Advertisement

Abstract

First considered to be plantlike (moss) animals similar to cnidarians, the evolutionary origin and affinities of the ectoprocts or bryozoans have been enigmatic subjects of research since the sixteenth century. The term Bryozoa originally encompassed both the entoprocts (or kamptozoans, Chap. 6) and the ectoprocts; however, these animal groups were later separated and eventually organized into different phyla. Ectoprocts are aquatic invertebrates that can form elaborate and occasionally large colonies (>1 m) composed of numerous individual zooids, each typically no more than a millimeter in length. Zooids in a colony may be one of several different polymorphic forms specialized for various functions such as feeding, reproduction, or defense. Current estimates of ectoproct diversity range from 4,000 to 8,000 extant species, many of which are broadly distributed throughout freshwater, brackish, and marine environments. More than 15,000 fossil species that trace their origins back to the Ordovician period approximately 483 million years ago have been described. This period of origin is much later than that of many other animal phyla that arose during or before the Cambrian. Although one Cambrian ectoproct fossil has been described, this morphotype has been reinterpreted as a type of octocoral. Whether the relatively late geologic origin of the ectoprocts is correct or merely the result of preservational bias against some as-yet-unknown soft-bodied form remains an open question, but all extant morphological grades of ectoprocts with and without mineralized zooids were clearly present by the Jurassic.

Keywords

Apical Organ Blastemal Cell Larval Type Primary Embryo Apical Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Kelly Ryan and Russel Zimmer provided excellent comments on previous versions of this chapter. A portion of the data in this book chapter was gathered at the Smithsonian Marine Station (Fort Pierce, FL) and is designated contribution number 989. Faculty Research Grants provided by Long Island University-Post also supported this work.

References

  1. Altenburger A, Wanninger A (2009) Comparative larval myogenesis and adult myoanatomy of the rhynchonelliform (articulate) brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa. Front Zool 6:3PubMedCentralPubMedCrossRefGoogle Scholar
  2. Banta WC (1969) The body wall of cheilostome Bryozoa. II. Interzoidal communication organs. J Morphol 129:149–169CrossRefGoogle Scholar
  3. Barrois J (1877) Recherches sur l’embryologie des bryozoaires. Trav Station Zool Wimereux 1:1–305Google Scholar
  4. Best MA, Thorpe JP (1985) Autoradiographic study of feeding and the colonial transport of metabolites in the marine bryozoan Membranipora membranacea. Mar Biol 84:295–300CrossRefGoogle Scholar
  5. Bock PE, Gordon DP (2013) Phylum Bryozoa Ehrenberg, 1831. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Magnolia Press, Auckland, NZ, pp. 67–74, Zootaxa 3703Google Scholar
  6. Borg F (1926) Studies on recent cyclostomatous Bryozoa. Zoologiska Bidrag från Uppsala 10:181–507Google Scholar
  7. Boyle MJ, Seaver EC (2010) Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula). EvoDevo 1:2PubMedCentralPubMedCrossRefGoogle Scholar
  8. Braem F (1897) Die geschlechtliche Entwicklung von Plumatella fungosa. Zoologica (Stuttgart) 10:1–96Google Scholar
  9. Brien P (1953) Etude sur les Phylactolaemates. Ann Soc Roy Zoologique Belg 84:301–440Google Scholar
  10. Cori CI (1929) Kamptozoa, dritter Cladus der Vermes Amera. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie. Walter de Gruyter and Co, Berlin, Zweiter Band, pp 1–64Google Scholar
  11. Corrêa DD (1948) A embriologia de Bugula flabellata (J. V. Thompson) (Bryozoa, Ectoprocta). Bol Faculdade Filos Ciênc Let Univ S Paulo Zool 13:7–71Google Scholar
  12. d’Hondt JL (1977) Structure larvaire et histogenèse post-larvaire chez Crista denticulata (Lamarck) (Bryozoa, Cyclostomata, Articulata). Zool Scr 6:55–60CrossRefGoogle Scholar
  13. d’Hondt JL (2005) Etat des connaissances sur le developement embryonnaire des Bryozoaires Phylactolaemates. Denisia 16:59–68Google Scholar
  14. Dick MH, Lidgard S, Gordon DP, Mawatari SF (2009) The origin of ascophoran bryozoans was historically contingent but likely. Proc R Soc B Biol Sci 276:3141–3148CrossRefGoogle Scholar
  15. Ehrenberg CG (1831) Symbolae physicae, seu Icones et Descriptiones Mammalium Avium, Insectorum et Animalium Evertebratorum. Berlin. Pars Zoologica No paginationGoogle Scholar
  16. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097PubMedCrossRefGoogle Scholar
  17. Franzén Å, Sensenbaugh T (1983) Fine structure of the apical plate in the larva of the freshwater bryozoan Plumatella fungosa (Pallas) (Bryozoa: Phylactolaemata). Zoomorphology 102:87–98CrossRefGoogle Scholar
  18. Fuchs J, Martindale MQ, Hejnol A (2011) Gene expression in bryozoan larvae suggest a fundamental importance of pre-patterned blastemic cells in the bryozoan life-cycle. EvoDevo 2:13PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gruhl A (2009) Serotonergic and FMRFamidergic nervous systems in gymnolaemate bryozoan larvae. Zoomorphology 128:135–156CrossRefGoogle Scholar
  20. Gruhl A (2010) Neuromuscular system of the larva of Fredericella sultana (Bryozoa: Phylactolaemata). Zool Anz 249:139–149CrossRefGoogle Scholar
  21. Gruhl A, Bartolomaeus T (2008) Ganglion ultrastructure in phylactolaemate Bryozoa: evidence for a neuroepithelium. J Morphol 269:594–603PubMedCrossRefGoogle Scholar
  22. Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643PubMedCrossRefGoogle Scholar
  23. Hausdorf B, Helmkampf M, Meyer A, Witek A, Herlyn H, Bruchhaus I, Hankeln T, Struck TH, Lieb B (2007) Spiralian phylogenomics supports the resurrection of Bryozoa comprising Ectoprocta and Entoprocta. Mol Biol Evol 24:2723–2729PubMedCrossRefGoogle Scholar
  24. Hausdorf B, Helmkampf M, Nesnidal MP, Bruchhaus I (2010) Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Mol Phylogenet Evol 55:1121–1127PubMedCrossRefGoogle Scholar
  25. Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382–386PubMedCrossRefGoogle Scholar
  26. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Muller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B Biol Sci 276:4261–4270CrossRefGoogle Scholar
  27. Helmkampf M, Bruchhaus I, Hausdorf B (2008) Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proc Roy Soc Ser B: Biol Sci 275:1927–1933CrossRefGoogle Scholar
  28. Hughes RN, D’Amato ME, Bishop JDD, Carvalho GR, Craig SF, Hansson LJ, Harley MA, Pemberton AJ (2005) Paradoxical polyembryony? Embryonic cloning in an ancient order of marine bryozoans. Biol Lett 1:178–180PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hyman LH (1959) The Invertebrates: smaller coelomate groups, Chaetognatha, Hemichordata, Pogonophora, Phoronida, Ectoprocta, Brachipoda, Sipunculida, the coelomate Bilateria, vol V. McGraw-Hill, New York, pp 1–783Google Scholar
  30. Jang K, Hwang U (2009) Complete mitochondrial genome of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata): phylogenetic position of Bryozoa and phylogeny of lophophorates within the Lophotrochozoa. BMC Genomics 10:167PubMedCentralPubMedCrossRefGoogle Scholar
  31. Jebram D (1992) The polyphyletic origin of the “Cheilostomata” (Bryozoa). J Zool Syst Evol Res 30:46–52CrossRefGoogle Scholar
  32. Kupelweiser H (1905) Untersuchungen über den feineren Bau und die Metamorphose des Cyphonautes. Zoologica (Stuttgart) 19:1–50Google Scholar
  33. Landing E, English A, Keppie JD (2010) Cambrian origin of all skeletalized metazoan phyla–discovery of earth’s oldest bryozoans (Upper Cambrian, southern Mexico). Geology 38:547–550CrossRefGoogle Scholar
  34. Lidgard S, McKinney FK, Taylor PD (1993) Competition, clade replacement, and a history of cyclostome and cheilostome bryozoan diversity. Paleobiology 19:352–371Google Scholar
  35. Lyke EB, Reed CG, Woollacott RM (1983) Origin of the cystid epidermis during the metamorphosis of three species of gymnolaemate bryozoans. Zoomorphology 102:99–110CrossRefGoogle Scholar
  36. McKinney FK (1992) Competitive interactions between related clades: evolutionary implications of overgrowth interactions between encrusting cyclostome and cheilostome bryozoans. Mar Biol 114:645–652CrossRefGoogle Scholar
  37. McKinney FK (1995) One hundred million years of competitive interactions between bryozoan clades: asymmetrical but not escalating. Biol J Linn Soc 56:465–481CrossRefGoogle Scholar
  38. Nesnidal MP, Helmkampf M, Meyer A, Witek A, Bruchhaus I, Ebersberger I, Hankeln T, Lieb B, Struck TH, Hausdorf B (2013) New phylogenomic data support the monophyly of Lophophorata and an ectoproct-phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol Biol 13:253PubMedCentralPubMedCrossRefGoogle Scholar
  39. Nielsen C (1970) On metamorphosis and ancestrula formation in cyclostomatous bryozoans. Ophelia 7:217–256Google Scholar
  40. Nitsche H (1869) Beiträge zur Erkenntnis der Bryozoen. I Beobachtungen ueber die Entwicklungsgeschichte einiger cheilostomen Bryozoen. Z Wiss Zool 20:1–13Google Scholar
  41. Ostrovsky AN (2013) From incipient to substantial: evolution of placentotrophy in a phylum of aquatic colonial invertebrates. Evolution 67:1368–1382PubMedCentralPubMedGoogle Scholar
  42. Ostrovsky AN, Taylor PD, Dick MH, Mawatari SF (2008) Pre-cenomanian cheilostome Bryozoa: current state of knowledge. In: Okada H, Mawatari SF, Suzuki N, Gautam P (eds) Origin and evolution of natural diversity. Proceedings of international symposium of the Origin and Evolution of Natural Diversity. Hokkaido University Collection of Scholarly and Academic Papers, Sapporo, pp 69–74Google Scholar
  43. Ostrovsky AN, Gordon DP, Lidgard S (2009) Independent evolution of matrotrophy in the major classes of Bryozoa: transitions among reproductive patterns and their ecological background. Mar Ecol Prog Ser 378:113–124CrossRefGoogle Scholar
  44. Passamaneck YJ, Halanych KM (2004) Evidence from Hox genes that bryozoans are lophotrochozoans. Evol Dev 6:275–281PubMedCrossRefGoogle Scholar
  45. Passamaneck Y, Halanych KM (2006) Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Mol Phylogenet Evol 40:20–28PubMedCrossRefGoogle Scholar
  46. Pemberton AJ, Hansson LJ, Craig SF, Hughes RN, Bishop JDD (2007) Microscale genetic differentiation in a sessile invertebrate with cloned larvae: investigating the role of polyembryony. Mar Biol 153:71–82CrossRefGoogle Scholar
  47. Prouho H (1892) Contribution à l’histoire des Bryozoaires. Arch Zool Exp Gén 10:557–656Google Scholar
  48. Reed CG (1991) Bryozoa. In: Giese AC, Pearse JS, Pearse V (eds) Reproduction of marine invertebrates, vol 6, Echinoderms and Lophophorates. The Boxwood Press, Pacific Grove, pp 85–245Google Scholar
  49. Reed CG, Cloney RA (1982) The settlement and metamorphosis of the marine bryozoan Bowerbankia gracilis (Ctenostomata: Vesicularioidea). Zoomorphology 101:103–132CrossRefGoogle Scholar
  50. Reed CG, Woollacott RM (1982) Mechanisms of rapid morphogenetic movements in the metamorphosis of the bryozoan Bugula neritina (Cheilostomata, Cellularioidea). I. Attachment to the substratum. J Morphol 172:335–348CrossRefGoogle Scholar
  51. Reed CG, Ninos JM, Woollacott RM (1988) Bryozoan larvae as mosaics of multifunctional ciliary fields: ultrastructure of the sensory organs of Bugula stolonifera (Cheilostomata: Cellularioidea). J Morphol 197:127–145CrossRefGoogle Scholar
  52. Ryland JS (2005) Bryozoa: an introductory overview. Denisia 16:9–20Google Scholar
  53. Santagata S (2008a) The morphology and evolutionary significance of the ciliary fields and musculature among marine bryozoan larvae. J Morphol 269:349–364PubMedCrossRefGoogle Scholar
  54. Santagata S (2008b) Evolutionary and structural diversification of the larval nervous system among marine bryozoans. Biol Bull 215:3–23PubMedCrossRefGoogle Scholar
  55. Santagata S (2011) Evaluating neurophylogenetic patterns in the larval nervous systems of brachiopods and their evolutionary significance to other bilaterian phyla. J Morphol 272:1153–1169PubMedCrossRefGoogle Scholar
  56. Santagata S, Banta WC (1996) Origin of brooding and ovicells in cheilostome bryozoans: interpretive morphology of Scrupocellaria ferox. Invertebr Biol 115:170–180CrossRefGoogle Scholar
  57. Santagata S, Zimmer RL (2002) Comparison of the neuromuscular systems among actinotroch larvae: systematic and evolutionary implications. Evol Dev 4:43–54PubMedCrossRefGoogle Scholar
  58. Schwaha T, Wanninger A (2012) Myoanatomy and serotonergic nervous system of plumatellid and fredericellid Phylactolaemata (Lophotrochozoa, Ectoprocta). J Morphol 273:57–67PubMedCrossRefGoogle Scholar
  59. Schwaha T, Wood TS, Wanninger A (2011) Myoanatomy and serotonergic nervous system of the ctenostome Hislopia malayensis: evolutionary trends in bodyplan patterning of Ectoprocta. Front Zool 8:11PubMedCentralPubMedCrossRefGoogle Scholar
  60. Schwaninger HR (2008) Global mitochondrial DNA phylogeography and biogeographic history of the antitropically and longitudinally disjunct marine bryozoan Membranipora membranacea L. (Cheilostomata): another cryptic marine sibling species complex? Mol Phylogenet Evol 49:203–218Google Scholar
  61. Sensenbaugh T, Franzén Å (1998) Ultrastructural study of metamorphosis in the freshwater bryozoan Plumatella fungosa (Bryozoa, Phylactolaemata). Invertebr Reprod Dev 34:301–308CrossRefGoogle Scholar
  62. Stricker SA (1988) Metamorphosis of the marine bryozoan Membranipora membranacea: an ultrastructural study of rapid morphogenetic movements. J Morphol 196:53–72CrossRefGoogle Scholar
  63. Stricker SA, Reed CG, Zimmer RL (1988a) The cyphonautes larva of the marine bryozoan Membranipora membranacea. I. General morphology, body wall, and gut. Can J Zool 66:368–383CrossRefGoogle Scholar
  64. Stricker SA, Reed CG, Zimmer RL (1988b) The cyphonautes larva of the marine bryozoan Membranipora membranacea. II. Internal sac, musculature, and pyriform organ. Membranipora membranacea. I. General morphology, body wall, and gut. Can J Zool 66:384–398CrossRefGoogle Scholar
  65. Taylor PD, Ernst A (2004) Bryozoans. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great ordovician biodiversification event. Columbia University Press, New York, pp 147–156Google Scholar
  66. Taylor PD, Weedon MJ (2008) Skeletal ultrastructure and phylogeny of cyclostome bryozoans. Zool J Linn Soc 128:337–399CrossRefGoogle Scholar
  67. Taylor PD, Berning B, Wilson MA (2013) Reinterpretation of the Cambrian ‘bryozoan’ Pywackia as an octocoral. J Paleontol 87:984–990CrossRefGoogle Scholar
  68. Temereva E, Wanninger A (2012) Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evol Biol 12:121PubMedCentralPubMedCrossRefGoogle Scholar
  69. Temkin MH (1994) Gamete spawning and fertilization in the gymnolaemate bryozoan Membranipora membranacea. Biol Bull 187:143–155PubMedCrossRefGoogle Scholar
  70. Temkin MH (1996) Comparative fertilization biology of gymnolaemate bryozoans. Mar Biol 127:329–339CrossRefGoogle Scholar
  71. Thorpe J, Shelton G, Laverack M (1975) Colonial nervous control of lophophore retraction in cheilostome Bryozoa. Science 189:60–61PubMedCrossRefGoogle Scholar
  72. Todd JA (2000) The central role of ctenostomes in bryozoan phylogeny. In: Cubilla H, Jackson JBC (eds) Proceedings of the 11th international Bryozoology Association conference. Smithsonian Tropical Research Institute, Balboa, pp 104–135Google Scholar
  73. Waeschenbach A, Cox CJ, Littlewood DTJ, Porter JS, Taylor PD (2009) First molecular estimate of cyclostome bryozoan phylogeny confirms extensive homoplasy among skeletal characters used in traditional taxonomy. Mol Phylogenet Evol 52:241–251PubMedCrossRefGoogle Scholar
  74. Waeschenbach A, Taylor PD, Littlewood DTJ (2012) A molecular phylogeny of bryozoans. Mol Phylogenet Evol 62:718–735PubMedCrossRefGoogle Scholar
  75. Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the Tetraneuralia concept. Biol Bull 216:293–306PubMedGoogle Scholar
  76. Wong YH, Wang H, Ravasi T, Qian PY (2012) Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS ONE 7:e33323PubMedCentralPubMedCrossRefGoogle Scholar
  77. Wong YH, Ryu T, Seridi L, Ghosheh Y, Bougouffa S, Qian PY, Ravasi T (2014). Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. Sci Rep 4:6534PubMedCentralPubMedCrossRefGoogle Scholar
  78. Wood TS, Lore M (2005) The higher phylogeny of phylactolaemate bryozoans inferred from 18S ribosomal DNA sequences. In: Wyse Jackson PN, Cancino JM, Moyano GHI (eds) Proceedings of the 13th international Bryozoology Association conference. Taylor & Francis, Concepción, pp 361–368Google Scholar
  79. Woollacott RM, Zimmer RL (1971) Attachment and metamorphosis of the cheilo-ctenostome bryozoan Bugula neritina (Linné). J Morphol 134:351–382CrossRefGoogle Scholar
  80. Woollacott RM, Zimmer RL (1975) A simplified placenta-like system for the transport of extraembryonic nutrients during embryogenesis of Bugula neritina (Bryozoa). J Morphol 147:355–378CrossRefGoogle Scholar
  81. Xia FS, Zhang SG, Wang ZZ (2007) The oldest bryozoans: new evidence from the late Tremadocian (early Ordovician) of east Yangtze Gorges in China. J Paleontol 81:1308–1326CrossRefGoogle Scholar
  82. Zimmer RL (1997) Phoronids, brachiopods, and bryozoans, the lophophorates. In: Gilbert SF, Raunio AM (eds) Embryology: constructing the organism. Sinauer Associates, Sunderland, pp 279–305Google Scholar
  83. Zimmer RL, Woollacott RM (1989) Larval morphology of the bryozoan Watersipora arcuata (Cheilostomata: Ascophora). J Morphol 199:125–150CrossRefGoogle Scholar
  84. Zimmer RL, Woollacott RM (1993) Anatomy of the larva of Amathia vidovici (Bryozoa: Ctenostomata) and phylogenetic significance of the vesiculariform larva. J Morphol 215:1–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Biology DepartmentLong Island University-PostGreenvaleUSA

Personalised recommendations