With probably around 200,000 extant species, Mollusca is the second-most speciose phylum after Hexapoda. However, what makes mollusks particularly interesting from an evolutionary perspective is not their richness in species as such, but rather the huge variety of body plan phenotypes exhibited by its representatives. These include cylindrical, shell-less, spicule-bearing, wormlike, crawling, and burrowing creatures (Neomeniomorpha or Solenogastres and Chaetodermomorpha or Caudofoveata), eight-shelled grazers (Polyplacophora or chitons), two-valved filter feeders (Bivalvia such as mussels and clams) as well as the single-shelled Monoplacophora (Tryblidia), Gastropoda (snails, slugs), Scaphopoda (tusk shells), and Cephalopoda (octopuses, squids, nautiluses) (Fig. 7.1; for a comprehensive recent account on various aspects on molluskan phylogeny and evolution, see Ponder and Lindberg 2008).


Cerebral Ganglion Apical Organ ParaHox Gene Polar Lobe Shell Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



AW expresses his sincere thanks to the numerous colleagues that have offered their time to discuss various issues on molluscan and metazoan morphology, development, and evolution over the past many years, often at most peculiar times and in most inspiring locations, in particular Gerhard Haszprunar (Munich), Bernie Degnan (Brisbane), Jens Hoeg (Copenhagen), Claus Nielsen (Copenhagen), Pedro Martinez (Barcelona), Christiane Todt (Bergen), his coauthor of this paper and longtime colleague Tim Wollesen (Vienna), and many others, including the present and past students and postdocs in his labs in Copenhagen and Vienna. AW is also grateful for the generous support of the Faculty of Life Sciences, University of Vienna, during the past four years as well as the Danish Science Foundation (FNU) and the Carlsberg Foundation for previous support during his Copenhagen years. He also warmly acknowledges funding of our Early Stage Research Training Network MOLMORPH during the years 2005–2009 by the European Commission. The Austrian Science Fund (FWF) is thanked for current support of a project on aplacophoran EvoDevo (grant number P24276-B22). TW thanks Sonia Victoria Rodríguez Monje (Vienna) and all members of the Wanninger lab for help and discussions as well as the crews of the Néomysis (Roscoff) and the RV Hans Brattström (Bergen) for assistance with the collection of animals. TW kindly thanks Andreas Wanninger, coauthor of this book chapter, and Bernie Degnan (Brisbane) for their great support during the last years. The authors thank Jonathan Henry (Urbana), Reuben Shipway (Nahant), Hiroshi Wada (Tsukuba), Michael Schrödl (Munich), Emanuel Redl, Maik Scherholz, Alen Kristof, Marlene Karelly, and Marion Hüffel (all Vienna) for providing images used in this chapter.


  1. Altnöder A, Haszprunar G (2008) Larval morphology of the brooding clam Lasaea adansonii (Gmelin, 1791) (Bivalvia, Heterodonta, Galeommatoidea). J Morphol 269:762–774PubMedGoogle Scholar
  2. Anderson PD, Bokor G (2012) Conotoxins: potential weapons from the sea. J Bioterr Biodef 3:120Google Scholar
  3. Andouche A, Bassaglia Y, Baratte S, Bonnaud L (2013) Reflectin genes and development of iridophore patterns in Sepia officinalis embryos (Mollusca, Cephalopoda). Dev Dyn 242:560–571PubMedGoogle Scholar
  4. Appellöf A (1898) Über das Vorkommen innerer Schalen bei den achtarmigen Cephalopoden (Octopoda). Bergens Mus Arb 12:1–15Google Scholar
  5. Arnolds WJA, van den Biggelaar JAM, Verdonk NH (1983) Spatial aspects of cell interactions involved in the determination of dorsoventral polarity in equally cleaving gastropods and regulative abilities of their embryos, as studied by micromere deletions in Lymnaea and Patella. Roux’s Arch Dev Biol 192:75–85Google Scholar
  6. Asami T, Gittenberger E, Falkner G (2008) Whole-body enantiomorphy and maternal inheritance of chiral reversal in the pond snail Lymnaea stagnalis. J Hered 99:552–557PubMedGoogle Scholar
  7. Ax P (1999) Multicellular animals. Springer, BerlinGoogle Scholar
  8. Bandel K (1975) Embryonalgehäuse karibischer Meso- und Neogastropoden (Mollusca). Abh Math Naturw Kgl Akad Wiss Mainz 1:1–133Google Scholar
  9. Bandel K, Boletzky SV (1979) A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. The Veliger 21:313–354Google Scholar
  10. Baratte S, Bonnaud L (2009) Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis. J Comp Neurol 517:539–549PubMedGoogle Scholar
  11. Bardou I, Maubert E, Leprince J, Chichery R, Dallérac G, Vaudry H, Agin V (2010) Ontogeny of oxytocin-like immunoreactivity in the cuttlefish, Sepia officinalis, central nervous system. Dev Neurosci 32:19–32PubMedGoogle Scholar
  12. Barlow LA, Truman JW (1992) Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotis rufescens. J Neurobiol 23:829–844PubMedGoogle Scholar
  13. Bartolomaeus T (1993) Die Leibeshöhlenverhältnisse und Nephridialorgane der Bilateria – Ultrastruktur, Entwicklung und Evolution. University of Göttingen, GöttingenGoogle Scholar
  14. Blochmann F (1883) Beiträge zur Kenntnis der Entwicklung der Gastropoden. I. Zur Entwicklung von Aplysia limacina L. Z Wiss Zool 38:392–410Google Scholar
  15. Boletzky S (1989) Recent studies on spawning, embryonic development, and hatching in the Cephalopoda. Adv Mar Biol 25:85–115Google Scholar
  16. Boletzky S, Erlwein B, Hofmann DK (2006) The Sepia egg: a showcase of cephalopod embryology. Vie Et Milieu – Life Environ 56:191–201Google Scholar
  17. Bonar DB (1978) Ultrastructure of a cephalic sensory organ in larvae of the gastropod Phestilla sibogae (Aeolidacea Nudibranchia). Tissue Cell 10:153–165PubMedGoogle Scholar
  18. Boring L (1989) Cell-cell interactions determine the dorsoventral axis in embryos of an equally cleaving opisthobranch mollusc. Dev Biol 136:239–253PubMedGoogle Scholar
  19. Boycott AE, Diver C (1923) On the inheritance of sinistrality in Lymnaea peregra. Proc R Soc Lond B Biol Sci 95:207–213Google Scholar
  20. Boycott AE, Diver C, Garstang SL, Hardy MAC, Turner FM (1930) The inheritance of sinistrality in Lymnaea peregra. Philos Trans R Soc Lond B Biol Sci 219:51–130Google Scholar
  21. Brooke NM, Garcia-Fernandez J, Holland PWH (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392:920–922PubMedGoogle Scholar
  22. Buckland-Nicks (2013) Acorena. Revista de Estudos Acoreanos. Suplemento 8. Book of abstracts. World Congress of MalacologyGoogle Scholar
  23. Buresi A, Baratte S, Da Silva C, Bonnaud L (2012) Orthodenticle/otx ortholog expression in the anterior brain and eyes of Sepia officinalis (Mollusca, Cephalopoda). Gene Expr Patterns 12:109–116PubMedGoogle Scholar
  24. Buresi A, Canali E, Bonnaud L, Baratte S (2013) Delayed and asynchronous ganglionic maturation during cephalopod neurogenesis as evidenced by Sof-elav1 expression in embryos of Sepia officinalis (Mollusca, Cephalopoda). J Comp Neurol 521:1482–1496PubMedGoogle Scholar
  25. Bütschli O (1877) Entwicklungsgeschichtliche Beiträge. I. Zur Entwicklungsgeschichte von Paludina vivipara. Z Wiss Zool 29:216–231Google Scholar
  26. Casteel DB (1904) The cell-linage and early larval development of Fiona marina, a nudibranch mollusk. Proc Acad Nat Sci Phila 56:325–405Google Scholar
  27. Cather JN (1967) Cellular interactions in the development of the shell gland of the gastropod, Ilyanassa. J Exp Zool 166:205–223PubMedGoogle Scholar
  28. Checa A (2000) A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell 32:405–416PubMedGoogle Scholar
  29. Clement AC (1986) The embryonic value of the micromeres in Ilyanassa obsoleta, as determined by deletion experiments. III. The third quartet cells and the mesentoblast cell. Int J Invertebr Reprod Dev 9:155–168Google Scholar
  30. Conklin EG (1897) The embryology of Crepidula, a contribution to the cell lineage and early development of some marine gastropods. J Morphol 13:1–226Google Scholar
  31. Cragg SM (1985) The adductor and retractor muscles of the veliger of Pecten maximus (L.) (Bivalvia). J Molluscan Stud 51:276–283Google Scholar
  32. Croll RP (2000) Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails. Microsc Res Tech 49:570–578PubMedGoogle Scholar
  33. Croll RP (2009) Developing nervous systems in molluscs: navigating the twists and turns of a complex life cycle. Brain Behav Evol 74:164–176PubMedGoogle Scholar
  34. Croll RP, Dickinson AJG (2004) Form and function of the larval nervous system in molluscs. Invertebr Reprod Dev 46:2–3Google Scholar
  35. Croll RP, Voronezhskaya EE (1996) Early elements in gastropod neurogenesis. Dev Biol 173:344–347PubMedGoogle Scholar
  36. Cumin R (1972) Normentafel zur Organogenese von Lymnaea stagnalis L. mit besonderer Berücksichtigung der Mitteldarmdrüse. Rev Suisse Zool 79:709–774Google Scholar
  37. D’Asaro CN (1966) The egg capsules, embryogenesis, and early organogenesis of a common oyster predator, Thais haemastoma floridana (Gastropoda: Prosobranchia). Bull Mar Sci 16:884–914Google Scholar
  38. Damen P, Dictus WJAG (1996) Organiser role of the stem cell of the mesoderm in prototroch patterning in Patella vulgata (Mollusca, Gastropoda). Mech Dev 56:41–60PubMedGoogle Scholar
  39. Dautert E (1929) Die Bildung der Keimblätter bei Paludina vivipara. Zool Jb Anat 50:433–496Google Scholar
  40. Demian ES, Yousif F (1975) Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). V. Development of the nervous system. Malacologia 15:29–42PubMedGoogle Scholar
  41. Dickinson AJG, Croll RP (2003) Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 466:197–218PubMedGoogle Scholar
  42. Dickinson AJG, Nason J, Croll RP (1999) Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology 119:49–62Google Scholar
  43. Dictus WJAG, Damen P (1997) Cell-lineage and clonal-contribution map of the trochophore larva of Patella vulgata (Mollusca). Mech Dev 62:213–226PubMedGoogle Scholar
  44. Diefenbach TJ, Koss R, Goldberg JI (1998) Early development of an identified serotonergic neuron in Helisoma trivolvis embryos: serotonin expression, de-expression, and uptake. Dev Neurobiol 34:361–376Google Scholar
  45. Dunn EF, Moy VN, Angerer LM, Angerer RC, Morris RL, Peterson KJ (2007) Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian. Evol Dev 9:10–24PubMedGoogle Scholar
  46. Dyachuk V, Odintsova N (2009) Development of the larval muscle system in the mussel Mytilus trossulus (Mollusca, Bivalvia). Dev Growth Differ 51:69–79PubMedGoogle Scholar
  47. Eernisse DJ, Reynolds PD (1994) Chapter 3: Polyplacophora. In: Harrison FW (ed) Microscopic anatomy of invertebrates. Wiley-Liss, New York, pp 56–110Google Scholar
  48. Ellis I, Kempf SC (2011) Characterization of the central nervous system and various peripheral innervations during larval development of the oyster Crassostrea virginica. Invertebr Biol 130:236–250Google Scholar
  49. Farfán C, Shigeno S, Nödl MT, de Couet HG (2009) Developmental expression of apterous/Lhx2/9 in the sepiolid squid Euprymna scolopes supports an ancestral role in neural development. Evol Dev 11:354–362PubMedGoogle Scholar
  50. Faussek V (1901) Untersuchungen über die Entwicklung der Cephalopoden. Mitt Zool Stat Neapel 14:83–237Google Scholar
  51. Fernando W (1931) The origin of the mesoderm in the gastropod Viviparus (=Paludina). Proc R Soc Lond B Containing Pap Biol Character 107:381–390Google Scholar
  52. Filla A, Hiripi L, Elekes K (2009) Role of aminergic (serotonin and dopamine) systems in the embryogenesis and different embryonic behaviors of the pond snail, Lymnaea stagnalis. Comp Biochem Physiol C 149:73–82Google Scholar
  53. Fioroni VP (1979) Phylogenetische Abänderungen der Gastrula bei Mollusken. Z Zool Syst Evol Forsch 1:82–100Google Scholar
  54. Fol H (1875) Études sur le développement des mollusques. Sur le développement des ptéropodes. Archs Zool Exp Gén 4:1–214Google Scholar
  55. Freeman G, Lundelius JW (1992) Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage. J Evol Biol 5:205–247Google Scholar
  56. Friedrich S, Wanninger A, Brückner M, Haszprunar G (2002) Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): evidence against molluscan metamerism. J Morphol 253:109–117PubMedGoogle Scholar
  57. Fritsch M, Wollesen T, Oliveira ALd, Wanninger A (2015) Unexpected co-linearity of Hox gene expression in an aculiferan mollusk. BMC Evol Biol. doi: 10.1186/s12862-015-0414-1
  58. Ganin M (1873) Zur Lehre von den Keimblättern bei den Weichtieren. Warschauer Ber 1:115–140Google Scholar
  59. Gegenbaur C (1852) Beiträge zur Entwicklungsgeschichte der Land-Pulmonaten. Z Wiss Zool 3:371–411Google Scholar
  60. Gifondorwa DJ, Leise EM (2006) Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta. Biol Bull 210:109–120PubMedGoogle Scholar
  61. Giusti AF, Hinman VF, Degnan SM, Degnan BM, Morse DE (2000) Expression of a Scr/Hox5 gene in the larval central nervous system of the gastropod Haliotis, a non-segmented spiralian lophotrochozoan. Evol Dev 2:294–302PubMedGoogle Scholar
  62. Gonzales EE, van der Zee M, Dictus WJ, van den Biggelaar JAM (2007) Brefeldin A and monensin inhibit the D quadrant organizer in the polychaete annelids Arctonoe vittata and Serpula columbiana. Evol Dev 9:416–431PubMedGoogle Scholar
  63. Goulding MQ (2009) Cell lineage of the Ilyanassa embryo: evolutionary acceleration of regional differentiation during early development. PloS One 4:e5506Google Scholar
  64. Grande C, Patel NH (2009) Lophotrochozoa get into the game: the nodal pathway and left/right asymmetry in Bilateria. Cold Spring Harb Symp Quant Biol 74:281–287PubMedGoogle Scholar
  65. Grimaldi A, Tettamanti G, Rinaldi L, Brivio MF, Castellani D, de Eguileor M (2004) Muscle differentiation in tentacles of Sepia officinalis (Mollusca) is regulated by muscle regulatory factors (MRF) related proteins. Dev Growth Differ 46:83–95Google Scholar
  66. Grimaldi A, Tettamanti G, Acquati F, Bossi E, Guidali ML, Banfi S, Monti L, Valvassori R, de Eguileor M (2008) A hedgehog homolog is involved in muscle formation and organization of Sepia officinalis (Mollusca) mantle. Dev Dyn 237:659–671PubMedGoogle Scholar
  67. Haas W (1981) Evolution of calcareous hardparts in primitive molluscs. Malacologia 21:403–418Google Scholar
  68. Hadfield MG, Meleshkevitch EA, Boudko DY (2000) The apical sensory organ of a gastropod veliger is a receptor for settlement cues. Biol Bull 198:67–76PubMedGoogle Scholar
  69. Hartmann B, Lee PN, Kang YY, Tomarev S, de Couet HG, Callaerts P (2003) Pax6 in the sepiolid squid Euprymna scolopes: evidence for a role in eye, sensory organ and brain development. Mech Dev 120:177–183PubMedGoogle Scholar
  70. Hashimoto N, Kurita Y, Wada H (2012) Developmental role of dpp in the gastropod shell plate and co-option of the dpp signaling pathway in the evolution of the operculum. Dev Biol 366:367–373PubMedGoogle Scholar
  71. Haszprunar G (1996) The Mollusca: coelomate turbellarians or mesenchymate annelids? In: Taylor JD (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford, pp 3–28Google Scholar
  72. Haszprunar G (2000) Is the Aplacophora monophyletic? A cladistic point of view. Amer Malac Bull 15:115–130Google Scholar
  73. Haszprunar G, Wanninger A (2000) Molluscan muscle systems in development and evolution. J Zool Syst Evol Res 38:157–163Google Scholar
  74. Haszprunar G, Wanninger A (2008) On the fine structure of the creeping larva of Loxosomella murmanica: additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca. Acta Zool (Stockholm) 89:137–148Google Scholar
  75. Haszprunar G, Wanninger A (2012) Molluscs. Curr Biol 22:R510–R514PubMedGoogle Scholar
  76. Haszprunar G, Friedrich S, Wanninger A, Ruthensteiner B (2002) Fine structure and immunocytochemistry of a new chemosensory system in the chiton larva (Mollusca: Polyplacophora). J Morphol 251:210–218PubMedGoogle Scholar
  77. Heath H (1898) The development of Ischnochiton. Zool Jb Anat Ontog Tiere 12:567–656Google Scholar
  78. Hejnol A (2010) A twist in time: the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol 50:695–706PubMedGoogle Scholar
  79. Hejnol A, Martindale MQ, Henry JQ (2007) High-resolution fate map of the snail Crepidula fornicata: the origins of ciliary bands, nervous system, and muscular elements. Dev Biol 305:63–76PubMedGoogle Scholar
  80. Henry JJ, Perry KJ (2008) MAPK activation and the specification of the D quadrant in the gastropod mollusc, Crepidula fornicata. Dev Biol 313:181–195PubMedGoogle Scholar
  81. Henry JQ, Okusu A, Martindale MQ (2004) The cell lineage of the polyplacophoran, Chaetopleura apiculata: variation in the spiralian program and implications for molluscan evolution. Dev Biol 272:145–160PubMedGoogle Scholar
  82. Herbers K (1913) Entwicklungsgeschichte von Anodonta cellensis Schröt. Z Wiss Zool 108:1–174Google Scholar
  83. Hinman VF, Degnan BM (2002) Mox homeobox expression in muscle lineage of the gastropod Haliotis asinina: evidence for a conserved role in bilaterian myogenesis. Dev Genes Evol 212:141–144PubMedGoogle Scholar
  84. Hinman V, O’Brien EK, Richards GS, Degnan BM (2003) Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 5:508–521PubMedGoogle Scholar
  85. Holland PWH (2001) Beyond the Hox: how widespread is homeobox gene clustering? J Anat 199:13–23PubMedCentralPubMedGoogle Scholar
  86. Iijima M, Takeuchi T, Sarashina I, Endo K (2008) Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Genes Evol 218:237–251Google Scholar
  87. Jackson DJ, Wörheide G, Degnan BM (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 7:160PubMedCentralPubMedGoogle Scholar
  88. Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C, Piquemal D, Degnan BM (2009) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27:591–608Google Scholar
  89. Jackson DJ, Meyer MP, Seaver E, Pang K, McDougall C, Moy VN, Gordon K, Degnan BM, Martindale MQ, Burke RD, Peterson KJ (2010) Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Dev Genes Evol 220:221–234PubMedCentralPubMedGoogle Scholar
  90. Jacob MH (1984) Neurogenesis in Aplysia californica resembles nervous system formation in vertebrates. J Neurosci 4:1225–1239PubMedGoogle Scholar
  91. Jacobs DK, Wray CG, Wedeen CJ, Kostriken R, DeSalle R, Staton JL, Gates RD, Lindberg DR (2000) Molluscan engrailed expression, serial organization, and shell evolution. Evol Dev 2:340–347PubMedGoogle Scholar
  92. Jarvis E, Bruce HS, Patel NH (2012) Evolving specialization of the arthropod nervous system. Proc Natl Acad Sci U S A 109:10634–10639PubMedCentralPubMedGoogle Scholar
  93. Kakoi S, Kin K, Miyazaki K, Wada H (2008) Early development of the Japanese spiny oyster (Saccostrea kegaki): characterization of some genetic markers. Zool Sci 25:455–464PubMedGoogle Scholar
  94. Kanda A, Minakata H (2006) Isolation and characterization of a novel small cardioactive peptide-related peptide from the brain of Octopus vulgaris. Peptides 27:1755–1761PubMedGoogle Scholar
  95. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038PubMedGoogle Scholar
  96. Kandel ER, Kriegstein A, Schacher S (1981) Development of the central nervous system of Aplysia in terms of the differentiation of its specific identifiable cells. Neuroscience 5:2033–2063Google Scholar
  97. Kempf SC, Chun GV, Hadfield MG (1992) An immunocytochemical search for potential neurotransmitters in larvae of Phestilla sibogae (Gastropoda, Ophisthobranchia). Comp Biochem Physiol 101C:299–305Google Scholar
  98. Kerkhoven RM, Croll RP, Ramkema MD, Van Minnen J, Bogerd J, Boer HH (1992) The VD1/RPD2 neuronal system in the central nervous system of the pond snail Lymnaea stagnalis studied by in situ hybridization and immunocytochemistry. Cell Tissue Res 267:551–559Google Scholar
  99. Kerkhoven RM, Ramkema MD, Van Minnen J, Croll RP, Pin T, Boer HH (1993) Neurons in a variety of molluscs react to antibodies raised against the VD1/RPD2 α-neuropeptide of the pond snail Lymnaea stagnalis. Cell Tissue Res 273:371–379PubMedGoogle Scholar
  100. Kier WM (1988) The arrangement and function of molluscan muscle. In: Trueman ER, Clarke MR (eds) The Mollusca: form and function. Academic, New York, 11:211-252Google Scholar
  101. Kier WM (1991) Squid cross-striated muscle: the evolution of a specialized muscle fiber type. Bull Mar Sci 49:389–403Google Scholar
  102. Kier WM (1996) Muscle development in squid: ultrastructural differentiation of a specialized muscle fiber type. J Morphol 229:271–288Google Scholar
  103. Kier WM, Schachat FH (2008) Muscle specialization in the squid motor system. J Exp Biol 211:164–169PubMedGoogle Scholar
  104. Kier WM, Stella MP (2007) The arrangement and function of Octopus arm musculature and connective tissue. J Morphol 268:831–843Google Scholar
  105. Kier WM, Thompson JT (2003) Muscle arrangement, function and specialization in recent coleoids. Berl Paläobiol Abhandl 3:141–162Google Scholar
  106. Kin K, Kakoi S, Wada H (2009) A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev Biol 329:152–166PubMedGoogle Scholar
  107. Kniprath E (1977) Zur Ontogenese des Schalenfeldes von Lymnaea stagnalis. Wilhelm Roux Arch Entw Mech 181:11–30Google Scholar
  108. Kniprath E (1981) Ontogeny of the molluscan shell field: a review. Zool Scr 10:61–79Google Scholar
  109. Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz L, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456PubMedCentralPubMedGoogle Scholar
  110. Kölliker A (1844) Entwickelungsgeschichte der Cephalopoden. Verlag von Meyer und Zeller, ZürichGoogle Scholar
  111. Koop D, Richards GS, Wanninger A, Gunter HM, Degnan BM (2007) The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Dev Biol 311:200–212PubMedGoogle Scholar
  112. Kowalevsky MA (1883a) Embryogénie du Chiton polii (Philippi) avec quelques remarques sur le développement des autres chitons. Ann Mus Hist Nat Marseille Zool 1:1–46Google Scholar
  113. Kowalevsky MA (1883b) Étude sur l’embryogénie du Dentale. Ann Mus Hist Nat Marseille Zool 1:1–54Google Scholar
  114. Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM (2010) Identifying the germline in an equally cleaving mollusc: Vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. J Exp Zool B Mol Dev Evol 314:267–279PubMedGoogle Scholar
  115. Kriegstein AR (1977) Development of the nervous system of Aplysia californica. Proc Natl Acad Sci U S A 74:375–378PubMedCentralPubMedGoogle Scholar
  116. Kristof A, Klussmann-Kolb A (2010) Neuromuscular development of Aeolidiella stephanieae Valdéz, 2005 (Mollusca, Gastropoda, Nudibranchia). Front Zool 7:5PubMedCentralPubMedGoogle Scholar
  117. Kühtreiber WM, Vantil EH, Van Dongen CAM (1988) Monensin interferes with the determination of the mesodermal cell-line in embryos of Patella vulgata. Roux’s Arch Dev Biol 197:10–18Google Scholar
  118. Kurita Y, Deguchi R, Wada H (2009) Early development and cleavage pattern of the Japanese purple mussel, Septifer virgatus. Zool Sci 26:814–820PubMedGoogle Scholar
  119. Kuroda R, Endo B, Masanri A, Shimuzu M (2009) Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature 462:790–794PubMedGoogle Scholar
  120. Lacaze-Duthiers FJH (1858) Histoire de l’organisation, du développement, des mœurs et des rapports zoologiques du Dentale. Librairie de Victor. Masson, ParisGoogle Scholar
  121. Lambert JD (2010) Developmental patterns in spiralian embryos. Curr Biol 20:R72–R77PubMedGoogle Scholar
  122. Lambert JD, Nagy LM (2003) The MAPK cascade in equally cleaving spiralian embryos. Dev Biol 263:231–241PubMedGoogle Scholar
  123. Lankester ER (1873) Summary of the zoological observations made in Naples in the winter of 1871–72. Ann Mag Nat Hist 11:81–97Google Scholar
  124. Lankester ER (1875) Observations on the development of the Cephalopoda. Q J Microsc Sci 15:37–47Google Scholar
  125. Lartillot N, Le Gouar M, Adoutte A (2002a) Expression patterns of fork head and goosecoid homologues in the mollusc Patella vulgata supports the ancestry of the anterior mesendoderm across Bilateria. Dev Genes Evol 212:551–561PubMedGoogle Scholar
  126. Lartillot N, Lespinet O, Vervoort M, Adoutte A (2002b) Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development 129:1411–1421PubMedGoogle Scholar
  127. Le Gouar M, Lartillot N, Adoutte A, Vervoort M (2003) The expression of a caudal homologue in a mollusc, Patella vulgata. Gene Expr Patterns 3:35–37PubMedGoogle Scholar
  128. Le Gouar M, Guillou A, Vervoort M (2004) Expression of a SoxB and a Wnt2/13 gene during the development of the mollusc Patella vulgata. Dev Genes Evol 214:250–256PubMedGoogle Scholar
  129. Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065PubMedGoogle Scholar
  130. Lemche H, Wingstrand KG (1959) The anatomy of Neopilina galatheae Lemche, 1957. Galathea Rep 3:9–71Google Scholar
  131. Lespinet O, Nederbragt AJ, Cassan M, Dictus WJ, van Loon AE, Adoutte A (2002) Characterization of two snail genes in the gastropod mollusc Patella vulgata. Implications for understanding the ancestral function of the snail-related genes in Bilateria. Dev Genes Evol 212:186–195PubMedGoogle Scholar
  132. Lillie FR (1895) The embryology of the Unionidae: a study in cell-linage. J Morphol 10:1–100Google Scholar
  133. Lin M-F, Leise EM (1996) Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta. J Comp Neurol 374:180–193PubMedGoogle Scholar
  134. Liu MM, Davey JW, Banerjee R, Han J, Yang F, Aboobaker A, Blaxter ML, Davison A (2013) Fine mapping of the pond snail left-right asymmetry (chirality) locus using rad-seq and fibre-fish. PloS One 8:e71067Google Scholar
  135. Longo FJ (1983) Meiotic maturation and fertilization. In: Verdonk NH, Van den Biggelaar JAM, Tompa AS (eds) The Mollusca, vol III. Academic, New York, pp 49–89Google Scholar
  136. Lyons DC, Perry KJ, Lesoway MP, Henry JQ (2012) Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development. EvoDevo 3:21Google Scholar
  137. Marois R, Carew TJ (1990) The gastropod nervous system in metamorphosis. J Neurobiol 21:1053–1071PubMedGoogle Scholar
  138. Marois R, Carew TJ (1997a) Projection patterns and target tissues of the serotonergic cells in larval Aplysia californica. J Comp Neurol 386:491–506PubMedGoogle Scholar
  139. Marois R, Carew TJ (1997b) Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386:477–490PubMedGoogle Scholar
  140. Marois R, Croll RP (1992) Development of serotonin-like immunoreactivity in the embryonic nervous system of the snail Lymnaea stagnalis. J Comp Neurol 322:255–265PubMedGoogle Scholar
  141. Marquis VF (1989) Die Embryonalentwicklung des Nervensystems von Octopus vulgaris Lam. (Cephalopoda, Octopoda), eine histologische Analyse. Verh Naturforsch Ges Basel 99:23–76Google Scholar
  142. Martin R (1965) On the structure and embryonic development of the giant fiber system of the squid Loligo vulgaris. Z Zellforsch 67:77–85PubMedGoogle Scholar
  143. Martindale MQ (1986) The organizing role of the D quadrant in an equal cleaving spiralian, Lymnaea stagnalis as studied by UV laser deletion of macromeres at intervals between 3rd and 4th quartet formation. Int J Invertebr Reprod Dev 9:229–242Google Scholar
  144. Martindale MQ, Doe CQ, Morrill JB (1985) The role of animal-vegetal interaction with respect to the determination of dorsoventral polarity in the equal-cleaving spiralian Lymnaea palustris. Roux’s Arch Dev Biol 194:281–295Google Scholar
  145. Mattiello T, Costantini M, Di Matteo B, Livigni S, Andouche A, Bonnaud L, Palumbo A (2012) The dynamic nitric oxide pattern in developing cuttlefish Sepia officinalis. Dev Dyn 241:390–402PubMedGoogle Scholar
  146. Meisenheimer J (1896) Entwicklungsgeschichte von Limax maximus L. I. Teil: furchung und Keimblätterbildung. Z Wiss Zool 62:415–468Google Scholar
  147. Meisenheimer J (1898) Entwicklungsgeschichte von Limax maximus L. II. Teil: Die Larvenperiode. Z Wiss Zool 63:573–664Google Scholar
  148. Meisenheimer J (1901) Entwicklungsgeschichte von Dreissensia polymorpha Pall. Z Wiss Zool 69:1–137Google Scholar
  149. Meister G (1972) Organogenese von Loligo vulgaris LAM. Mollusca, Cephalopoda, Teuthoidea, Myopsida, Loliginidae. Zool Jb Anat 89:247–300Google Scholar
  150. Mescheryakov VN (1990) The common pond snail Lymnaea stagnalis L. In: Dettlaff DA, Vassetzky SG (eds) Animal species for developmental studies. Plenum Press, New York, pp 69–132Google Scholar
  151. Messenger JB (1996) Neurotransmitters of cephalopods. Invert Neurosci 2:95–114Google Scholar
  152. Müller AH (1994) Lehrbuch der Paläozoologie. Band II. Invertebraten. II Teil: Mollusca 2 – Arthropoda 1, 4. Auflage. Fischer Verlag, JenaGoogle Scholar
  153. Naef A (1928) Die Cephalopoden. Fauna Flora Golfo Napoli 35:149–863Google Scholar
  154. Namigai EKO, Kenny NJ, Shimeld SM (2014) Right across the tree of life: the evolution of left-right asymmetry in the Bilateria. Genesis 52:458–470Google Scholar
  155. Navet S, Bassaglia Y, Baratte S, Martin M, Bonnaud L (2008) Somatic muscle development in Sepia officinalis (Cephalopoda – Mollusca): a new role for NK4. Dev Dyn 237:1944–1951PubMedGoogle Scholar
  156. Navet S, Andouche A, Baratte S, Bonnaud L (2009) Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda). Gene Expr Patterns 9:461–467PubMedGoogle Scholar
  157. Nederbragt AJ, te Welscher P, van den Driesche S, van Loon AE, Dictus WJAG (2002a) Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol 212:330–337PubMedGoogle Scholar
  158. Nederbragt AJ, van Loon AE, Dictus WJAG (2002b) Expression of Patella vulgata orthologs of engrailed and dpp-bmp2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355PubMedGoogle Scholar
  159. Nederbragt AJ, van Loon AE, Dictus WJAG (2002c) Hedgehog crosses the snail’s midline. Nature 417:811–812PubMedGoogle Scholar
  160. Nielsen C (2004) Trochophore larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zool B Mol Dev Evol 302:35–68PubMedGoogle Scholar
  161. Nielsen C (2012) Animal evolution: interrelationships of the living phyla. Oxford University Press, OxfordGoogle Scholar
  162. Nielsen C, Haszprunar G, Ruthensteiner B, Wanninger A (2007) Early development of the aplacophoran mollusc Chaetoderma. Acta Zool (Stockholm) 88:231–247Google Scholar
  163. Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford University Press, New YorkGoogle Scholar
  164. O’Brien EK, Degnan BM (2000) Pax, POU and Sox genes are expressed in the ganglia of the tropical abalone Haliotis asinina. Mar Biotech 2:545–557Google Scholar
  165. O’Brien EK, Degnan BM (2002a) Pleiotropic developmental expression of HasPOU-III, a class III POU gene, in the gastropod Haliotis asinina. Mech Dev 114:129–132PubMedGoogle Scholar
  166. O’Brien EK, Degnan BM (2002b) Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians. Dev Genes Evol 212:394–398PubMedGoogle Scholar
  167. O’Brien EK, Degnan BM (2003) Expression of Pax258 in the gastropod statocyst: insights into the antiquity of metazoan geosensory organs. Evol Dev 5:572–578PubMedGoogle Scholar
  168. Ogura A, Yoshida MA, Moritaki T, Okuda Y, Sese J, Shimizu KK, Sousounis K, Tsonis PA (2013) Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus. Sci Rep 3:1432Google Scholar
  169. Okada K (1939) The development of the primary mesoderm in Sphaerium japonicum biwaense Mori. Sci Rep Tohoku Univ Biol 14:25–48Google Scholar
  170. Okusu A (2002) Embryogenesis and development of Epimenia babai (Mollusca Neomeniomorpha). Biol Bull 203:87–103PubMedGoogle Scholar
  171. Page LR (1992a) New interpretation of a nudibranch central nervous system based on ultrastructural analysis of neurodevelopment in Melibe leonina. I. Cerebral and visceral loop ganglia. Biol Bull 182:348–365Google Scholar
  172. Page LR (1992b) New interpretation of a nudibranch central nervous system based on ultrastructural analysis of neurodevelopment in Melibe leonina. II. Pedal, pleural, and labial ganglia. Biol Bull 182:366–381Google Scholar
  173. Page LR (2002) Apical sensory organ in larvae of the patellogastropod Tectura scutum. Biol Bull 202:6–22PubMedGoogle Scholar
  174. Page LR (2006) Early differentiating neuron in larval abalone (Haliotis kamtschatkana) reveals the relationship between ontogenetic torsion and crossing of the pleurovisceral nerve cords. Evol Dev 8:458–467PubMedGoogle Scholar
  175. Page LR, Parries SC (2001) Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. J Comp Neurol 418:383–401Google Scholar
  176. Parkhaev PY (2008) The early Cambrian radiation of Mollusca. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, BerkelyGoogle Scholar
  177. Patel NH (2009) Developmental biology: asymmetry with a twist. Nature 462:727–728PubMedGoogle Scholar
  178. Patten W (1886) The embryology of Patella. Arb Zool Inst Univ Wien 6:149–174Google Scholar
  179. Ponder WF, Lindberg DR (eds) (2008) Phylogeny and evolution of the Mollusca. University of California Press, BerkeleyGoogle Scholar
  180. Rabinowitz JS, Chan XJ, Kingsley EP, Duan Y, Lambert JD (2008) Nanos is required in somatic blast cell lineages in the posterior of a mollusk embryo. Curr Biol 18:331–336PubMedGoogle Scholar
  181. Raven CP (1966) Morphogenesis: the analysis of molluscan development. Pergamon Press, OxfordGoogle Scholar
  182. Reichert H (2005) A tripartite organization of the urbilaterian brain: developmental genetic evidence from Drosophila. Brain Res Bull 66:491–494PubMedGoogle Scholar
  183. Render J (1991) Fate maps of the first quartet micromeres in the gastropod Ilyanassa obsoleta. Development 113:495–501PubMedGoogle Scholar
  184. Render J (1997) Cell fate maps in the Ilyanassa obsoleta embryo beyond the third division. Dev Biol 189:301–310PubMedGoogle Scholar
  185. Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29Google Scholar
  186. Robert A (1902) Recherches sur le développement des troques. Arch Zool Exp Gén 10:269–538Google Scholar
  187. Samadi L, Steiner G (2009) Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.). Dev Genes Evol 219:523–530PubMedGoogle Scholar
  188. Samadi L, Steiner G (2010a) Expression of Hox genes during the larval development of the snail, Gibbula varia (L.)—further evidence of non-colinearity in molluscs. Dev Genes Evol 220:161–172PubMedGoogle Scholar
  189. Samadi L, Steiner G (2010b) Conservation of ParaHox genes’ function in patterning of the digestive tract of the marine gastropod Gibbula varia. BMC Dev Biol 10:74Google Scholar
  190. Scherholz M, Redl E, Wollesen W, Todt C, Wanninger A (2013) Aplacophoran mollusks evolved from ancestors with polyplacophoran-like features. Curr Biol 23:2130–2134PubMedCentralPubMedGoogle Scholar
  191. Schmidt F (1895) Beiträge zur Kenntnis der Entwicklungsgeschichte der Stylommatophoren. Zool Jb Anat 8:318–341Google Scholar
  192. Shibazaki Y, Shimizu M, Kuroda R (2004) Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr Biol 14:1462–1467PubMedGoogle Scholar
  193. Shigeno S, Tsuchiya K, Segawa S (2001) Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J Comp Neurol 437:449–475PubMedGoogle Scholar
  194. Shigeno S, Sasaki T, Moritaki T, Kasugai T, Vecchione M, Agata K (2008) Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: evidence from Nautilus embryonic development. J Morphol 269:1–17PubMedGoogle Scholar
  195. Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW, Giribet G, Dunn CW (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480:364–367PubMedGoogle Scholar
  196. Spiess PE (1972) Organogenese des Schalendrüsenkomplexes bei einigen coleoiden Cephalopoden des Mittelmeeres. Rev Suisse Zool 79:167–226Google Scholar
  197. Stewart H, Westlake HE, Page LR (2014) Rhogocytes in gastropod larvae: developmental transformation from protonephridial terminal cells. Invertebr Biol 133:47–63Google Scholar
  198. Sturtevant AH (1923) Inheritance of direction of coiling in Lymnaea. Science 58:269–270PubMedGoogle Scholar
  199. Sutton MD, Briggs DEG, Siveter DJ, Siveter DJ, Sigwart JD (2012) A silurian armoured aplacophoran and implications for molluscan phylogeny. Nature 490:94–97PubMedGoogle Scholar
  200. Todt C, Wanninger A (2010) Of tests, trochs, shells, and spicules: development of the basal mollusk Wirenia argentea (Solenogastres) and its bearing on the evolution of trochozoan larval key features. Front Zool 7:6Google Scholar
  201. Treacy MN, Rosenfeld MG (1992) Expression of a family of POU-domain protein regulatory genes during development of the central nervous system. Annu Rev Neurosci 15:139–165PubMedGoogle Scholar
  202. Ussow M (1874) Zoologisch-embryologische Untersuchungen. Die Kopffüßler. Arch Naturgesch 40:329–372Google Scholar
  203. Van Dam WI (1986) Embryonic development of Bithynia tentaculata L. (Prosobranchia, Gastropoda). I. Cleavage. J Morphol 188:289–302Google Scholar
  204. Van den Biggelaar JAM (1977) Development of dorsoventral polarity and mesentoblast determination in Patella vulgata. J Morphol 154:157–186PubMedGoogle Scholar
  205. Van den Biggelaar JAM (1996) Cleavage pattern and mesentoblast formation in Acanthochiton crinitus (Polyplacophora, Mollusca). Dev Biol 174:423–430PubMedGoogle Scholar
  206. Van den Biggelaar JAM, Guerrier P (1979) Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusk Patella vulgata. Dev Biol 68:462–471PubMedGoogle Scholar
  207. Van Dongen CAM, Geilenkirchen WLM (1974) The development of Dentalium with special reference to the significance of the polar lobe. I, II, III. Division chronology and development of the cell pattern in Dentalium dentale (Scaphopoda). Proc Kongl Ned Akad Wet C 77:57–100Google Scholar
  208. Van Dongen CAM, Geilenkirchen WLM (1975) The development of Dentalium with special reference to the significance of the polar lobe. IV. Division chronology and development of the cell pattern in Dentalium dentale after removal of the polar lobe at first cleavage. Proc Kongl Ned Akad Wet C 78:358–375Google Scholar
  209. Van Dongen CAM, Geilenkirchen WLM (1976) The development of Dentalium with special reference to the significance of the polar lobe. V and VI. Differentiation of the cell pattern in lobeless embryos of Dentalium vulgare (da Costa) during late larval development. Proc Kongl Ned Akad Wet C 79:245–266Google Scholar
  210. Villanueva R, Norman MD (2008) Biology of the planktonic stages of benthic octopuses. Oceanogr Mar Biol 46:105–202Google Scholar
  211. Vinther J, Jell P, Kampouris G, Carney R, Racicot RA, Briggs DEG (2012) The origin of multiplacophorans – convergent evolution in aculiferan molluscs. Palaeontology 55:1007–1019Google Scholar
  212. Voronezhskaya EE, Elekes K (1993) Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1:371–383PubMedGoogle Scholar
  213. Voronezhskaya EE, Elekes K (2003) Expression of peptides encoded by the FMRFamide gene in the developing nervous system of Lymnaea stagnalis. Cell Tissue Res 314:297–313PubMedGoogle Scholar
  214. Voronezhskaya EE, Tyurin SA, Nezlin LP (2002) Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 444:25–38PubMedGoogle Scholar
  215. Voronezhskaya EE, Nezlin LP, Odintsova NA, Plummer JT, Croll RP (2008) Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127:97–110Google Scholar
  216. Waller TR (1998) Origin of the molluscan class Bivalvia and a phylogeny of major groups. In: Johnston PA, Haggart JW (eds) Bivalves: an eon of evolution. University of Calgary Press, Calgary, pp 1–45Google Scholar
  217. Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the Tetraneuralia concept. Biol Bull 216:293–306PubMedGoogle Scholar
  218. Wanninger A, Haszprunar G (2001) The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entalis (Mollusca, Scaphopoda). Evol Dev 3:312–321PubMedGoogle Scholar
  219. Wanninger A, Haszprunar G (2002a) Chiton myogenesis: perspectives for the development and evolution of larval and adult muscle systems in molluscs. J Morphol 251:103–113PubMedGoogle Scholar
  220. Wanninger A, Haszprunar G (2002b) Muscle development in Antalis entalis (Mollusca, Scaphopoda) and its significance for scaphopod relationships. J Morphol 254:53–64PubMedGoogle Scholar
  221. Wanninger A, Haszprunar G (2003) The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology 122:77–85Google Scholar
  222. Wanninger A, Ruthensteiner B, Dictus WJAG, Haszprunar G (1999a) The development of the musculature in the limpet Patella with implications on its role in the process of ontogenetic torsion. Invertebr Reprod Dev 36:211–215Google Scholar
  223. Wanninger A, Ruthensteiner B, Lobenwein S, Salvenmoser W, Dictus WJAG, Haszprunar G (1999b) Development of the musculature in the limpet Patella (Mollusca, Patellogastropoda). Dev Genes Evol 209:226–238PubMedGoogle Scholar
  224. Wanninger A, Ruthensteiner B, Haszprunar G (2000) Torsion in Patella caerulea (Mollusca, Patellogastropoda): ontogenetic process, timing, and mechanisms. Invertebr Biol 119:177–187Google Scholar
  225. Wanninger A, Fuchs J, Haszprunar G (2007) The anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications. Invertebr Biol 126:268–278Google Scholar
  226. Wanninger A, Koop D, Moshel-Lynch S, Degnan BM (2008) Molluscan evolutionary development. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, pp 425–443Google Scholar
  227. Wierzejski A (1905) Embryologie von Physa fontinalis L. Z Wiss Zool 83:502–706Google Scholar
  228. Williams EA, Degnan SM (2009) Carry-over effect of larval settlement cue on postlarval gene expression in the marine gastropod Haliotis asinina. Mol Ecol 18:4434–4449PubMedGoogle Scholar
  229. Wilson EB (1898) Considerations of cell-lineage and ancestral reminiscence. Ann N Y Acad Sci 11:1–27Google Scholar
  230. Wollesen T, Wanninger A, Klussmann-Kolb A (2007) Neurogenesis of the cephalic sensory organs of Aplysia californica. Cell Tissue Res 330:361–379PubMedGoogle Scholar
  231. Wollesen T, Wanninger A, Klussmann-Kolb A (2008) Myogenesis in Aplysia californica (Cooper, 1863) (Mollusca, Gastropoda, Opisthobranchia) with special focus on muscular remodeling during metamorphosis. J Morphol 269:776–789PubMedGoogle Scholar
  232. Wollesen T, Loesel R, Wanninger A (2009) Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J Neurosci Methods 179:63–67PubMedGoogle Scholar
  233. Wollesen T, Cummins SF, Degnan BM, Wanninger A (2010) FMRFamide gene and peptide expression during CNS development of the cephalopod mollusk, Idiosepius notoides. Evol Dev 12:113–130PubMedGoogle Scholar
  234. Wollesen T, Sukhsangchan C, Seixas P, Nabhitabhata J, Wanninger A (2012) Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. J Morphol 273:776–790PubMedGoogle Scholar
  235. Wollesen T, McDougall C, Degnan BM, Wanninger A (2014) POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system. EvoDevo 5:41Google Scholar
  236. Woods FH (1931) History of the germ cells in Sphaerium striatinum (Lam.). J Morphol 51:545–595Google Scholar
  237. Woods FH (1932) Keimbahn determinants and continuity of the germ cells in Sphaerium striatinum (Lam). J Morphol 53:345–365Google Scholar
  238. Wurzinger-Mayer A, Shipway JR, Kristof A, Schwaha T, Cragg SM, Wanninger A (2014) Developmental dynamics of myogenesis in the shipworm Lyrodus pedicellatus (Mollusca: Bivalvia). Front Zool 11:90PubMedCentralPubMedGoogle Scholar
  239. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, OxfordGoogle Scholar
  240. Zardus JD, Morse PD (1998) Embryogenesis, morphology and ultrastructure of the pericalymma larva of Acila castrensis (Bivalvia: Protobranchia: Nuculoida). Invertebr Biol 117:221–244Google Scholar
  241. Ziegler HE (1885) Die Entwicklung von Cyclas cornea Lam. (Sphaerium corneum L.). Z Wiss Zool 41:525–569Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Integrative ZoologyUniversity of ViennaViennaAustria

Personalised recommendations