Nemertea is a clade of unsegmented, worm-shaped Spiralia comprising about 1.300 described species (Fig. 8.1A–F; Kajihara et al. 2008). The vast majority inhabits marine benthic habitats, but several species are limnic, terrestrial, or marine pelagic. Most species have been described as predators although a number of parasitic, commensalic, and probably even scavengers are known (Gibson 1972). Prey is captured by means of an eversible proboscis that may be armed with one to numerous calcareous stylets in some clades. The proboscis apparatus comprises the proboscis and the rhynchocoel. It represents the apomorphic character that has led to the alternative name Rhynchocoela. The rhynchocoel is a dorsally located, fluid-filled secondary body cavity surrounded by muscle layers housing the proboscis. It opens to the tip of the head via a tube-shaped rhynchodeum (Fig. 8.2A, B). Additional characters that unequivocally qualify Nemertea as monophyletic are the ring-shaped brain surrounding the proboscis insertion instead of the esophagus, a pair of laterally located longitudinal medullary cords, and an endothelialized blood-vascular system. Apart from that nemertean anatomy is marked by characters that are arguably plesiomorphic for Spiralia (Turbeville 2002). These include a largely compact arrangement of the tissue; a medullary cord type organization of the nervous system; a body wall muscle tube comprising minimally two, an outer circular and an inner longitudinal, muscle layers; and one to several paired lateral protonephridia that are not arranged in a segmental fashion. Characters that place Nemertea closer to Trochozoa are a regionalized through-gut with mouth, foregut, midgut, and anus and the presence of glial type cells in the nervous system (Turbeville and Ruppert 1985; Turbeville 1991).


Imaginal Disk Apical Organ Cleavage Division Frontal Organ Larval Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andrade S, Strand M, Schwartz M, Chen H, Kajihara H, von Döhren J, Sun SC, Junoy J, Thiel M, Norenburg JL, Turbeville JM, Giribet G, Sundberg P (2012) Disentangling ribbon worm relationships: multi‐locus analysis supports traditional classification of the phylum Nemertea. Cladistics 28(2):141–159Google Scholar
  2. Andrade SC, Montenegro H, Strand M, Schwartz ML, Kajihara H, Norenburg JL, Turbeville JM, Sundberg P, Giribet G (2014) A transcriptomic approach to ribbon worm systematics (Nemertea): resolving the Pilidiophora problem. Mol Biol Evol 31(12):3206–3215PubMedGoogle Scholar
  3. Arnold G (1898) Zur Entwicklungsgeschichte des Lineus gesserensis OF Müller. Trav Soc Imp Nat St Petersbourg Sect Zool Physiol 28:1–30Google Scholar
  4. Barrois JH (1877) Mémoire sur l’embryologie des némertes. Ann Sci Nat Zool 6(11):1–232Google Scholar
  5. Bartolomaeus T (1984) Zur Fortpflanzungsbiologie von Lineus viridis (Nemertini). Helgoländer Meeresuntersuchungen 38(1):185–188Google Scholar
  6. Bartolomaeus T (1985) Ultrastructure and development of the protonephridia of Lineus viridis (Nemertini). Microfauna Marina 2(6):261–283Google Scholar
  7. Bartolomaeus T, von Döhren J (2010) Comparative morphology and evolution of the nephridia in Nemertea. J Nat Hist 44(37–40):2255–2286Google Scholar
  8. Bartolomaeus T, Maslakova S, von Döhren J (2014) Protonephridia in the larvae of the paleonemertean species Carinoma mutabilis (Carinomidae, Nemertea) and Cephalothrix (Procephalothrix) filiformis (Cephalothricidae, Nemertea). Zoomorphology 133(1):43–57Google Scholar
  9. Berg G (1972) Studies on Nipponnemertes Friedrich, 1968 (Nemertini, Hoplonemertini). Zool Scr 1(4):211–225Google Scholar
  10. Boyer BC, Henry JQ (1998) Evolutionary modifications of the spiralian developmental program. Am Zool 38(4):621–633Google Scholar
  11. Boyer BC, Henry JQ, Martindale MQ (1996) Dual origins of mesoderm in a basal spiralian: cell lineage analyses in the polyclad turbellarian Hoploplana inquilina. Dev Biol 179(2):329–338PubMedGoogle Scholar
  12. Bürger O (1894) Studien zu einer Revision der Entwicklungsgeschichte der Nemertinen. Ber Nat Ges Freiburg i Br 8:111–141Google Scholar
  13. Bürger O (1895) Die Nemertinen des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. R. Friedländer & Sohn, BerlinGoogle Scholar
  14. Bürger O (1897–1907) Nemertini. In: Bronn EG (ed), Bronn’s Klassen und Ordnungen des Tierreichs, Bd, 4, CF Winter’sche Verlagshandlung, Leipzig, pp 1–151Google Scholar
  15. Cantell CE (1967) Devouring of larval tissues during metamorphosis of pilidium larvae (Nemertini). Arkiv för Zoologi 18(5):489Google Scholar
  16. Cantell CE (1969) Morphology, development and biology of the pilidium larvae (Nemertini) from the Swedish West Coast. Zool Bidr Uppsala 38:61–111Google Scholar
  17. Cantell CE, Franzén Å, Sensenbaugh T (1982) Ultrastructure of multiciliated collar cells in the pilidium larva of Lineus bilineatus (Nemertini). Zoomorphology 101(1):1–15Google Scholar
  18. Charpignon V (2007) Homeobox-containing genes in the nemertean Lineus: key players in the antero-posterior body patterning and in the specification of the visual structures. PhD Thesis, University of BaselGoogle Scholar
  19. Chernyshev AV (2008) Larval development of nemerteans of the genus Quasitetrastemma (Nemertea: Monostilifera). Russ J Mar Biol 34(4):258–262Google Scholar
  20. Chernyshev AV, Magarlamov TY (2010) The first data on the nervous system of hoplonemertean larvae (Nemertea, Hoplonemertea). Dokl Biol Sci 430(1):48–50PubMedGoogle Scholar
  21. Chernyshev AV, Astakhova AA, Dautov SS, Yushin VV (2013) The morphology of the apical organ and adjacent epithelium of pilidium prorecurvatum, a pelagic larva of an unknown heteronemertean (Nemertea). Russ J Mar Biol 39(2):116–124Google Scholar
  22. Coe WR (1899) On the development of the pilidium of certain nemerteans. Trans Connecticut Acad 10:235–262Google Scholar
  23. Coe WR (1904) The anatomy and development of the terrestrial nemertean (Geonemertes agricola) of Bermuda. Proc Boston Soc Nat Hist 31(10):531–571Google Scholar
  24. Coe WR (1926) The pelagic nemerteans. Mem Mus Comp Zool Harv Coll 49:1–244Google Scholar
  25. Coe WR (1927) The nervous system of pelagic nemerteans. Biol Bull 53(2):123–138Google Scholar
  26. Coe WR (1943) Biology of the nemerteans of the Atlantic coast of North America. Trans Connecticut Acad 35:129–328Google Scholar
  27. Dawydoff C (1928) Sur l’embryologie des Protonémertes. CR Hebd Séances Acad Sci Paris 186:531–533Google Scholar
  28. Dawydoff C (1940) Les formes larvaires de polyclades et de némertes du plancton indochinois. Bull Biol Fr Belg 74:443–496Google Scholar
  29. Delsman HC (1915) Eifurchung und Gastrulation bei Emplectonema gracile Stimpson. Tijdschr Ned Dierk Vereen 14:68–114Google Scholar
  30. Döring C (2012) Tracing metazoan phylogeny through the analysis of light sensitive organs. PhD Thesis, University of OsnabrückGoogle Scholar
  31. Egan EA, Anderson DT (1979) The reproduction of the entozoic nemertean Gononemertes australiensis Gibson (Nemertea: Hoplonemertea: Monostylifera) – gonads, gametes, embryonic development and larval development. Mar Freshw Res 30(5):661–681Google Scholar
  32. Freeman G (1978) The role of asters in the localization of the factors that specify the apical tuft and the gut of the nemertine Cerebratulus lacteus. J Exp Zool 206(1):81–107Google Scholar
  33. Friedrich H (1979) Nemertini. In: Seidel F (ed) Morphogenese der Tiere, vol 3, D5-I. Gustav Fischer, Verlag, JenaGoogle Scholar
  34. Gibson R (1972) Nemerteans. Hutchinson Univ Library, LondonGoogle Scholar
  35. Gibson R (1982) British Nemerteans: keys and notes for the identification of the species. In: Kermack DM, Barnes RSK (eds) Synopses of the British Fauna (new series), vol 24. Cambridge University Press, Cambridge, UKGoogle Scholar
  36. Goldstein B, Freeman G (1997) Axis specification in animal development. Bioessays 19(2):105–116PubMedGoogle Scholar
  37. Gontcharoff M (1951) Biologie de la régénération et de la reproduction chez quelques Lineidae de France. Ann Sci Nat Zool 11(13):149–235Google Scholar
  38. Gontcharoff M (1960) Le développement post-embryonnaire et la croissance chez Lineus ruber et Lineus viridis (Némertes Lineidae). Ann Sci Nat Zool 12(2):225–279Google Scholar
  39. Hammarsten OD (1918) Beitrag zur Embryonalentwicklung der Malacobdella grossa (Müll). PhD Thesis, University of StockholmGoogle Scholar
  40. Hay-Schmidt A (1990) Catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive cells and processes in the nervous system of the pilidium larva (Nemertini). Zoomorphology 109(5):231–244Google Scholar
  41. Henry JJ (2002) Conserved mechanism of dorsoventral axis determination in equal-cleaving spiralians. Dev Biol 248(2):343–355PubMedGoogle Scholar
  42. Henry JQ, Martindale MQ (1994) Establishment of the dorsoventral axis in nemertean embryos: evolutionary considerations of spiralian development. Dev Genet 15(1):64–78Google Scholar
  43. Henry JQ, Martindale MQ (1995) The experimental alteration of cell lineages in the nemertean Cerebratulus lacteus: implications for the precocious establishment of embryonic axial properties. Biol Bull 189(2):192–193Google Scholar
  44. Henry JQ, Martindale MQ (1996a) Establishment of embryonic axial properties in the nemertean, Cerebratulus lacteus. Dev Biol 180(2):713–721PubMedGoogle Scholar
  45. Henry JQ, Martindale MQ (1996b) The origins of mesoderm in the equal-cleaving nemertean worm Cerebratulus lacteus. Biol Bull 191(2):286–288Google Scholar
  46. Henry JJ, Martindale MQ (1997) Nemerteans, the ribbon worms. In: Gilbert SF, Raunio AM (eds) Embryology. Constructing the organism. Sinauer, New York, pp 151–166Google Scholar
  47. Henry JJ, Martindale MQ (1998a) Conservation of the spiralian developmental program: cell lineage of the Nemertean, Cerebratulus lacteus. Dev Biol 201(2):253–269PubMedGoogle Scholar
  48. Henry JQ, Martindale MQ (1998b) Evolution of cleavage programs in relationship to axial specification and body plan evolution. Biol Bull 195:363–366Google Scholar
  49. Henry JJ, Martindale MQ (1999) Conservation and innovation in spiralian development. Hydrobiologia 402:255–265Google Scholar
  50. Henry JQ, Perry KJ, Wever J, Seaver E, Martindale MQ (2008) β-Catenin is required for the establishment of vegetal embryonic fates in the nemertean Cerebratulus lacteus. Dev Biol 317(1):368–379PubMedGoogle Scholar
  51. Hickman VV (1963) The occurrence in Tasmania of the land nemertine Geonemertes australiensis Dendy. In: papers and proceedings of the Royal Society of Tasmania. 97:63–76Google Scholar
  52. Hiebert LS, Gavelis G, von Dassow G, Maslakova SA (2010) Five invaginations and shedding of the larval epidermis during development of the hoplonemertean Pantinonemertes californiensis (Nemertea: Hoplonemertea). J Nat Hist 44(37–40):2331–2347Google Scholar
  53. Hiebert LS, Maslakova SA (2015) Hox genes pattern the anterior-posterior axis of the juvenile but not the larva in a maximally indirect developing invertebrate, Micrura alaskensis (Nemertea). BMC Biol 13:23Google Scholar
  54. Hiebert TC, von Dassow G, Hiebert LS, Maslakova SA (2013a) Long-standing larval mystery solved: pilidium recurvatum is the larva of Riserius sp. a basal heteronemertean (Heteronemertea; Pilidiophora; Nemertea). Integr Comp Biol 53(suppl1):e92Google Scholar
  55. Hiebert TC, Dassow G, Hiebert LS, Maslakova S (2013b) The peculiar nemertean larva pilidium recurvatum belongs to Riserius sp. a basal heteronemertean that eats Carcinonemertes errans, a hoplonemertean parasite of Dungeness crab. Invertebr Biol 132(3):207–225Google Scholar
  56. Hindinger S, Schwaha T, Wanninger A (2013) Immunocytochemical studies reveal novel neural structures in nemertean pilidium larvae and provide evidence for incorporation of larval components into the juvenile nervous system. Front Zool 10(1):31PubMedCentralPubMedGoogle Scholar
  57. Hoffman CK (1877) Beitrage zur Kenntnis der Nemertinen. I. Zur Entwicklungsgeschichte von Tetrastemma varicolor Oerst. Niederl Arch Zool 3(3):205–215Google Scholar
  58. Hörstadius S (1937) Experiments on determination in the early development of Cerebratulus lacteus. Biol Bull 73(2):317–342Google Scholar
  59. Hubrecht AAW (1885) Zur Embryologie der Nemertinen. Zool Anz 8:470–472Google Scholar
  60. Hubrecht AAW (1886) Contributions to the embryology of the Nemertea. Q J Microsc Sci 26:417–448Google Scholar
  61. Iwata F (1957) On the early development of the nemertine, Lineus torquatus Coe. J Fac Sci Hokkaido Univ Ser 6 Zool 13(1–4):54–58Google Scholar
  62. Iwata F (1958) On the development of the nemertean Micrura akkeshiensis. Embryologia 4(2):103–131Google Scholar
  63. Iwata F (1960) Studies on the comparative embryology of nemerteans with special reference to their interrelationships. Publ Akkeshi Mar Biol Stat 10:1–51Google Scholar
  64. Iwata F (1972) Axial changes in the nemertean egg and embryo during development and its phylogenetic significance. J Zool 168(4):521–526Google Scholar
  65. Iwata F (1985) Foregut formation of the nemerteans and its role in nemertean systematics. Am Zool 25(1):23–36Google Scholar
  66. Jägersten G (1972) Evolution of the metazoan life cycle. Academic, LondonGoogle Scholar
  67. Jespersen Å, Lützen, J (1988) Fine structure of the eyes of three species of hoplonemerteans (Rhynchocoela: Enopla). NZ J Zool 15(2):203–210Google Scholar
  68. Joubin L (1914) Némertiens. In: Charcot J (ed) Deuxième Expéd. Antarc. Française 1908–1910. Masson et Cie, Paris, pp 1–33Google Scholar
  69. Kajihara H, Chernyshev AV, Sun SC, Sundberg P, Crandall FB (2008) Checklist of nemertean genera and species published between 1995 and 2007. Species Divers 13:245–274Google Scholar
  70. Klerkx JHEM (2001) Molecular analysis of early specification in the mollusc Patella vulgata. PhD Thesis, University of UtrechtGoogle Scholar
  71. Kmita-Cunisse M, Loosli F, Bièrne J, Gehring WJ (1998) Homeobox genes in the ribbonworm Lineus sanguineus: evolutionary implications. Proc Natl Acad Sci 95(6):3030–3035PubMedCentralPubMedGoogle Scholar
  72. Koch M, Quast B, Bartolomaeus T (2014) Coeloms and nephridia in annelids and arthrophods. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. De Gruyter, Berlin, pp 273–284Google Scholar
  73. Kvist, S, Laumer CE, Junoy J, Giribet, G (2014) New insights into the phylogeny, systematics and DNA barcoding of Nemertea. Invertebrate Systematics 28(3):287–308Google Scholar
  74. Lacalli TC (2005) Diversity of form and behaviour among nemertean pilidium larvae. Acta Zool 86(4):267–276Google Scholar
  75. Lacalli TC, West JE (1985) The nervous system of a pilidium larva: evidence from electron microscope reconstructions. Can J Zool 63(8):1909–1916Google Scholar
  76. Lebedinsky J (1897) Beobachtungen über die Entwicklungsgeschichte der Nemertinen. Archiv für mikroskopische Anatomie 49(1):503–556Google Scholar
  77. Loosli F, Kmita-Cunisse M, Gehring WJ (1996) Isolation of a Pax-6 homolog from the ribbonworm Lineus sanguineus. Proc Natl Acad Sci 93(7):2658–2663PubMedCentralPubMedGoogle Scholar
  78. Martindale MQ, Henry JJQ (1992) Evolutionary changes in the program of spiralian embryogenesis: fates of early blastomeres in a direct-developing nemertean worm. Am Zool 32:79AGoogle Scholar
  79. Martindale MQ, Henry JQ (1995) Modifications of cell fate specification in equal-cleaving nemertean embryos: alternate patterns of spiralian development. Development 121(10):3175–3185PubMedGoogle Scholar
  80. Maslakova SA (2010a) Development to metamorphosis of the nemertean pilidium larva. Front Zool 7(1):30PubMedCentralPubMedGoogle Scholar
  81. Maslakova SA (2010b) The invention of the pilidium larva in an otherwise perfectly good spiralian phylum Nemertea. Integr Comp Biol 50(5):734–743PubMedGoogle Scholar
  82. Maslakova SA, Hiebert TC (2014) From trochophore to pilidium and back again-a larva’s journey. Int J Dev Biol 58:585–591Google Scholar
  83. Maslakova SA, Malakhov VV (1999) A hidden larva in nemerteans of the order Hoplonemertini. Dokl Biol Sci 366:314–317Google Scholar
  84. Maslakova SA, von Dassow G (2012) A non‐feeding pilidium with apparent prototroch and telotroch. J Exp Zool B Mol Dev Evol 318(7):586–590PubMedGoogle Scholar
  85. Maslakova SA, von Döhren J (2009) Larval development with transitory epidermis in Paranemertes peregrina and other hoplonemerteans. Biol Bull 216(3):273–292PubMedGoogle Scholar
  86. Maslakova SA, Martindale MQ, Norenburg JL (2004a) Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Dev Biol 267(2):342–360PubMedGoogle Scholar
  87. Maslakova SA, Martindale MQ, Norenburg JL (2004b) Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evol Dev 6(4):219–226PubMedGoogle Scholar
  88. Müller J (1847) Fortsetzung des Berichts über einige neue Thierformen der Nordsee. Arch Anat Physiol 45(2):157–179Google Scholar
  89. Nawitzki W (1931) Procarinina remanei: eine neue Paläonemertine der Kieler Förde. Zool Jb Anat 54:159–234Google Scholar
  90. Nielsen C (2013) Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea. BMC Evol Biol 13(1):1–18Google Scholar
  91. Norenburg JL (1985) Structure of the nemertine integument with consideration of its ecological and phylogenetic significance. Am Zool 25(1):37–51Google Scholar
  92. Norenburg JL, Stricker SA (2002) Phylum Nemertea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, London, pp 163–177Google Scholar
  93. Nusbaum J, Oxner M (1913) Die Embryonalentwicklung des Lineus ruber Müll. Ein Beitrag zur Entwicklungsgeschichte der Nemertinen. Z Wiss Zool 107:78–191Google Scholar
  94. Rawlinson KA (2010) Research Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Front Zool 7:12PubMedCentralPubMedGoogle Scholar
  95. Reinhardt H (1941) Beiträge zur Entwicklungsgeschichte der einheimischen Süßwassernemertine Prostoma graecense (Böhmig). Vierteljahrsschr der Naturf Ges in Zürich 46:184–254Google Scholar
  96. Reisinger E (1926) Nemertini. In: Schulze P (ed) Biologie der Tiere Deutschlands, Liefg 17, Teil 5. Verlag von Gebrüder Borntraeger, BerlinGoogle Scholar
  97. Roe P (1984) Laboratory studies of feeding and mating in species of Carcinonemertes (Nemertea: Hoplonemertea). Biol Bull 167(2):426–436Google Scholar
  98. Salensky W (1882–1883) Zur Entwicklungsgeschicht der Borlasia vivipara Uljanin. Biol Centralbl 2:740–745Google Scholar
  99. Salensky W (1886) Bau und Metamorphose des Pilidium. Z Wiss Zool 43:481–511Google Scholar
  100. Salensky W (1909) Über die embryonale Entwicklung des Prosorochmus viviparus Uljanin (Monopora vivipara). Bull Acad Imp Sci, St Petersburg (6) 3(5):325–340Google Scholar
  101. Salensky W (1912) Über die Morphogenese der Nemertinen. I. Entwicklungsgeschichte der Nemertine im Inneren des Pilidium. Mém Acad Imp Sci St Petersburg (8) 30(10):1–74Google Scholar
  102. Salensky W (1914) Die Morphogenese der Nemertinen. II. Über die Entwicklungsgeschichte des Prosorochmus viviparus. Mém Acad Imp Sci St Petersburg (8) 33(2):1–36Google Scholar
  103. Schmidt GA (1934) Ein zweiter Entwicklungstypus von Lineus gesserensis ruber OF Müller (Nemertini). Zool Jb Abt Anat 58:607–660Google Scholar
  104. Schmidt GA (1937) Bau und Entwicklung der Pilidium von Cerebratulus pantherinus und marginatus und die Frage der morphologischen Merkmale der Hauptformen der Pilidien. Zool Jb Anat Ontog 62:423–448Google Scholar
  105. Schmidt GA (1964) Embryonic development of littoral nemertines Lineus desori (mihi, species nova) and Lineus ruber (OF Mülleri, 1774, GA Schmidt, 1945) in connection with ecological relation changes of mature individuals when forming the new species Lineus ruber. Zool Pol 14:75–122Google Scholar
  106. Schwartz ML (2009) Untying a Gordian knot of worms: systematics and taxonomy of the Pilidiophora (phylum Nemertea) from multiple data sets. PhD Thesis, George Washington University)Google Scholar
  107. Schwartz ML, Norenburg JL (2005) Three new species of Micrura (Nemertea: Heteronemertea) and a new type of heteronemertean larva from the Caribbean Sea. Caribb J Sci 41:528–543Google Scholar
  108. Senz W, Tröstl R (1999) Beiträge zur Entwicklung von Prosorhochmus adriaticus Senz, 1993 (Nemertini: Holponemertini: Monostilifera). Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie. 437–443Google Scholar
  109. Smith JE (1935) Memoirs: the early development of the nemertean Cephalothrix rufifrons. Q J Microsc Sci 2(307):335–381Google Scholar
  110. Stricker SA (1985) The stylet apparatus of monostiliferous hoplonemerteans. Am Zool 25(1):87–97Google Scholar
  111. Stricker SA (1986) An ultrastructural study of oogenesis, fertilization, and egg laying in a nemertean ectosymbiont of crabs, Carcinonemertes epialti (Nemertea, Hoplonemertea). Can J Zool 64(6):1256–1269Google Scholar
  112. Stricker SA, Cloney RA (1982) Stylet formation in nemerteans. Biol Bull 162(3):387–403Google Scholar
  113. Stricker SA, Folsom MW (1997) A comparative ultrastructural analysis of spermatogenesis in nemertean worms. Hydrobiologia 365(1–3):55–72Google Scholar
  114. Stricker SA, Reed CG (1981) Larval morphology of the nemertean Carcinonemertes epialti (Nemertea: Hoplonemertea). J Morphol 169(1):61–70Google Scholar
  115. Stricker SA, Smythe TL, Miller L, Norenburg JL (2001) Comparative biology of oogenesis in nemertean worms. Acta Zool 82(3):213–230Google Scholar
  116. Stricker SA, Cline C, Goodrich D (2013) Oocyte maturation and fertilization in marine nemertean worms: using similar sorts of signaling pathways as in mammals, but often with differing results. Biol Bull 224(3):137–155PubMedGoogle Scholar
  117. Sundberg P, Strand M (2007) Annulonemertes (phylum Nemertea): when segments do not count. Biol Lett 3(5):570–573PubMedCentralPubMedGoogle Scholar
  118. Thiel M, Junoy J (2006) Mating behavior of nemerteans: present knowledge and future directions. J Nat Hist 40(15–16):1021–1034Google Scholar
  119. Thollesson M, Norenburg JL (2003) Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proc R Soc Lond B Biol Sci 270(1513):407–415Google Scholar
  120. Turbeville JM (1986) An ultrastructural analysis of coelomogenesis in the hoplonemertine Prosorhochmus americanus and the polychaete Magelona sp. J Morphol 187(1):51–60Google Scholar
  121. Turbeville JM (1991) Nemertinea. In: Harrisson W, Bogitsh BJ (eds) Microscopic anatomy of invertebrates, vol 3, Platyhelminthes and Nemertinea. Wiley-Liss, New York, pp 285–328Google Scholar
  122. Turbeville JM (2002) Progress in nemertean biology: development and phylogeny. Integr Comp Biol 42(3):692–703PubMedGoogle Scholar
  123. Turbeville JM, Ruppert EE (1985) Comparative ultrastructure and the evolution of nemertines. Am Zool 25(1):53–71Google Scholar
  124. van den Biggelaar JA, Dictus WJ, van Loon AE (1997) Cleavage patterns, cell-lineages and cell specification are clues to phyletic lineages in Spiralia. Semin Cell Dev Biol 8(4):367–378PubMedGoogle Scholar
  125. von Dassow G, Maslakova SA (2013) How the pilidium larva pees. Integr Comp Biol 53(suppl1):e386Google Scholar
  126. von Döhren J (2008) Zur Phylogenie der Nemertea: vergleichende Untersuchungen der Reproduktion und Entwicklung. PhD Thesis, Free University, BerlinGoogle Scholar
  127. von Döhren J (2011) The fate of the larval epidermis in the Desor-larva of Lineus viridis (Pilidiophora, Nemertea) displays a historically constrained functional shift from planktotrophy to lecithotrophy. Zoomorphology 130(3):189–196Google Scholar
  128. von Döhren J, Bartolomaeus T (2006) Ultrastructure of sperm and male reproductive system in Lineus viridis (Heteronemertea, Nemertea). Zoomorphology 125(4):175–185Google Scholar
  129. von Döhren J, Bartolomaeus T (2007) Ultrastructure and development of the rhabdomeric eyes in Lineus viridis (Heteronemertea, Nemertea). Zoology 110(5):430–438Google Scholar
  130. von Döhren J, Beckers P, Vogeler R, Bartolomaeus T (2010) Comparative sperm ultrastructure in Nemertea. J Morphol 271(7):793–813Google Scholar
  131. Wilson CB (1900) The habits and early development of Cerebratulus lacteus (Verrill). A contribution to physiological morphology. Q J Microsc Sci 43:97–198Google Scholar
  132. Wilson EB (1903) Experiments on cleavage and localization in the nemertine egg. Roux’s Archiv für Entwicklungsmechanik der Organismen 16(3):411–460Google Scholar
  133. Yatsu N (1909) Observations on ookinesis in Cerebratulus lacteus, Verrill. J Morphol 20(3):353–401Google Scholar
  134. Yatsu N (1910) Experiments on the cleavage in the egg of Cerebratulus. J Coll Sci Imp Univ Tokyo 27(10):1–19Google Scholar
  135. Zaitseva OV, Flyachinskaya LP (2010) In vivo studies of development of the main functional systems in the heteronemertean pilidium larva. J Evol Biochem Physiol 46(4):396–406Google Scholar
  136. Zeleny C (1904) Experiments on the localization of developmental factors in the nemertine egg. J Exp Zool 1(2):293–329Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Rheinische-Friedrich-Wilhlems Univerität Bonn, Institut für Evolutionsbiologie und ÖkologieBonnGermany

Personalised recommendations