Apical Organ Frontal Organ ParaHox Gene Ring Muscle Dorsoventral Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank Marion Hüffel for help with the graphical representations used in this chapter as well as for invaluable support on many aspects connected to this treatise project. The University of Vienna, especially the Faculty of Life Sciences, is thanked for the generous support in establishing the Wanninger lab during the past years. I am also grateful for the previous support from the Danish Research Council (FNU), the Carlsberg Foundation, and the European Commission for funding my research during my years in Copenhagen.


  1. Ax P (1999) Das System der Metazoa, 2nd edn. Gustav Fischer, StuttgartGoogle Scholar
  2. Baba K (1951) General sketch of the development in a solenogastre, Epimenia verrucosa (Nierstrasz). Misc Rep Res Inst Nat Res (Tokyo) 19–21:38–46Google Scholar
  3. Bartolomaeus T (1993) Die Leibeshöhlenverhältnisse und Nephridialorgane der Bilateria – Ultrastruktur, Entwicklung und Evolution. University of Göttingen, GöttingenGoogle Scholar
  4. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedCrossRefGoogle Scholar
  5. Emschermann P (1965) Das Protonephridiensystem von Urnatella gracilis Leidy (Kamptozoa). Bau, Entwicklung und Funktion. Z Morphol Ökol Tiere 55:859–914CrossRefGoogle Scholar
  6. Emschermann P (1972) Loxokalypus socialis gen. et spec. nov. (Kamptozoa, Loxokalypodidae fam. nov.), ein neuer Kamptozoentyp aus dem nördlichen Pazifischen Ozean. Ein Vorschlag zur Neufassung der Kamptozoensystematik. Mar Biol 12:237–254CrossRefGoogle Scholar
  7. Emschermann P (1982) Les Kamptozoaires. État actuel de nos connaissances sur leur anatomie, leur développement, leur biologie et leur position phylogénétique. Bull Soc Zool Fr 107:317–344Google Scholar
  8. Emschermann P, Wanninger A (2013) Kamptozoa. In: Rieger G, Westheide W (eds) Spezielle Zoologie. Springer Spektrum, HeidelbergGoogle Scholar
  9. Fuchs J, Wanninger A (2008) Reconstruction of the neuromuscular system of the swimming-type larva of Loxosomella atkinsae (Entoprocta) as inferred by fluorescence labelling and confocal microscopy. Org Divers Evol 8:325–335CrossRefGoogle Scholar
  10. Fuchs J, Bright M, Funch P, Wanninger A (2006) Immunocytochemistry of the neuromuscular systems of Loxosomella vivipara and L. parguerensis (Entoprocta: Loxosomatidae). J Morphol 267:866–883PubMedCrossRefGoogle Scholar
  11. Fuchs J, Iseto T, Hirose M, Sundberg P, Obst M (2010) The first internal molecular phylogeny of the animal phylum Entoprocta (Kamptozoa). Mol Phylogenet Evol 56:370–379PubMedCrossRefGoogle Scholar
  12. Gerould JH (1903) Studies on the embryology of the Sipunculidae. I. The embryonal envelope and its homologue. Mark Anniversary Volume. pp 437–452Google Scholar
  13. Harmer SF (1885) On the structure and life history of Loxosoma. Q J Microsc Sci 25:261–337, pls. 19–21Google Scholar
  14. Haszprunar G, Wanninger A (2008) On the fine structure of the creeping larva of Loxosomella murmanica: additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca. Acta Zool (Stockholm) 89:137–148CrossRefGoogle Scholar
  15. Hatschek B (1877) Embryonalentwicklung und Knospung der Pedicellina echinata. Z Wiss Zool 29:502–549Google Scholar
  16. Heath H (1898) The development of Ischnochiton. Zool Jahrb Abt Anat Ontog Tiere 12:567–656Google Scholar
  17. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Lond B 276:4261–4270CrossRefGoogle Scholar
  18. Malakhov VV (1990) Description of the development of Ascopodaria discreta (Coloniales, Barentsiidae) and discussion of the Kamptozoa status in the animal kingdom. Zool Zh 69:20–30Google Scholar
  19. Marcus E (1939) Bryozoários marinhos brasileiros III. Bol Fac Fil Ciên Letr Univ S Paulo, XIII. Zoologica 3:111–354Google Scholar
  20. Maslakova SA, Martindale MQ, Norenburg JL (2004) Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Dev Biol 267:342–360PubMedCrossRefGoogle Scholar
  21. Merkel J, Wollesen T, Lieb B, Wanninger A (2012) Spiral cleavage and early embryology of a loxosomatid entoproct and the usefulness of spiralian apical cross patterns for phylogenetic inferences. BMC Dev Biol 12:11PubMedCentralPubMedCrossRefGoogle Scholar
  22. Nesnidal MP, Helmkampf M, Meyer A, Witek A, Bruchhaus I, Ebersberger I, Hankeln T, Lieb B, Struck TH, Hausdorf B (2013) New phylogenomic data support the monophyly of Lophophorata and an ectoproct-phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol Biol 13:253PubMedCentralPubMedCrossRefGoogle Scholar
  23. Newby WW (1932) The early embryology of the echiuroid, Urechis. Biol Bull 63:387–399CrossRefGoogle Scholar
  24. Nickerson WS (1901) On Loxosoma davenporti sp. nov. an endoproct from the New England coast. J Morphol 17:351–380, pls. 32–33CrossRefGoogle Scholar
  25. Nielsen C (1967) Metamorphosis of the larva of Loxosomella murmanica (Nilus) (Entoprocta). Ophelia 4:85–89CrossRefGoogle Scholar
  26. Nielsen C (1971) Entoproct life-cycles and the entoproct/ectoproct relationship. Ophelia 9:209–341CrossRefGoogle Scholar
  27. Nielsen C (2012) Animal evolution: interrelationships of the living phyla. Oxford University Press, OxfordGoogle Scholar
  28. Nielsen C, Jespersen A (1997) Entoprocta. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 13. Wiley-Liss, New YorkGoogle Scholar
  29. Rawlinson KA (2010) Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Front Zool 7:12PubMedCentralPubMedCrossRefGoogle Scholar
  30. Schwaha T, Wood TS, Wanninger A (2010) Trapped in freshwater: the internal anatomy of the entoproct Loxosomatoides sirindhornae. Front Zool 7:7PubMedCentralPubMedCrossRefGoogle Scholar
  31. Wanninger A (2004) Myo-anatomy of juvenile and adult loxosomatid Entoprocta and the use of muscular body plans for phylogenetic inferences. J Morphol 261:249–257PubMedCrossRefGoogle Scholar
  32. Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the Tetraneuralia concept. Biol Bull 216:293–306Google Scholar
  33. Wanninger A, Fuchs J, Haszprunar G (2007) The anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications. Invertebr Biol 126:268–278CrossRefGoogle Scholar
  34. Wasson K (1997) Sexual modes in the colonial kamptozoan genus Barentsia. Biol Bull 193:163–170CrossRefGoogle Scholar
  35. Wilson EB (1892) The cell-lineage of Nereis. A contribution to the cytogeny of the annelid body. J Morphol 6:361–480CrossRefGoogle Scholar
  36. Wilson EB (1904) Experimental studies in germinal localization. II. Experiments on the cleavage-mosaic in Patella and Dentalium. J Exp Zool 1:197–268CrossRefGoogle Scholar
  37. Woollacott RM, Eakin RM (1973) Ultrastructure of a potential photoreceptoral organ in the larva of an entoproct. J Ultrastruct Res 43:412–425PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Integrative ZoologyUniversity of ViennaViennaAustria

Personalised recommendations