Enclosed in shells with ventral and dorsal valves, extant brachiopods (meaning “arm” and “foot”) are classified into three major subphyla: the Rhynchonelliformea, the Linguliformea, and the Craniiformea. Rhynchonelliform brachiopods encompass what were once referred to as the “articulate” brachiopods, so named for the mineralized hinge that connects the calcite valves of their shells. No such hinge is found in members of the other two subphyla, rather their valves are held together only by various muscles and connective tissues. Craniiform brachiopods (e.g., Novocrania) also have calcitic shells, but the shells of linguliform brachiopods (such as the lingulid Glottidia and the discinid Discinisca) are composed of apatite, a phosphatic mineral, with an outer layer of chitin. Most brachiopod morphotypes have a smaller dorsal and a larger ventral valve, the latter of which often bears a muscular or rigid attachment structure called the pedicle. Rhynchonelliform brachiopods are often attached to hard substrata by the rigid pedicle with their ventral valves oriented upward. The shells of linguliform brachiopods such as Glottidia and Lingula generally have equally sized valves and their pedicles are long, muscular structures modified for burrowing into soft sediments. Craniiform brachiopods have lost the pedicle and cement directly to hard substrates.


Ventral Valve Dorsal Valve Apical Organ Competent Larva Late Gastrula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Kelly Ryan and Russel Zimmer provided excellent comments on previous versions of this chapter. A portion of the data in this book chapter was gathered at the Smithsonian Marine Station (Fort Pierce, FL) and is designated contribution number 990. Faculty Research Grants provided by Long Island University-Post also supported this work.


  1. Altenburger A, Wanninger A (2009) Comparative larval myogenesis and adult myoanatomy of the rhynchonelliform (articulate) brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa. Front Zool 6:3PubMedCentralPubMedCrossRefGoogle Scholar
  2. Altenburger A, Martinez P, Wanninger A (2011) Homeobox gene expression in Brachiopoda: the role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification. Gene Expr Patterns 11:427–436PubMedCrossRefGoogle Scholar
  3. Altenburger A, Wanninger A, Holmer LE (2013) Metamorphosis in Craniiformea revisited: Novocrania anomala shows delayed development of the ventral valve. Zoomorphology 132:379–387CrossRefGoogle Scholar
  4. Arendt D, Tessmar K, de Campos-Baptista MIM, Dorresteijn A, Wittbrodt J (2002) Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129:1143–1154PubMedGoogle Scholar
  5. Bitner MA (2006) Recent brachiopods from the Fiji and Wallis and Futuna Islands, Southwest Pacific. Mém Muséum Nat D’Histoire Nat 193:15–32Google Scholar
  6. Byrne M, Nakajima Y, Chee FC, Burke RD (2007) Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev 9:432–445PubMedCrossRefGoogle Scholar
  7. Chuang SH (1977) Larval development in Discinisca (inarticulate brachiopod). Am Zool 17:39–53Google Scholar
  8. Chuang SH (1996) The embryonic, larval, and early postlarval development of the terebratellid brachiopod Calloria inconspicua (Sowerby). J R Soc N Z 26:119–137CrossRefGoogle Scholar
  9. Cohen BL (2000) Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proc Biol Sci 267:225–231PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cohen BL (2013) Rerooting the rDNA gene tree reveals phoronids to be “brachiopods without shells”; dangers of wide taxon samples in metazoan phylogenetics (Phoronida; Brachiopoda). Zool J Linn Soc 167:82–92CrossRefGoogle Scholar
  11. Cohen BL, Bitner MA (2013) Molecular phylogeny of rhynchonellide articulate brachiopods (Brachiopoda, Rhynchonellida). J Paleontol 87:211–216CrossRefGoogle Scholar
  12. Cohen B, Weydmann A (2005) Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian. Org Divers Evol 5:253–273CrossRefGoogle Scholar
  13. Cohen BL, Gawthrop A, Cavalier ST (1998) Molecular phylogeny of brachiopods and phoronids based on nuclear–encoded small subunit ribosomal RNA gene sequences. Philos Trans Roy Soc Lond B: Biol Sci 353:2039–2061CrossRefGoogle Scholar
  14. Cohen BL, Holmer LE, Lüter C (2003) The brachiopod fold: a neglected body plan hypothesis. Palaeontology 46:59–65CrossRefGoogle Scholar
  15. Conklin EG (1902) The embryology of a brachiopod, Terebratulina septentrionalis Couthouy. Proc Am Philos Soc 41:41–76Google Scholar
  16. Culter JK, Simon JL (1987) Sex ratios and the occurrence of hermaphrodites in the inarticulate brachiopod, Glottidia pyramidata (Stimpson) in Tampa Bay, Florida. Bull Mar Sci 40:193–197Google Scholar
  17. D’Hondt JL, Franzén Å (2001) Observations on embryological and larval stages of Macandrevia cranium (Müller, 1776) (Brachiopoda, Articulata). Invertebr Reprod Dev 40:153–161CrossRefGoogle Scholar
  18. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedCrossRefGoogle Scholar
  19. Emig CC (1992) Functional disposition of the lophophore in living Brachiopoda. Lethaia 25:291–302CrossRefGoogle Scholar
  20. Emig CC (1997) Biogeography of inarticulated brachio-pods. In: Kaelser RL (ed) Treatise on invertebrate paleontology, Pt. H, Revised. The Geological Society of America and The University of Kansas, Boulder and Lawrence, pp 497–502Google Scholar
  21. Emig CC, Bitner MA, Álvarez F (2013) Phylum Brachiopoda. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Magnolia Press, Auckland, NZ, pp. 75–78, Zootaxa 3703Google Scholar
  22. Ferrier DEK (2012) Evolutionary crossroads in developmental biology: annelids. Development 139:2643–2653PubMedCrossRefGoogle Scholar
  23. Freeman G (1995) Regional specification during embryogenesis in the inarticulate brachiopod Glottidia. Dev Biol 172:15–36PubMedCrossRefGoogle Scholar
  24. Freeman G (1999) Regional specification during embryogenesis in the inarticulate brachiopod Discinisca. Dev Biol 209:321–339PubMedCrossRefGoogle Scholar
  25. Freeman G (2000) Regional Specification during embryogenesis in the craniiform brachiopod Crania anomala. Dev Biol 227:219–238PubMedCrossRefGoogle Scholar
  26. Freeman G (2003) Regional specification during embryogenesis in rhynchonelliform brachiopods. Dev Biol 261:268–287PubMedCrossRefGoogle Scholar
  27. Fröbius AC, Seaver EC (2006) Capitella sp. I homeobrain-like, the first lophotrochozoan member of a novel paired-like homeobox gene family. Gene Expr Patterns 6:985–991Google Scholar
  28. Gustus RM, Cloney RA (1972) Ultrastructural similarities between setae of brachiopods and polychaetes. Acta Zool 53:229–233CrossRefGoogle Scholar
  29. Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643PubMedCrossRefGoogle Scholar
  30. Hausdorf B, Helmkampf M, Nesnidal MP, Bruchhaus I (2010) Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Mol Phylogenet Evol 55:1121–1127PubMedCrossRefGoogle Scholar
  31. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Muller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B Biol Sci 276:4261–4270CrossRefGoogle Scholar
  32. Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354:522–525PubMedCrossRefGoogle Scholar
  33. Kaulfuss A, Seidel R, Lüter C (2013) Linking micromorphism, brooding, and hermaphroditism in brachiopods: insights from caribbean Argyrotheca (Brachiopoda). J Morphol 274:361–376PubMedCrossRefGoogle Scholar
  34. LaBarbera M (1981) Water flow patterns in and around three species of articulate brachiopods. J Exp Mar Biol Ecol 55:185–206CrossRefGoogle Scholar
  35. Larsson CM, Skovsted CB, Brock GA, Balthasar U, Topper TP, Holmer LE (2013) Paterimitra pyramidalis from South Australia: scleritome, shell structure and evolution of a lower Cambrian stem group brachiopod. Palaeontology 57:417–446CrossRefGoogle Scholar
  36. Long JA, Stricker SA (1991) Brachiopoda. In: Giese AC, Pearse JS, Pearse V (eds) Reproduction of marine invertebrates, vol VI, Echinoderms and Lophophorates Pacific Grove. The Boxwood Press, CA, pp 47–84Google Scholar
  37. Lüter C (2000) Ultrastructure of larval and adult setae of Brachiopoda. Zool Anz 239:75–90Google Scholar
  38. Mallatt J, Craig CW, Yoder MJ (2012) Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol 64:603–617PubMedCrossRefGoogle Scholar
  39. Martín-Durán JM, Janssen R, Wennberg S, Budd GE, Hejnol A (2012) Deuterostomic development in the protostome Priapulus caudatus. Curr Biol 22:2161–2166PubMedCrossRefGoogle Scholar
  40. Meyer NP, Seaver EC (2009) Neurogenesis in an annelid: characterization of brain neural precursors in the polychaete Capitella sp. I. Dev Biol 335:237–252PubMedCrossRefGoogle Scholar
  41. Murdock DJE, Bengtson S, Marone F, Greenwood JM, Donoghue PCJ (2014) Evaluating scenarios for the evolutionary assembly of the brachiopod body plan. Evol Dev 16:13–24PubMedCrossRefGoogle Scholar
  42. Nederbragt A, te Welscher P, van den Driesche S, van Loon AX, Dictus W (2002) Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol 212:330–337PubMedCrossRefGoogle Scholar
  43. Nesnidal MP, Helmkampf M, Meyer A, Witek A, Bruchhaus I, Ebersberger I, Hankeln T, Lieb B, Struck TH, Hausdorf B (2013) New phylogenomic data support the monophyly of Lophophorata and an ectoproct-phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol Biol 13:253PubMedCentralPubMedCrossRefGoogle Scholar
  44. Nielsen C (1991) The development of the brachiopod Crania (Neocrania) anomala (O. F. Müller) and its phylogenetic significance. Acta Zool 72:7–28CrossRefGoogle Scholar
  45. Paine RT (1963) Ecology of the brachiopod Glottidia pyramidata. Ecol Monogr 33:187–213CrossRefGoogle Scholar
  46. Passamaneck YJ, Martindale MQ (2013) Evidence for a phototransduction cascade in an early brachiopod embryo. Integr Comp Biol 53:17–26PubMedCrossRefGoogle Scholar
  47. Passamaneck YJ, Furchheim N, Hejnol A, Martindale MQ, Lüter C (2011) Ciliary photoreceptors in the cerebral eyes of a protostome larva. EvoDevo 2:6PubMedCentralPubMedCrossRefGoogle Scholar
  48. Pennington JT, Tamburri MN, Barry JP (1999) Development, temperature tolerance, and settlement preference of embryos and larvae of the articulate brachiopod Laqueus californianus. Biol Bull 196:245–256CrossRefGoogle Scholar
  49. Richardson JR (1997) Ecology of articulated brachiopods. In: Kaelser RL (ed) Treatise on invertebrate paleotology, Pt. H., Revised. The Geological Society of America and The University of Kansas, Boulder and Lawrence, pp 441–462Google Scholar
  50. Rong J, Cocks LRM (2013) Global diversity and endemism in Early Silurian (Aeronian) brachiopods. Lethaia 47:77–106CrossRefGoogle Scholar
  51. Röttinger E, Martindale MQ (2011) Ventralization of an indirect developing hemichordate by NiCl2 suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 354:173–190PubMedCrossRefGoogle Scholar
  52. Santagata S (2004) Larval development of Phoronis pallida (Phoronida): implications for morphological convergence and divergence among larval body plans. J Morphol 259:347–358PubMedCrossRefGoogle Scholar
  53. Santagata S (2011) Evaluating neurophylogenetic patterns in the larval nervous systems of brachiopods and their evolutionary significance to other bilaterian phyla. J Morphol 272:1153–1169PubMedCrossRefGoogle Scholar
  54. Santagata S, Cohen BL (2009) Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zool J Linn Soc 157:34–50CrossRefGoogle Scholar
  55. Santagata S, Resh C, Hejnol A, Martindale MQ, Passamaneck YJ (2012) Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system. EvoDevo 3:3PubMedCentralPubMedCrossRefGoogle Scholar
  56. Schreiber HA, Bitner MA, Carlson SJ (2013) Morphological analysis of phylogenetic relationships among extant rhynchonellid brachiopods. J Paleontol 87:550–569CrossRefGoogle Scholar
  57. Seidel R, Hoffmann J, Kaulfuss A, Lüter C (2012) Comparative histology of larval brooding in Thecideoidea (Brachiopoda). Zool Anz 251:288–296CrossRefGoogle Scholar
  58. Skovsted CB, Brock GA, Topper TP, Paterson JR, Holmer LE (2011) Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the Early Cambrian of South Australia. Palaeontology 54:253–286CrossRefGoogle Scholar
  59. Smart TI, von Dassow G (2009) Unusual development of the mitraria larva in the polychaete Owenia collaris. Biol Bull 217:253–268PubMedGoogle Scholar
  60. Sperling EA, Pisani D, Peterson KJ (2011) Molecular paleobiological insights into the origin of the Brachiopoda. Evol Dev 13:290–303PubMedCrossRefGoogle Scholar
  61. Steinmetz PR, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14PubMedCentralPubMedCrossRefGoogle Scholar
  62. Stricker SA, Reed CG (1985a) Development of the pedicle in the articulate brachiopod Terebratalia transversa (Brachiopoda, Terebratulida). Zoomorphology 105:253–264CrossRefGoogle Scholar
  63. Stricker SA, Reed CG (1985b) The ontogeny of shell secretion in Terebratalia transversa (Brachiopoda, Articulata) I. Development of the mantle. J Morphol 183:233–250PubMedCrossRefGoogle Scholar
  64. Stricker SA, Reed CG (1985c) The ontogeny of shell secretion in Terebratalia transversa (Brachiopoda, Articulata) II. Formation of the protegulum and juvenile shell. J Morphol 183:251–271PubMedCrossRefGoogle Scholar
  65. Tessmar-Raible K (2007) The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin Cell Dev Biol 18:492–501PubMedCrossRefGoogle Scholar
  66. Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400PubMedCrossRefGoogle Scholar
  67. Thomson RC, Plachetzki DC, Luke Mahler D, Moore BR (2014) A critical appraisal of the use of microRNA data in phylogenetics. Proc Nat Acad Sci US Am 10:1073Google Scholar
  68. Topper TP, Holmer LE, Skovsted CB, Brock GA, Balthasar U, Larsson CM, Stolk SP, Harper DA (2013) The oldest brachiopods from the lower Cambrian of South Australia. Acta Palaeontol Pol 58:93–109Google Scholar
  69. Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the Tetraneuralia concept. Biol Bull 216:293–306PubMedGoogle Scholar
  70. Williams A, Carlson SJ, Brunton CHC, Holmer LE, Popov L (1996) A supra-ordinal classification of the Brachiopoda. Philos Trans R Soc B: Biol Sci 351:1171–1193CrossRefGoogle Scholar
  71. Williams A, James MA, Emig CC, Mackay S, Rhodes MC (1997) Anatomy. In Moore RC (ed) Treatise on invertebrate paleontology, part H (revised), vol 1. Geological Society of America and University of Kansas Press, Boulder and Lawrence. pp 7–188Google Scholar
  72. Yaguchi S, Yaguchi J, Wei Z, Shiba K, Angerer LM, Inaba K (2010) ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo. Dev Biol 348:67–75PubMedCentralPubMedCrossRefGoogle Scholar
  73. Yang S, Lai X, Sheng G, Wang S (2013) Deep genetic divergence within a “living fossil” brachiopod Lingula anatina. J Paleontol 87:902–908CrossRefGoogle Scholar
  74. Yatsu N (1902) On the development of Lingula anatina. J Coll Sci Imp Univ Tokyo 17:1–112Google Scholar
  75. Zimmer RL (1997) Phoronids, brachiopods, and bryozoans, the lophophorates. In: Gilbert SF, Raunio AM (eds) Embryology: constructing the organism. Sinauer Associates, Sunderland, pp 279–305Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Biology DepartmentLong Island University-PostGreenvaleUSA

Personalised recommendations