Skip to main content

Cardiac Development and Animal Models of Congenital Heart Defects

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstract

The major events of cardiac development, including early heart formation, chamber morphogenesis and septation, as well as conduction system and coronary artery development, are briefly reviewed together with a short introduction to the animal species commonly used to study heart development and model congenital heart defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miquerol L, Kelly RG (2013) Organogenesis of the vertebrate heart. Wiley interdisciplinary reviews. Dev Biol 2:17–29

    CAS  Google Scholar 

  2. Moon A (2008) Mouse models of congenital cardiovascular disease. Curr Top Dev Biol 84:171–248

    Article  CAS  PubMed  Google Scholar 

  3. Schoenwolf GC, Larsen WJ (2009) Larsen’s Human Embryology, 4th edn. Churchill Livingstone/Elsevier, Philadelphia

    Google Scholar 

  4. Sadler TW, Langman J (2012) Langman’s Medical Embryology, 12th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  5. Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Genet 3:544–556

    Article  CAS  PubMed  Google Scholar 

  6. Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126:1037–1048

    Article  CAS  PubMed  Google Scholar 

  7. Kelly RG (2012) The second heart field. Curr Top Dev Biol 100:33–65

    Article  CAS  PubMed  Google Scholar 

  8. Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942

    Article  CAS  PubMed  Google Scholar 

  9. Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336:137–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Vincent SD, Buckingham ME (2010) How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 90:1–41

    Article  PubMed  Google Scholar 

  11. Hamada H, Tam PP (2014) Mechanisms of left-right asymmetry and patterning: driver, mediator and responder. F1000prime reports 6:110

    Google Scholar 

  12. Epstein JA (2010) Franklin H. Epstein Lecture. Cardiac development and implications for heart disease. N Engl J Med 363:1638–1647

    Article  CAS  PubMed  Google Scholar 

  13. Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91:212–222

    Article  CAS  PubMed  Google Scholar 

  14. Briggs LE, Kakarla J, Wessels A (2012) The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation 84:117–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hutson MR, Kirby ML (2003) Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res C Embryo Today 69:2–13

    Article  CAS  PubMed  Google Scholar 

  16. Miquerol L, Moreno-Rascon N, Beyer S et al (2010) Biphasic development of the mammalian ventricular conduction system. Circ Res 107:153–161

    Article  CAS  PubMed  Google Scholar 

  17. Tian X, Pu WT, Zhou B (2015) Cellular origin and developmental program of coronary angiogenesis. Circ Res 116:515–530

    Article  CAS  PubMed  Google Scholar 

  18. Hogan B, Costantini F, Lacy E (1986) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  19. Papaioannou VE, Behringer R (2005) Mouse phenotypes: a handbook of mutation analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  20. Sommer D, Peters AE, Baumgart AK et al (2015) TALEN-mediated genome engineering to generate targeted mice. Chromosome Res 23:43–55

    Article  CAS  PubMed  Google Scholar 

  21. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9:1956–1968

    Article  CAS  PubMed  Google Scholar 

  22. Buckingham ME, Meilhac SM (2011) Tracing cells for tracking cell lineage and clonal behavior. Dev Cell 21:394–409

    Article  CAS  PubMed  Google Scholar 

  23. Serralbo O, Picard CA, Marcelle C (2013) Long-term, inducible gene loss-of-function in the chicken embryo. Genesis 51:372–380

    Article  CAS  PubMed  Google Scholar 

  24. Evans SM, Yelon D, Conlon FL et al (2010) Myocardial lineage development. Circ Res 107(12):1428–1444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Article  CAS  PubMed  Google Scholar 

  27. Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Stolfi A, Gainous TB, Young JJ et al (2010) Early chordate origins of the vertebrate second heart field. Science 329:565–568

    Article  CAS  PubMed  Google Scholar 

  29. Medioni C, Senatore S, Salmand PA et al (2009) The fabulous destiny of the Drosophila heart. Curr Opin Genet Dev 19:518–525

    Article  CAS  PubMed  Google Scholar 

  30. Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729

    CAS  PubMed  Google Scholar 

  31. Azpiazu N, Frasch M (1993) tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7:1325–1340

    Article  CAS  PubMed  Google Scholar 

  32. Schott JJ, Benson DW, Basson CT et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  33. McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Kelly, R.G. (2016). Cardiac Development and Animal Models of Congenital Heart Defects. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_1

Download citation

Publish with us

Policies and ethics