• Christoph Bleidorn
  • Conrad Helm
  • Anne Weigert
  • Maria Teresa Aguado


Annelids are a taxon of protostomes comprising more than 17,000 worldwide-distributed species, which can be found in marine, limnic, and terrestrial habitats (Zhang 2011). Their phylogeny was under discussion for a long time, but recent phylogenomic analyses resulted in a solid backbone of this group (Struck et al. 2011; Weigert et al. 2014). According to these analyses, most of the annelid diversity is part of Errantia or Sedentaria, which both form reciprocally monophyletic sister groups (Fig. 9.1) and are now known as Pleistoannelida (Struck 2011). The Sedentaria also include the Clitellata, Echiura, and Pogonophora (Siboglinidae) as derived from the annelid taxa. Outside Sedentaria and Errantia, several groups can be found in the basal part of the annelid tree, namely, Sipuncula, Amphinomida, Chaetopteridae, Magelonidae, and Oweniidae. The latter two taxa together represent the sister taxon of all other annelids. Given this hypothesis, it has to be assumed that the early diversification of extant annelids took place at least in the Lower Cambrian (520 Ma ago) (Weigert et al. 2014). The phylogenetic position of Myzostomida, a group of commensals or parasites of echinoderms (and, rarely, cnidarians), remains still uncertain. Whereas there is strong support for an annelid ancestry, its exact position awaits to be determined (Bleidorn et al. 2014). Likewise, the phylogenetic position of several interstitial taxa is still under debate (Westheide 1987; Worsaae and Kristensen 2005; Worsaae et al. 2005; Struck 2006). A position of Diurodrilidae outside Annelida, as suggested by Worsaae and Rouse (2008), was rejected by molecular data (Golombek et al. 2013), and the position of the enigmatic Lobatocerebrum and Jennaria remains unresolved (Rieger 1980, 1991). Likewise, the position of Annelida within Protostomia is still uncertain. However, recent phylogenomic analyses recover a clade uniting annelids with Mollusca, Nemertea, Brachiopoda, and Phoronida, but without strong support for any sister group relationship (Edgecombe et al. 2011).


Ventral Nerve Cord Apical Organ Ciliary Band Coelomic Cavity ParaHox Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackermann C, Dorresteijn A, Fischer A (2005) Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J Morphol 266:258–280PubMedGoogle Scholar
  2. Aisemberg GO, Macagno ER (1994) Lox1, an Antennapedia-class homeobox gene, is expressed during leech gangliogenesis in both transient and stable central neurons. Dev Biol 161:455–465PubMedGoogle Scholar
  3. Akam M (1998) Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol 42:445–451PubMedGoogle Scholar
  4. Åkesson B (1967) The embryology of the polychaete Eunice kobiensis. Acta Zool 48:142–192Google Scholar
  5. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedGoogle Scholar
  6. Amiel AR, Henry JQ, Seaver E (2013) An organizing activity is required for head patterning and cell fate specification in the polychaete annelid Capitella teleta: new insights into cell-cell signaling in Lophotrochozoa. Dev Biol 379:107–122PubMedGoogle Scholar
  7. Anderson DT (1959) The embryology of the polychaete Scoloplos armiger. Q J Microsc Sci 100:89–166Google Scholar
  8. Anderson DT (1966) The comparative embryology of Polychaeta. Acta Zool 47:1–42Google Scholar
  9. Anderson DT (1973) Embryology and physiology in annelids and arthropods. Pergamon, OxfordGoogle Scholar
  10. Arai A, Nakamoto A, Shimizu T (2001) Specification of ectodermal teloblast lineages in embryos of the oligochaete annelid Tubifex: involvement of novel cell-cell interactions. Development 128:1211–1219PubMedGoogle Scholar
  11. Arenas-Mena C (2007) Sinistral equal-size spiral cleavage of the indirectly developing polychaete Hydroides elegans. Dev Dyn 236:1611–1622PubMedGoogle Scholar
  12. Arendt D, Nübler-Jung K (1997) Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech Dev 61:7–21PubMedGoogle Scholar
  13. Arendt D, Technau U, Wittbrodt J (2001) Evolution of the bilaterian larval foregut. Nature 409:81–85PubMedGoogle Scholar
  14. Arendt D, Denes AS, Jékely G, Tessmar-Raible K (2008) The evolution of nervous system centralization. Philos Trans R Soc B Biol Sci 363:1523–1528Google Scholar
  15. Arendt D, Hausen H, Purschke G (2009) The ‘division of labour’ model of eye evolution. Philos Trans R Soc B Biol Sci 364:2809–2817Google Scholar
  16. Astrow SH, Holton B, Weisblat DA (1989) Teloplasm formation in a leech, Helobdella triserialis, is a microtubule-dependent process. Dev Biol 135:306–319PubMedGoogle Scholar
  17. Bartolomaeus T (1998) Head kidneys in hatchlings of Scoloplos armiger (Annelida: Orbiniidae): implications for the occurrence of protonephridia in lecithotrophic larvae. J Mar Biol Assoc UK 78:183–192Google Scholar
  18. Bartolomaeus T (1999) Structure, function and development of segmental organs in Annelida. Hydrobiologia 402:21–37Google Scholar
  19. Bartolomaeus T, Quast B (2005) Structure and development of nephridia in Annelida and related taxa. In: Bartolomaeus T, Purschke G (eds) Morphology, molecules, evolution and phylogeny in polychaeta and related taxa, vol 179, Developments in Hydrobiology. Springer, Dordrecht, pp 139–165Google Scholar
  20. Bartolomaeus T, Purschke G, Hausen H (2005) Polychaete phylogeny based on morphological data—a comparison of current attempts. In: Bartolomaeus T, Purschke G (eds) Morphology, molecules, evolution and phylogeny in polychaeta and related taxa, vol 179, Developments in Hydrobiology. Springer, Dordrecht, pp 341–356Google Scholar
  21. Bely AE (2006) Distribution of segment regeneration ability in the Annelida. Integr Comp Biol 46:508–518PubMedGoogle Scholar
  22. Bergter A, Paululat A (2007) Pattern of body-wall muscle differentiation during embryonic development of Enchytraeus coronatus (Annelida: Oligochaeta; Enchytraeidae). J Morphol 268:537–549PubMedGoogle Scholar
  23. Bergter A, Hunnekuhl VS, Schniederjans M, Paululat A (2007) Evolutionary aspects of pattern formation during clitellate muscle development. Evol Dev 9:602–617PubMedGoogle Scholar
  24. Bhaud M, Cazaux C (1982) Les larves de polychètes des côtes de France. Oceanis 8:57–160Google Scholar
  25. Bhaud M, Cazaux C (1987) Description and identification of polychaete larvae; their implications in current biological problems. Oceanis 13:596–753Google Scholar
  26. Bielen H, Houart C (2014) The Wnt cries many: wnt regulation of neurogenesis through tissue patterning, proliferation, and asymmetric cell division. Dev Neurobiol 74:772–780Google Scholar
  27. Blair SS (1982) Interactions between mesoderm and ectoderm in segment formation in the embryo of a glossiphoniid leech. Dev Biol 89:389–396PubMedGoogle Scholar
  28. Blake JA, Kudenov JD (1981) Larval development, larval nutrition and growth for two Boccardia species (Polychaeta: Spionidae) from Victoria, Australia. Mar Ecol Prog Ser 6:175–282Google Scholar
  29. Bleidorn C (2007) The role of character loss in phylogenetic reconstruction as exemplified for the Annelida. J Zool Syst Evol Res 45:299–307Google Scholar
  30. Bleidorn C, Lanterbecq D, Eeckhaut I, Tiedemann R (2009) A PCR survey of Hox genes in the myzostomid Myzostoma cirriferum. Dev Genes Evol 219:211–216PubMedGoogle Scholar
  31. Bleidorn C, Helm C, Weigert A, Eeckhaut I, Lanterbecq D, Struck T, Hartmann S, Tiedemann R (2014) From morphology to phylogenomics: placing the enigmatic Myzostomida in the tree of life. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. De Gruyter, Berlin, pp 161–172Google Scholar
  32. Boyle MJ, Seaver EC (2008) Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp. I. Evol Dev 10:89–105PubMedGoogle Scholar
  33. Boyle M, Seaver E (2010) Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula). EvoDevo 1:2PubMedCentralPubMedGoogle Scholar
  34. Bright M, Eichinger I, Salwini-Plawen LV (2013) The metatrochophore of a deep-sea hydrothermal vent vestimentiferan (Polychaeta: Siboglinidae). Org Divers Evol 13:163–188PubMedCentralPubMedGoogle Scholar
  35. Brinkmann N, Wanninger A (2008) Larval neurogenesis in Sabellaria alveolata reveals plasticity in polychaete neural patterning. Evol Dev 10:606–618PubMedGoogle Scholar
  36. Brinkmann N, Wanninger A (2009) Neurogenesis suggests independent evolution of opercula in serpulid polychaetes. BMC Evol Biol 9:270PubMedCentralPubMedGoogle Scholar
  37. Brinkmann N, Wanninger A (2010a) Integrative analysis of polychaete ontogeny: cell proliferation patterns and myogenesis in trochphore larva of Sabellaria alveolata. Evol Dev 12:5–15PubMedGoogle Scholar
  38. Brinkmann N, Wanninger A (2010b) Capitellid connections: contributions from neuromuscular development of the maldanid polychaete Axiothella rubrocincta (Annelida). BMC Evol Biol 10:168PubMedCentralPubMedGoogle Scholar
  39. Brooke NM, Garcia-Fernandez J, Holland PWH (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392:920–922PubMedGoogle Scholar
  40. Bruce AEE, Shankland M (1998) Expression of the head gene Lox22-Otx in the leech Helobdella and the origin of the bilaterian body plan. Dev Biol 201:101–112PubMedGoogle Scholar
  41. Bullock TH (1965) Annelida. In: Bullock TH, Horridgke GH (eds) Structure and function in the nervous system of invertebrates, vol 1. Freeman, San Francisco, pp 661–789Google Scholar
  42. Butts T, Holland PWH, Ferrier DEK (2008) The urbilaterian super-Hox cluster. Trends Genet 24:259–262PubMedGoogle Scholar
  43. Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305PubMedGoogle Scholar
  44. Chia F, Gibson G, Qian P (1996) Poecilogony as a reproductive strategy of marine invertebrates. Oceanol Acta 19:203–208Google Scholar
  45. Child CM (1900) The early development of Arenicola and Sternaspis. Archiv für Entwicklungsmechanik der Organismen 9:587–723Google Scholar
  46. Chipman AD (2010) Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 32:60–70PubMedGoogle Scholar
  47. Cho S, Cho P, Lee M, Hur S, Lee J, Kim S, Koh K, Na Y, Choo J, Kim C-B, Park S (2003) Hox genes from the earthworm Perionyx excavatus. Dev Genes Evol 213:207–210PubMedGoogle Scholar
  48. Cho S-J, Lee D-H, Kwon H-J, Park S, Shin K-S, Ahn C (2006) Hox genes in the echiuroid Urechis unicinctus. Dev Genes Evol 216:347–351PubMedGoogle Scholar
  49. Cho S-J, Valles Y, Giani VC Jr, Seaver EC, Weisblat DA (2010) Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective. Mol Biol Evol 27:1645–1658PubMedCentralPubMedGoogle Scholar
  50. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463:1084–1088PubMedCentralPubMedGoogle Scholar
  51. Conklin EG (1897) The embryology of Crepidula, a contribution to the cell lineage and early development of some marine gastropods. J Morphol 13:1–226Google Scholar
  52. Costello DP, Henley C (1976) Spiralian development: a perspective. Am Zool 16:277–291Google Scholar
  53. Couso JP (2009) Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 53:1305–1316PubMedGoogle Scholar
  54. Damen WGM (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236:1379–1391PubMedGoogle Scholar
  55. Damen P, Dictus WJAG (1994) Cell lineage of the prototroch of Patella vulgata (Gastropoda, Mollusca). Dev Biol 162:364–383PubMedGoogle Scholar
  56. de Rosa R, Prud’homme B, Balavoine G (2005) Caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evol Dev 7:574–587PubMedGoogle Scholar
  57. Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M (2013) Involvement of the Wnt/β-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat Commun 4:1915PubMedGoogle Scholar
  58. Denes AS, Jékely G, Steinmetz PRH, Raible F, Snyman H, Prud’homme B, Ferrier DEK, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288PubMedGoogle Scholar
  59. Dick MH, Buss LW (1994) A PCR-based survey of homeobox genes in Ctenodrilus serratus (Annelida: Polychaeta). Mol Phylogenet Evol 3:146–158PubMedGoogle Scholar
  60. Dohle W (1999) The ancestral cleavage pattern of the clitellates and its phylogenetic deviations. Hydrobiologia 402:267–283Google Scholar
  61. Dorresteijn AWC (1990) Quantitative analysis of cellular differentiation during early embryogenesis of Platynereis dumerilii. Roux Arch Dev Biol 199:14–30Google Scholar
  62. Dorresteijn A (2005) Cell lineage and gene expression in the development of polychaetes. Hydrobiologia 535–536:1–22Google Scholar
  63. Dray N, Tessmar-Raible K, Le Gouar M, Vibert L, Christodoulou F, Schipany K, Guillou A, Zantke J, Snyman H, Béhague J, Vervoort M, Arendt D, Balavoine G (2010) Hedgehog signaling regulates segment formation in the annelid Platynereis. Science 329:339–342PubMedCentralPubMedGoogle Scholar
  64. Dykes I, Macagno E (2006) Molecular characterization and embryonic expression of innexins in the leech Hirudo medicinalis. Dev Genes Evol 216:185–197PubMedGoogle Scholar
  65. Eckberg WR (1981) An ultrastructural analysis of cytoplasmic localization in Chaetopterus pergamentaceus. Biol Bull 160:228–239Google Scholar
  66. Edgecombe G, Giribet G, Dunn C, Hejnol A, Kristensen R, Neves R, Rouse G, Worsaae K, Sørensen M (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172Google Scholar
  67. Eeckhaut I, Jangoux M (1993) Life cycle and mode of infestation of Myzostoma cirriferum (Annelida), a symbiotic myzostomid of the comatulid crinoid Antedon bifida. Dis Aquat Org 15:207–217Google Scholar
  68. Eisig H (1898) Zur Entwicklungsgeschichte der Capitelliden. Mitt Zool Stn Neapel 13:1–292Google Scholar
  69. Fauchald K, Rouse G (1997) Polychaete systematics: past and present. Zool Scr 26:71–138Google Scholar
  70. Fernandez J, Olea N, Matte C (1987) Structure and development of the egg of the glossiphoniid leech Theromyzon rude: characterization of developmental stages and structure of the early uncleaved egg. Development 100:211–225Google Scholar
  71. Ferrier DEK (2012) Evolutionary crossroads in developmental biology: annelids. Development 139:2643–2653PubMedGoogle Scholar
  72. Ferrier DEK, Holland PWH (2001) Sipunculan ParaHox genes. Evol Dev 3:263–270PubMedGoogle Scholar
  73. Ferrier DEK, Minguillon C (2003) Evolution of the Hox/ParaHox gene clusters. Int J Dev Biol 47:605–611PubMedGoogle Scholar
  74. Fischer AHL, Arendt D (2013) Mesoteloblast-like mesodermal stem cells in the polychaete annelid Platynereis dumerilii (Nereididae). J Exp Zool B Mol Dev Evol 320:94–104PubMedGoogle Scholar
  75. Fischer A, Dorresteijn A (2004) The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays 26:314–325PubMedGoogle Scholar
  76. Fischer AHL, Henrich T, Arendt D (2010) The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 7:31PubMedCentralPubMedGoogle Scholar
  77. Franke H-D (1999) Reproduction of the Syllidae (Annelida: Polychaeta). Hydrobiologia 402:39–55Google Scholar
  78. Freeman G, Lundelius JW (1992) Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage. J Evol Biol 5:205–247Google Scholar
  79. Fröbius AC, Seaver EC (2006) ParaHox gene expression in the polychaete annelid Capitella sp. I. Dev Genes Evol 216:81–88PubMedGoogle Scholar
  80. Fröbius AC, Matus DQ, Seaver EC (2008) Genomic organization and expression demonstrate spatial and temporal Hox gene collinearity in the lophotrochozoan Capitella sp. I. PloS ONE 3:e4004PubMedCentralPubMedGoogle Scholar
  81. Gan W-B, Wong VY, Phillips A, Ma C, Gershon TR, Macagno ER (1999) Cellular expression of a leech netrin suggests roles in the formation of longitudinal nerve tracts and in regional innervation of peripheral targets. J Neurobiol 40:103–115PubMedGoogle Scholar
  82. Garcia-Fernandez J (2004) Hox, ParaHox, ProtoHox: facts and guesses. Heredity 94:145–152Google Scholar
  83. Gazave E, Behague J, Laplane L, Guillou A, Preau L, Demilly A, Balavoine G, Vervoort M (2013) Posterior elongation in the annelid Platynereis dumerilii involves stem cells molecularly related to primordial germ cells. Dev Biol 382:246–267PubMedGoogle Scholar
  84. Gazave E, Guillou A, Balavoine G (2014) History of a prolific family; the Hes/Hey-related genes of the annelid Platynereis. Evodevo 5:29PubMedCentralPubMedGoogle Scholar
  85. Gellon G, McGinnis W (1998) Shaping animal body plans in development and evolution by modulation of Hox expression patterns. Bioessays 20:116–125PubMedGoogle Scholar
  86. Gharbaran R, Aisemberg GO (2013) Identification of leech embryonic neurons that express a Hox gene required for the differentiation of a paired, segment-specific motor neuron. Int J Dev Neurosci 31:105–115PubMedGoogle Scholar
  87. Gibson G, Carver D (2013) Effects of extra-embryonic provisioning on larval morphology and histogenesis in Boccardia proboscidea (Annelida, Spionidae). J Morphol 274:11–23PubMedGoogle Scholar
  88. Gline SE, Nakamoto A, Cho S-J, Chi C, Weisblat DA (2011) Lineage analysis of micromere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech Helobdella and the sludgeworm Tubifex. Dev Biol 353:120–133PubMedCentralPubMedGoogle Scholar
  89. Golombek A, Tobergte S, Nesnidal MP, Purschke G, Struck TH (2013) Mitochondrial genomes to the rescue – Diurodrilidae in the myzostomid trap. Mol Phylogenet Evol 68:312–326PubMedGoogle Scholar
  90. Goto A, Kitamura K, Arai A, Shimizu T (1999) Cell fate analysis of teloblasts in the Tubifex embryo by intracellular injection of HRP. Develop Growth Differ 41:703–713Google Scholar
  91. Häcker V (1896) Pelagische Polychäten-Larven. Zur Kenntnis des Neapler Frühjahr-Auftriebs. Z Wiss Zool 62:74–168Google Scholar
  92. Hartman O, Boss KJ (1965) Antonbruunia viridis, a new inquiline annelid with dwarf males, inhabiting a new species of pelecypod, Lucina fosteri, in the Mozambique channel. Ann Mag Nat Hist 8:177–186Google Scholar
  93. Haszprunar G, Salvini-Plawen LV, Rieger RM (1995) Larval planktotrophy – a primitive trait in the Bilateria? Acta Zool 76:141–154Google Scholar
  94. Hatschek B (1886) Zur Entwicklung des Kopfes von Polygordius. Arb. aus dem Zool. Inst. Univ. Wien 6: 236–277Google Scholar
  95. Hay-Schmidt A (1995) The larval nervous system of Polygordius lacteus Scheinder, 1868 (Polygordiidae, Polychaeta): immunocytochemical data. Acta Zool 76:121–140Google Scholar
  96. Hay-Schmidt A (2000) The evolution of the serotonergic nervous system. Proc. R. Soc. Lond. B 267:1071–1079Google Scholar
  97. Heimler W (1988) Larvae. In: Westheide W, Hermans CO (eds) The ultrastructure of Polychaeta. Gustav Fischer Verlag, Stuttgart, pp 352–371Google Scholar
  98. Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382–386PubMedGoogle Scholar
  99. Hejnol A, Martindale MQ (2009) The mouth, the anus and the blastopore – open questions about questionable openings. In: Telford MJ, Littlewood DTJ (eds) Animal evolution: genes, genomes, fossils and trees. Oxford University Press, Oxford, pp 33–40Google Scholar
  100. Helm C, Schemel S, Bleidorn C (2013) Temporal plasticity in annelid development – ontogeny of Phyllodoce groenlandica (Phyllodocidae, Annelida) reveals heterochronous patterns. J Exp Zool B Mol Dev Evol 320B:166–178Google Scholar
  101. Helm C, Stevenson PA, Rouse GW, Bleidorn C (2014) Immunohistochemical investigations of Myzostoma cirriferum and Mesomyzostoma cf. katoi (Myzostomida, Annelida) with implications for the evolution of the myzostomid body plan. Zoomorphology 133:257–271Google Scholar
  102. Helm C, Adamo H, Hourdez S, Bleidorn C (2014) An immunocytochemical window into the developement of Platynereis massiliensis (Annelida, Nereididae). Int J Dev Biol 58:613–622Google Scholar
  103. Henry JJ (1986) The role of unequal cleavage and the polar lobe in the segregation of developmental potential during first cleavage in the embryo of Chaetopterus variopedatus. Roux Arch Dev Biol 195:103–116Google Scholar
  104. Henry JQ, Hejnol A, Perry KJ, Martindale MQ (2007) Homology of ciliary bands in spiralian trochophores. Integr Comp Biol 47:865–871PubMedGoogle Scholar
  105. Hermans C (1964) The reproductive and developmental biology of the opheliid polychaete Armandia brevis (Moore). University of Washington, SeatleGoogle Scholar
  106. Hessling R (2002) Metameric organisation of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications. Zoomorphology 121:221–234Google Scholar
  107. Hessling R (2003) Novel aspects of the nervous system of Bonellia viridis (Echiura) revealed by the combination of immunohistochemistry, confocal laser-scanning microscopy and three-dimensional reconstruction. In: Sigvaldadóttir E et al (eds) Advances in polychaete research, vol 170, Developments in Hydrobiology. Springer, Dordrecht, pp 225–239Google Scholar
  108. Hessling R, Westheide W (2002) Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. J Morphol 252:100–113PubMedGoogle Scholar
  109. Heuer C, Muller C, Todt C, Loesel R (2010) Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool 7:13PubMedCentralPubMedGoogle Scholar
  110. Hill SD (2001) Phalloidin labelling of developing musculature in embryos of the polychaete Capitella sp. I. Biol Bull 201:257–258PubMedGoogle Scholar
  111. Holland PWH (2001) Beyond the Hox: how widespread is homeobox gene clustering? J Anat 199:13–23PubMedCentralPubMedGoogle Scholar
  112. Holland L, Carvalho J, Escriva H, Laudet V, Schubert M, Shimeld S, Yu J-K (2013) Evolution of bilaterian central nervous systems: a single origin? EvoDevo 4:27PubMedCentralPubMedGoogle Scholar
  113. Huebner E, Anderson E (1976) Comparative spiralian oogenesis—structural aspects: an overview. Am Zool 16:315–343Google Scholar
  114. Hui J, Raible F, Korchagina N, Dray N, Samain S, Magdelenat G, Jubin C, Segurens B, Balavoine G, Arendt D, Ferrier D (2009) Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes. BMC Biol 7:43PubMedCentralPubMedGoogle Scholar
  115. Hunnekuhl VS, Bergter A, Purschke G, Paululat A (2009) Development and embryonic pattern of body wall musculature in the crassiclitellate Eisenia andrei (Annelida, Clitellata). J Morphol 270:1122–1136PubMedGoogle Scholar
  116. Irvine SQ, Martindale MQ (2000) Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol 217:333–351PubMedGoogle Scholar
  117. Irvine SQ, Seaver EC (2006) Early annelid development, a molecular perspective. In: Rouse GW, Pleijel F (eds) Reproductive biology and phylogeny of annelida, vol 4, Reproductive Biology and Phylogeny. Science Publishers, Enfield, pp 93–140Google Scholar
  118. Irvine SQ, Warinner SA, Hunter JD, Martindale MQ (1997) A survey of homeobox genes in Chaetopterus variopedatus and analysis of polychaete homeodomains. Mol Phylogenet Evol 7:331–345PubMedGoogle Scholar
  119. Irvine SQ, Chaga O, Martindale MQ (1999) Larval ontogenetic stages of Chaetopterus: developmental heterochrony in the evolution of chaetopterid polychaetes. Biol Bull 197:313–331Google Scholar
  120. Iwanoff PP (1928) Die Entwicklung der Larvalsegmente bei den Anneliden. Z Morphol Okol Tiere 10:62–161Google Scholar
  121. Iwasa JH, Suver DW, Savage RM (2000) The leech hunchback protein is expressed in the epithelium and CNS but not in the segmental precursor lineages. Dev Genes Evol 210:277–288PubMedGoogle Scholar
  122. Jaeckle WB, Rice ME (2002) Phylum Sipuncula. In: Young CM (ed) Atlas of marine invertebrate larvae. Academic, San Diego, pp 375–396Google Scholar
  123. Jägersten G (1940) Zur Kenntnis der Morphologie, Entwicklung und Taxanomie der Myzostomida. Nova Acta Regiae Soc Sci Upsal 11:1–84Google Scholar
  124. Jägersten G (1972) Evolution of the metazoan life cycle. Academic, LondonGoogle Scholar
  125. Jagla K, Bellard M, Frasch M (2001) A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays 23:125–133PubMedGoogle Scholar
  126. Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic N-M, Kosiol C, Vervoort M, Damen WGM, Balavoine G, McGregor AP (2010) Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol 10:374PubMedCentralPubMedGoogle Scholar
  127. Jeffery WR (1985) The spatial distribution of maternal mRNA is determined by a cortical cytoskeletal domain in Chaetopterus eggs. Dev Biol 110:217–229PubMedGoogle Scholar
  128. Jeffery WR, Wilson LJ (1983) Localization of messenger RNA in the cortex of Chaetopterus eggs and early embryos. J Embryol Exp Morphol 75:225–239PubMedGoogle Scholar
  129. Jekely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nedelec F, Arendt D (2008) Mechanism of phototaxis in marine zooplankton. Nature 456:395–399PubMedGoogle Scholar
  130. Kato C (2012) Ultrastruktur der Kopfnieren (head kidneys) von sedentären Polychaeten und ihre Bedeutung für die Phylogenie der Annelida. Rheinische Friedrich-Wilhelms-Universität BonnGoogle Scholar
  131. Kato C, Lehrke J, Quast B (2011) Ultrastructure and phylogenetic significance of the head kidneys in Thalassema thalassemum (Thalassematinae, Echiura). Zoomorphology 130:97–106Google Scholar
  132. Kerner P, Zelada González F, Le Gouar M, Ledent V, Arendt D, Vervoort M (2006) The expression of a hunchback ortholog in the polychaete annelid Platynereis dumerilii suggests an ancestral role in mesoderm development and neurogenesis. Dev Genes Evol 216:821–828PubMedGoogle Scholar
  133. Kluge B, Lehmann-Greif M, Fischer A (1995) Long-lasting exocytosis and massive structural reorganisation in the egg periphery during cortical reaction in Platynereis dumerilii (Annelida, Polychaeta). Zygote 3:141–156PubMedGoogle Scholar
  134. Koch M, Quast B, Bartolomaeus T (2014) Coeloms and nephridia in annelids and arthropods. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life – new insights from analyses of molecules, morphology, and theory of data analysis. De Gruyter, Berlin, pp 173–284Google Scholar
  135. Kourakis MJ, Master VA, Lokhorst DK, Nardelli-Haefliger D, Wedeen CJ, Martindale MQ, Shankland M (1997) Conserved anterior boundaries of hox gene expression in the central nervous system of the leech Helobdella. Dev Biol 190:284–300PubMedGoogle Scholar
  136. Kristof A, Wollesen T, Wanninger A (2008) Segmental mode of neural patterning in Sipuncula. Curr Biol 18:1129–1132PubMedGoogle Scholar
  137. Kristof A, Wollesen T, Maiorova AS, Wanninger A (2011) Cellular and muscular growth patterns during sipunculan development. J Exp Zool B Mol Dev Evol 316B:227–240PubMedGoogle Scholar
  138. Kudenov JD (1974) The reproductive biology of Eurythoe complanata (Pallas, 1766), (Polychaeta: Amphinomidae). University of ArizonaGoogle Scholar
  139. Kulakova M, Bakalenko N, Novikova E, Cook C, Eliseeva E, Steinmetz PH, Kostyuchenko R, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217:39–54PubMedGoogle Scholar
  140. Kulakova M, Cook C, Andreeva T (2008) ParaHox gene expression in larval and postlarval development of the polychaete Nereis virens (Annelida, Lophotrochozoa). BMC Dev Biol 8:61PubMedCentralPubMedGoogle Scholar
  141. Lacalli TC (1981) Structure and development of the apical organ in trochophores of Spirobranchus polycerus, Phyllodoce maculata and Phyllodoce mucosa. Proc R Soc Lond Part B 212:381–402Google Scholar
  142. Lacalli TC (1984) Structure and organization of the nervous system in the trochophore larva of Spirobranchus. Philos Trans R Soc B Biol Sci 306:79–135Google Scholar
  143. Lacalli TC (1986) Prototroch structure and innervation in the trochophore larva of Phyllodoce (Polychaeta). Can J Zool 64:176–184Google Scholar
  144. Lehmacher C, Fiege D, Purschke G (2014) Immunohistochemical and ultrastructural analysis of the muscular and nervous systems in the interstitial polychaete Polygordius appendiculatus (Annelida). Zoomorphology 133:21–41Google Scholar
  145. Levin LA (1984) Multiple patterns of development in Streblospio benedicti Webster (Spionidae) from three coasts of North America. Biol Bull 166:494–508Google Scholar
  146. Lidke AK, Bannister S, Lower AM, Apel DM, Podleschny M, Kollmann M, Ackermann CF, Garcia-Alonso J, Raible F, Rebscher N (2014) 17 beta-Estradiol induces supernumerary primordial germ cells in embryos of the polychaete Platynereis dumerilii. Gen Comp Endocrinol 196:52–61PubMedGoogle Scholar
  147. Lillie FR (1906) Observations and experiments concerning the elementary phenomena of embryonic development in Chaetopterus. J Exp Zool 3:153–268Google Scholar
  148. Lillie FR (1909) Polarity and bilaterality of the annelid egg. Experiments with centrifugal force. Biol Bull 16:54–79Google Scholar
  149. Marlow H, Tosches M, Tomer R, Steinmetz P, Lauri A, Larsson T, Arendt D (2014) Larval body patterning and apical organs are conserved in animal evolution. BMC Biol 12:7PubMedCentralPubMedGoogle Scholar
  150. Maslakova SA, Martindale MQ, Norenburg JL (2004a) Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Dev Biol 267:342–360PubMedGoogle Scholar
  151. Maslakova SA, Martindale MQ, Norenburg JL (2004b) Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evol Dev 6:219–226PubMedGoogle Scholar
  152. McDougall C, Chen WC, Shimeld SM, Ferrier DEK (2006) The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes. Front Zool 3:16PubMedCentralPubMedGoogle Scholar
  153. McEdward LR, Janies DA (1993) Life cycle evolution in asteroids: what is a larva? Biol Bull 184:255–268Google Scholar
  154. Meyer NP, Seaver EC (2010) Cell lineage and fate map of the primary somatoblast of the polychaete annelid Capitella teleta. Integr Comp Biol 50:756–767PubMedGoogle Scholar
  155. Meyer N, Boyle M, Martindale M, Seaver E (2010) A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta. EvoDevo 1:8PubMedCentralPubMedGoogle Scholar
  156. Mileikovsky SA (1960) Appurtenance of a polychaete larva of the rostraria type from plankton of the Norwegian and Barents Seas of the species Euphrosyne borealis Oersted 1843 and of all larvae of this type to the families Euphrosynidae and Amphinomidae (Polychaeta, Errantia, Amphinomimorpha) [in Russian]. Dokl Akad Nauk SSSR 134:731–734Google Scholar
  157. Mileikovsky SA (1961) Assignment of two Rostraria-type polychaete larvae from the plankton of the Northwest Atlantic to species Amphinome passasi Quatrefages 1865 and Chloenea atlantica McIntosh 1885 (Polychaeta, Errantia, Amphinomimorpha) [in Russian]. Dokl Akad Nauk SSSR 141:1109–1112Google Scholar
  158. Miyamoto N, Shinozaki A, Fujiwara Y (2013) Neuroanatomy of the vestimentiferan tubeworm Lamellibrachia satsuma provides insights into the evolution of the polychaete nervous system. PLoS ONE 8:e55151PubMedCentralPubMedGoogle Scholar
  159. Müller MCM (2006) Polychaete nervous systems: ground pattern and variations-cLS microscopy and the importance of novel characteristics in phylogenetic analysis. Integr Comp Biol 46:125–133PubMedGoogle Scholar
  160. Nardelli-Haefliger D, Shankland M (1993) Lox10, a member of the NK-2 homeobox gene class, is expressed in a segmental pattern in the endoderm and in the cephalic nervous system of the leech Helobdella. Development 118:877–892PubMedGoogle Scholar
  161. Nelson JA (1904) The early development of Dinophilus: a study in cell-lineage. Proc Acad Natl Sci Phila 56:687–737Google Scholar
  162. Nielsen C (2004) Trochophore larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zool B Mol Dev Evol 302B:35–68Google Scholar
  163. Nielsen C (2009) How did indirect development with planktotrophic larvae evolve? Biol Bull 216:203–215PubMedGoogle Scholar
  164. Nielsen C (2012) Animal evolution – interrelationships of the living phyla, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  165. Okada K (1957) Annelida. In: Kumé M, Dan K (eds) Invertebrate embryology. NOLIT, Belgrade, pp 192–241Google Scholar
  166. Orrhage L, Müller MCM (2005) Morphology of the nervous system of Polychaeta (Annelida). Hydrobiologia 535(536):79–111Google Scholar
  167. Osborn KJ, Rouse GW, Goffredi SK, Robison BH (2007) Description and relationships of Chaetopterus pugaporcinus, an unusual pelagic polychaete (Annelida, Chaetopteridae). Biol Bull 212:40–54PubMedGoogle Scholar
  168. Park B, Cho S-J, Tak E, Lee B, Park S (2006) The existence of all three ParaHox genes in the clitellate annelid, Perionyx excavatus. Dev Genes Evol 216:551–553PubMedGoogle Scholar
  169. Paxton H (2005) Molting polychaete jaws—ecdysozoans are not the only molting animals. Evol Dev 7:337–340PubMedGoogle Scholar
  170. Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297Google Scholar
  171. Pernet B (2003) Persistent ancestral feeding structures in nonfeeding annelid larvae. Biol Bull 205:295–307PubMedGoogle Scholar
  172. Peterson KJ, Irvine SQ, Cameron RA, Davidson EH (2000) Quantitative assessment of Hox complex expression in the indirect development of the polychaete annelid Chaetopterus sp. Proc Natl Acad Sci 97:4487–4492PubMedCentralPubMedGoogle Scholar
  173. Phillips NE, Pernet B (1996) Capture of large particles by suspension-feeding scaleworm larvae (Polychaeta: Polynoidae). Biol Bull 191:199–208Google Scholar
  174. Pilger JF (2002) Phylum Echiura. In: Young CM (ed) Atlas of marine invertebrate larvae. Academic, San Diego, pp 371–373Google Scholar
  175. Prevedelli D, Massamba N’Siala G, Ansaloni I, Simonini R (2007) Life cycle of Marphysa sanguinea (Polychaeta: Eunicidae) in the Venice Lagoon (Italy). Mar Ecol 28:384–393Google Scholar
  176. Prud’homme B, de Rosa R, Arendt D, Julien J-F, Pajaziti R, Dorresteijn AWC, Adoutte A, Wittbrodt J, Balavoine G (2003) Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr Biol 13:1876–1881PubMedGoogle Scholar
  177. Purschke G (1997) Ultrastructure of nuchal organs in polychaetes (Annelida)—new results and review. Acta Zool 78:123–143Google Scholar
  178. Purschke G (2002) On the ground pattern of Annelida. Org Div Evol 2:181–196Google Scholar
  179. Purschke G, Müller MCM (2006) Evolution of body wall musculature. Integr Comp Biol 46:497–507PubMedGoogle Scholar
  180. Purschke G, Hessling R, Westheide W (2000) The phylogenetic position of the Clitellata and the Echiura – on the problematic assessment of absent characters. J Zool Syst Evol Res 38:165–173Google Scholar
  181. Purschke G, Arendt D, Hausen H, Müller MCM (2006) Photoreceptor cells and eyes in Annelida. Arthropod Struct Dev 35:211–230PubMedGoogle Scholar
  182. Purschke G, Bleidorn C, Struck TH (2014) Systematics, evolution and phylogeny of Annelida – a morphological perspective. Mem Museum Victoria 71:247–269Google Scholar
  183. Qian P, Dahms HU (2006) Larval ecology of the Annelida. In: Rouse GW, Pleijel F (eds) Reproductive biology and phylogeny of Annelida, vol 4. Science Publisher, Enfield, pp 179–232Google Scholar
  184. Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier DEK, Benes V, De Jong P, Weissenbach J, Bork P, Arendt D (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310:1325–1326PubMedGoogle Scholar
  185. Rebscher N, Lidke AK, Ackermann CF (2012) Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerilii are two distinct cell populations. EvoDevo 3:1–11Google Scholar
  186. Rice ME (1976) Larval development and metamorphosis in Sipuncula. Am Zool 16:563–571Google Scholar
  187. Rieger RM (1980) A new group of interstitial worms, Lobatocerebridae nov. fam. (Annelida) and its significance for metazoan phylogeny. Zoomorphologie 95:41–84Google Scholar
  188. Rieger RM (1991) Jennaria pulchra, nov.gen. nov.spec., eine den psammobionten Anneliden nahestehende Gattung aus dem Küstengrundwasser von North Carolina. Ber Naturwiss-Med Ver Innsb 78:203–215Google Scholar
  189. Rivera A, Weisblat D (2009) And Lophotrochozoa makes three: Notch/Hes signaling in annelid segmentation. Dev Genes Evol 219:37–43PubMedCentralPubMedGoogle Scholar
  190. Rivera AS, Gonsalves FC, Song MH, Norris BJ, Weisblat DA (2005) Characterization of Notch-class gene expression in segmentation stem cells and segment founder cells in Helobdella robusta (Lophotrochozoa; Annelida; Clitellata; Hirudinida; Glossiphoniidae). Evol Dev 7:588–599PubMedGoogle Scholar
  191. Rouse GW (1999) Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biol J Linn Soc 66:411–464Google Scholar
  192. Rouse GW (2000a) The epitome of hand waving? Larval feeding and hypothesis of metazoan phylogeny. Evol Dev 2:222–233Google Scholar
  193. Rouse GW (2000b) Bias? What bias? The evolution of downstream larval feeding in animals. Zool Scr 29:213–236Google Scholar
  194. Rouse GW (2006) Annelid larval morphology. In: Rouse GW, Pleijel F (eds) Reproductive biology and phylogeny of annelida, vol 4. Science Publisher, Enfield, pp 141–177Google Scholar
  195. Rouse GW, Wilson NG, Goffredi SK, Johnson SB, Smart T, Widmer C, Young CM, Vrijenhoek RC (2009) Spawning and development in Osedax boneworms (Siboglinidae, Annelida). Mar Biol 156:395–405Google Scholar
  196. Saudemont A, Dray N, Hudry B, Le Gouar M, Vervoort M, Balavoine G (2008) Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol 317:430–443PubMedGoogle Scholar
  197. Schneider SQ, Bowerman B (2007) β-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Dev Cell 13:73–86PubMedGoogle Scholar
  198. Schneider S, Fischer A, Dorresteijn AC (1992) A morphometric comparison of dissimilar early development in sibling species of Platynereis (Annelida, Polychaeta). Roux Arch Dev Biol 201:243–256Google Scholar
  199. Scholtz G (2002) The Articulata hypothesis – or what is a segment? Org Divers Evol 2:197–215Google Scholar
  200. Schulze A, Halanych K (2003) Siboglinid evolution shaped by habitat preference and sulfide tolerance. Hydrobiologia 496:199–205Google Scholar
  201. Seaver EC (2003) Segmentation: mono- or polyphyletic? Int J Dev Biol 47:583–595PubMedGoogle Scholar
  202. Seaver EC, Kaneshige LM (2006) Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol 289:179–194PubMedGoogle Scholar
  203. Seaver EC, Shankland M (2001) Establishment of segment polarity in the ectoderm of the leech Helobdella. Development 128:1629–1641PubMedGoogle Scholar
  204. Seaver EC, Paulson DA, Irvine SQ, Martindale MQ (2001) The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body axis segmentation. Dev Biol 236:195–209PubMedGoogle Scholar
  205. Seaver EC, Thamm K, Hill SD (2005) Growth patterns during segmentation in the two polychaete annelids. Capitella sp. I and Hydroides elegans: comparisons at distinct life history stages. Evol Dev 7:312–326PubMedGoogle Scholar
  206. Seaver E, Yamaguchi E, Richards G, Meyer N (2012) Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation. EvoDevo 3:1–18Google Scholar
  207. Shankland M, Martindale MQ, Nardelli-Haefliger D, Baxter E, Price DJ (1991) Origin of segmental identity in the development of the leech nervous system. Development 113:29–38Google Scholar
  208. Shearer C (1911) On the development and structure of the trochophore of Hydroides uncinatus (Eupomatus). Quart J Microsc Sci 56:543–590Google Scholar
  209. Shimizu T (1995) Role of the cytoskeleton in the generation of spatial patterns in Tubifex eggs. Curr Top Dev Biol 31:197–235PubMedGoogle Scholar
  210. Shimizu T (1999) Cytoskeletal mechanisms of ooplasmic segregation in annelid eggs. Int J Dev Biol 43:11–18PubMedGoogle Scholar
  211. Shimizu T, Nakamoto A (2001) Segmentation in annelids: cellular and molecular basis for metameric body plan. Zool Sci 18:285–298Google Scholar
  212. Simakov O, Marletaz F, Cho S-J, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo D-H, Larsson T, Lv J, Arendt D, Savage R, Osoegawa K, de Jong P, Grimwood J, Chapman JA, Shapiro H, Aerts A, Otillar RP, Terry AY, Boore JL, Grigoriev IV, Lindberg DR, Seaver EC, Weisblat DA, Putnam NH, Rokhsar DS (2013) Insights into bilaterian evolution from three spiralian genomes. Nature 493:526–531PubMedCentralPubMedGoogle Scholar
  213. Smart TI, Von Dassow G (2009) Unusual development of the mitraria larva in the polychaete Owenia collaris. Biol Bull 217:253–268PubMedGoogle Scholar
  214. Snow P, Buss LW (1994) HOM/Hox-type homeoboxes from Stylaria lacustris (Annelida: Oligochaeta). Mol Phylogenet Evol 3:360–364PubMedGoogle Scholar
  215. Song MH, Huang FZ, Chang GY, Weisblat DA (2002) Expression and function of an even-skipped homolog in the leech Helobdella robusta. Development 129:3681–3692PubMedGoogle Scholar
  216. Song MH, Huang FZ, Gonsalves FC, Weisblat DA (2004) Cell cycle-dependent expression of a hairy and enhancer of split (hes) homolog during cleavage and segmentation in leech embryos. Dev Biol 269:183–195PubMedGoogle Scholar
  217. Southward EC (1999) Development of Perviata and Vestimentifera (Pogonophora). Hydrobilogia 402:185–202Google Scholar
  218. Spengel JW (1879) Beiträge zur Kenntnis der Gephyreen. I. Die Eibildung, die Entwicklung und das Männchen der Bonellia. Mitt Zool Stn Neapel 1:357–420Google Scholar
  219. Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:1–9Google Scholar
  220. Steinmetz PRH, Kostyuchenko RP, Fischer A, Arendt D (2011) The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii. Evol Dev 13:72–79PubMedGoogle Scholar
  221. Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865PubMedGoogle Scholar
  222. Strathmann RR (1993) Hypotheses on the origins of marine larvae. Annu Rev Ecol Syst 24:89–117Google Scholar
  223. Struck TH (2006) Progenetic species in polychaetes (Annelida) and problems assessing their phylogenetic affiliation. Integr Comp Biol 46:558–568PubMedGoogle Scholar
  224. Struck TH (2011) Direction of evolution within Annelida and the definition of Pleistoannelida. J Zool Syst Evol Res 49:340–345Google Scholar
  225. Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C (2011) Phylogenomic analyses unravel annelid evolution. Nature 471:95–98PubMedGoogle Scholar
  226. Tautz D (2004) Segmentation. Dev Cell 7:301–312PubMedGoogle Scholar
  227. Tessmar-Raible K, Arendt D (2003) Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Curr Opin Genet Dev 13:331–340PubMedGoogle Scholar
  228. Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400PubMedGoogle Scholar
  229. Thamm K, Seaver EC (2008) Notch signaling during larval and juvenile development in the polychaete annelid Capitella sp. I. Dev Biol 320:304–318PubMedGoogle Scholar
  230. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45PubMedGoogle Scholar
  231. Tzetlin AB, Filippova AV (2005) Muscular system in polychaetes (Annelida). Hydrobiologia 535(536):113–126Google Scholar
  232. Tzetlin A, Purschke G (2005) Pharynx and intestine. Hydrobiologia 535(536):199–225Google Scholar
  233. Voronezhskaya EE, Tsitrin EB, Nezlin LP (2003) Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol 455:299–309PubMedGoogle Scholar
  234. Wagner GP, Amemiya C, Ruddle F (2003) Hox cluster duplications and the opportunity for evolutionary novelties. Proc Natl Acad Sci 100:14603–14606PubMedCentralPubMedGoogle Scholar
  235. Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the tetraneuralia concept. Biol Bull 216:293–306PubMedGoogle Scholar
  236. Wanninger A, Koop D, Bromham L, Noonan E, Degnan BM (2005) Nervous and muscle system development in Phascolion strombus (Sipuncula). Dev Genes Evol 215:509–518PubMedGoogle Scholar
  237. Wanninger A (2008) Comparative lophotrochozoan neurogenesis and larval neuroanatomy: recent advances from previously neglected taxa. Acta Biologica Hungarica 59(Suppl.):127–136Google Scholar
  238. Wedeen CJ, Weisblat DA (1991) Segmental expression of an engrailed-class gene during early development and neurogenesis in an annelid. Development 113:805–814PubMedGoogle Scholar
  239. Weigert A, Helm C, Meyer M, Nickel B, Arendt D, Hausdorf B, Santos SR, Halanych KM, Purschke G, Bleidorn C, Struck TH (2014) Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol 31:1391–1401PubMedGoogle Scholar
  240. Weisblat DA, Blair SS (1984) Developmental interdeterminacy in embryos of the leech Helobdella triserialis. Dev Biol 101:326–335PubMedGoogle Scholar
  241. Weisblat DA, Huang FZ (2001) An overview of glossiphoniid leech development. Can J Zool 79:218–232Google Scholar
  242. Werbrock AH, Meiklejohn DA, Sainz A, Iwasa JH, Savage RM (2001) A polychaete hunchback ortholog. Dev Biol 235:476–488PubMedGoogle Scholar
  243. Westheide W (1987) Progenesis as a principle in meiofauna evolution. J Nat Hist 21:843–854Google Scholar
  244. Wilson EB (1890) The origin of the mesoblast-bands in annelids. J Morphol 4:205–219Google Scholar
  245. Wilson EB (1892) The cell lineage of Nereis: a contribution to the cytogeny of the annelid body. J Morphol 6:361–480Google Scholar
  246. Wilson EB (1898) Considerations on cell-lineage and ancestral reminiscence based on a re-examination of some points in the early development of annelids and polycladids. Ann N Y Acad Sci 11:1–27Google Scholar
  247. Wilson DP (1932) On the mitraria larva of Owenia fusiformis Delle Chiaje. Philos Trans R Soc B Biol Sci B221:231–334Google Scholar
  248. Wilson DP (1982) The larval development of three species of Magelona (Polychaeta) from localitites near Plymouth. J Mar Biol Ass UK 62:385–401Google Scholar
  249. Wilson WH (1991) Sexual reproductive modes in polychaetes: classification and diversity. Bull Mar Sci 48:500–516Google Scholar
  250. Winchell CJ, Valencia JE, Jacobs DK (2010) Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae). Front Zool 7:17PubMedCentralPubMedGoogle Scholar
  251. Woltereck R (1904) Beiträge zur praktischen Analyse der Polygordius-Entwicklung nach dem “Nordsee-” und dem “Mittelmeertypus”. Wilhelm Roux Arch für Entwickl Mech Org 18:377–403Google Scholar
  252. Wong VY, Aisemberg GO, Gan WB, Macagno ER (1995) The leech homeobox gene Lox4 may determine segmental differentiation of identified neurons segmental differentiation of identified neurons. J Neurosci 15:5551–5559PubMedGoogle Scholar
  253. Worsaae K, Kristensen R (2005) Evolution of interstitial Polychaeta (Annelida). In: Bartolomaeus T, Purschke G (eds) Morphology, molecules, evolution and phylogeny in polychaeta and related taxa. Developments in hydrobiology, vol 179. Springer, Dordrecht, pp 319–340Google Scholar
  254. Worsaae K, Rouse GW (2008) Is Diurodrilus an annelid? J Morphol 269:1426–1455PubMedGoogle Scholar
  255. Worsaae K, Rouse GW (2010) The simplicity of males: dwarf males of four species of Osedax (Siboglinidae; Annelida) investigated by confocal laser scanning microscopy. J Morphol 271:127–142PubMedGoogle Scholar
  256. Worsaae K, Nygren A, Rouse GW, Giribet G, Persson J, Sundberg P, Pleijel F (2005) Phylogenetic position of Nerillidae and Aberranta (Polychaeta, Annelida), analysed by direct optimization of combined molecular and morphological data. Zool Scr 34:313–328Google Scholar
  257. Wysocka-Diller J, Aisemberg GO, Macagno ER (1995) A novel homeobox cluster expressed in repeated strucutres of the midgut. Dev Biol 171:439–447PubMedGoogle Scholar
  258. Zakas C, Wares JP (2012) Consequences of a poecilogonous life history for genetic structure in coastal populations of the polychaete Streblospio benedicti. Mol Ecol 21:5447–5460PubMedGoogle Scholar
  259. Zhang Z-Q (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3147:1–237Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Christoph Bleidorn
    • 1
  • Conrad Helm
    • 1
  • Anne Weigert
    • 1
  • Maria Teresa Aguado
    • 2
  1. 1.Molecular Evolution and Systematics of AnimalsInstitute of Biology, University of LeipzigLeipzigGermany
  2. 2.Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations