921–2934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106:47–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ieda M, Tsuchihashi T, Ivey KN et al (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16:233–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Takeda N, Manabe I, Uchino Y et al (2010) Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 120:254–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Viereck J, Bang C, Foinquinos A et al (2014) Regulatory RNAs and paracrine networks in the heart. Cardiovasc Res 102:290–301

    Article  CAS  PubMed  Google Scholar 

  30. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Maillet M, van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14:38–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  CAS  PubMed  Google Scholar 

  33. Heineke J, Ritter O (2012) Cardiomyocyte calcineurin signaling in subcellular domains: from the sarcolemma to the nucleus and beyond. J Mol Cell Cardiol 52:62–73

    Article  CAS  PubMed  Google Scholar 

  34. Kreusser MM, Backs J (2014) Integrated mechanisms of CaMKII-dependent ventricular remodeling. Front Pharmacol 5:36

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bourajjaj M, Armand AS, da Costa Martins PA et al (2008) NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J Biol Chem 283:22295–22303

    Article  CAS  PubMed  Google Scholar 

  36. Wilkins BJ, De Windt LJ, Bueno OF et al (2002) Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol 22:7603–7613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bueno OF, Lips DJ, Kaiser RA et al (2004) Calcineurin Abeta gene targeting predisposes the myocardium to acute ischemia-induced apoptosis and dysfunction. Circ Res 94:91–99

    Article  CAS  PubMed  Google Scholar 

  38. Kehat I, Davis J, Tiburcy M et al (2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res 108:176–183

    Article  CAS  PubMed  Google Scholar 

  39. Hauck L, Harms C, An J et al (2008) Protein kinase CK2 links extracellular growth factor signaling with the control of p27(Kip1) stability in the heart. Nat Med 14:315–324

    Article  CAS  PubMed  Google Scholar 

  40. Eom GH, Cho YK, Ko JH (2011) Casein kinase-2alpha1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 123:2392–2403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Heineke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Heineke, J. (2016). Inter- and Intracellular Signaling Pathways. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_11

Download citation

Publish with us

Policies and ethics