Phoronids are epibenthic (or infaunal) tubiculous marine invertebrates closely related to brachiopods (and perhaps bryozoans; see Nesnidal et al. (2013)) that have oval, U-shaped, or spiraling rings of ciliated tentacles called the lophophore used for feeding and respiration (Temereva and Malakhov 2009a). Although phoronids can dominate the density and coverage of some benthic marine habitats (Larson and Stachowicz 2009), very little is known about their ecological role in such habitats. The majority of taxonomic studies of phoronids have been conducted by Emig (1974). Although at least 23 species have been described by various authors indicative of wide morphological diversity in adult forms, the majority of phoronid morphotypes have been synonymized under 11 cosmopolitan species and two genera, Phoronis (Wright 1856) and Phoronopsis (Gilchrist 1907).


Ventral Nerve Cord Nerve Ring Apical Organ Neurite Bundle Parental Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Kelly Ryan and Russel Zimmer provided excellent comments on previous versions of this chapter. A portion of the data in this book chapter was gathered at the Smithsonian Marine Station (Fort Pierce, FL) and is designated contribution number 988. Faculty Research Grants provided by Long Island University-Post also supported this work.


  1. Allen JD, Pechenik JA (2010) Understanding the effects of low salinity on fertilization success and early development in the sand dollar Echinarachnius parma. Biol Bull 218:189–199PubMedGoogle Scholar
  2. Bartolomaeus T (2001) Ultrastructure and formation of the body cavity lining in Phoronis muelleri (Phoronida, Lophophorata). Zoomorphology 120:135–148CrossRefGoogle Scholar
  3. Brooks W, Cowles R (1905) Phoronis architecta: its life history, anatomy and breeding habits. Mem Natl Acad Sci 10:72–113Google Scholar
  4. Chernyshev AV, Temereva EN (2010) First report of diagonal musculature in phoronids (Lophophorata: Phoronida). Dokl Biol Sci 433:264–267PubMedCrossRefGoogle Scholar
  5. Cohen BL (2013) Rerooting the rDNA gene tree reveals phoronids to be “brachiopods without shells;” dangers of wide taxon samples in metazoan phylogenetics (Phoronida; Brachiopoda). Zool J Linnean Soc 167(1):82–92Google Scholar
  6. Cohen B, Weydmann A (2005) Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian. Org Divers Evol 5:253–273CrossRefGoogle Scholar
  7. Denes AS, Jékely G, Steinmetz PRH, Raible F, Snyman H, Prud’homme B, Ferrier DEK, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288PubMedCrossRefGoogle Scholar
  8. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedCrossRefGoogle Scholar
  9. Emig CC (1974) The systematics and evolution of the phylum Phoronida. Z Zool Syst Evolutionsforschung 12:128–151CrossRefGoogle Scholar
  10. Fernández I, Pardos F, Benito J (1996) Ultrastructural observations on the phoronid nervous system. J Morphol 230:265–281CrossRefGoogle Scholar
  11. Foettinger A (1882) Note sur la formation du mesoderme dans la larve de Phoronis hippocrepia. Arch Biol Paris 3:679–686Google Scholar
  12. Freeman G (1991) The bases for and timing of regional specification during larval development in Phoronis. Dev Biol 147:157–173PubMedCrossRefGoogle Scholar
  13. Freeman G (2003) Regional specification during embryogenesis in rhynchonelliform brachiopods. Dev Biol 261:268–287PubMedCrossRefGoogle Scholar
  14. Freeman G, Martindale MQ (2002) The origin of mesoderm in phoronids. Dev Biol 252:301–311PubMedCrossRefGoogle Scholar
  15. Garlick RL, Williams BJ, Riggs AF (1979) The hemoglobins of Phoronopsis viridis, of the primitive invertebrate phylum Phoronida: characterization and subunit structure. Arch Biochem Biophys 194:13–23PubMedCrossRefGoogle Scholar
  16. Gilchrist JDF (1907) New forms of the Hemichordata from South Africa. Trans S Afr Philos Soc 17:151–176CrossRefGoogle Scholar
  17. Gruhl A, Grobe P, Bartolomaeus T (2005) Fine structure of the epistome in Phoronis ovalis: significance for the coelomic organization in Phoronida. Invertebr Biol 124:332–343CrossRefGoogle Scholar
  18. Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643PubMedCrossRefGoogle Scholar
  19. Harmer SF (1917) Harmer: on Phoronis ovalis, Strethill Wright. Q J Microsc Sci 62:115–148Google Scholar
  20. Hausdorf B, Helmkampf M, Nesnidal MP, Bruchhaus I (2010) Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Mol Phylogenet Evol 55:1121–1127PubMedCrossRefGoogle Scholar
  21. Hay-Schmidt A (1989) The nervous system of the actinotroch larva of Phoronis muelleri (Phoronida). Zoomorphology 108:333–351CrossRefGoogle Scholar
  22. Hay-Schmidt A (1990) Catecholamine-containing, serotonin-like, and FMRFamide-like immunoreactive neurons and processes in the nervous system of the early actinotroch larva of Phoronis vancouverensis (Phoronida): distribution and development. Can J Zool 68:1525–1536CrossRefGoogle Scholar
  23. Hejnol A (2010) A twist in time–the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol 50:695–706PubMedCrossRefGoogle Scholar
  24. Hejnol A, Martindale MQ, Henry JQ (2007) High-resolution fate map of the snail Crepidula fornicata: the origins of ciliary bands, nervous system, and muscular elements. Dev Biol 305:63–76PubMedCrossRefGoogle Scholar
  25. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Muller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B Biol Sci 276:4261–4270CrossRefGoogle Scholar
  26. Herrmann K (1979) Larvalentwicklung und Metamorphose von Phoronis psammophila (Phoronida, Tentaculata). Helgoländer Meeresun 32:550–581CrossRefGoogle Scholar
  27. Herrmann K (1986) Die Ontogenese von Phoronis mulleri (Tentaculata) unter besonderer Berücksichtigung der Mesodermdifferenzierung und Phylogenese des Coeloms. Zool Jahrb Abt Anat Ontog Tiere 114:441–463Google Scholar
  28. Herrmann K (1997) Phoronida. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates volume 13: lophophorates, Entoprocta, and Cycliophora. Wiley-Liss, New York, pp 207–235Google Scholar
  29. Hirose M, Fukiage R, Katoh T, Kajihara H (2014) Description and molecular phylogeny of a new species of Phoronis (Phoronida) from Japan, with a redescription of topotypes of P. ijimai Oka, 1897. Zookeys 398:1–31PubMedCrossRefGoogle Scholar
  30. Ikeda I (1901) Observations on the development: structure and metamorphosis of Actinotrocha. J Coll Sci Imp Univ Tokyo 13:507–591Google Scholar
  31. Ikeda I (1903) On the development of the sexual organs and of their products in Phoronis. Annotationes Zoologicae Jpn 4:141–153Google Scholar
  32. Kinoshita K (2002) Burrow structure of the mud shrimp Upogebia major (Decapoda: Thalassinidea: Upogebiidae). J Crustac Biol 22:474–480CrossRefGoogle Scholar
  33. Kuroda R, Endo B, Abe M, Shimizu M (2009) Chiral blastomere arrangement dictates zygotic left–right asymmetry pathway in snails. Nature 462:790–794PubMedCrossRefGoogle Scholar
  34. Lacalli TC (1990) Structure and organization of the nervous system in the actinotroch larva of Phoronis vancouverensis. Phil Trans Roy Soc London B Biol Sci 327:655–685CrossRefGoogle Scholar
  35. Larson AA, Stachowicz JJ (2009) Chemical defense of a soft-sediment dwelling phoronid against local epibenthic predators. Mar Ecol Prog Ser 374:101–111CrossRefGoogle Scholar
  36. Malakhov VV, Temereva EN (2000) Embryonic development of the phoronid Phoronis ijimai. Russ J Mar Biol 26:412–421CrossRefGoogle Scholar
  37. Mallatt J, Craig CW, Yoder MJ (2012) Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol 64:603–617PubMedCrossRefGoogle Scholar
  38. Masterman AT (1898) On the theory of archimeric segmentation and its bearing upon the phyletic classification of the Coelomata. Proc R Soc Edinb 22:270–310Google Scholar
  39. Masterman AT (1900) Memoirs: on the Diplochorda III. The early development and anatomy of Phoronis buskii, McIntosh. Q J Microsc Sci 43:375–418Google Scholar
  40. Meyer NP, Seaver EC (2009) Neurogenesis in an annelid: characterization of brain neural precursors in the polychaete Capitella sp. I. Dev Biol 335:237–252PubMedCrossRefGoogle Scholar
  41. Meyer NP, Boyle MJ, Martindale MQ, Seaver EC (2010) A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta. EvoDevo 1:1–27CrossRefGoogle Scholar
  42. Nederbragt A (2002) Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355PubMedCrossRefGoogle Scholar
  43. Nederbragt A, te Welscher P, van den Driesche S, van Loon AX, Dictus W (2002) Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol 212:330–337PubMedCrossRefGoogle Scholar
  44. Nesnidal MP, Helmkampf M, Meyer A, Witek A, Bruchhaus I, Ebersberger I, Hankeln T, Lieb B, Struck TH, Hausdorf B (2013) New phylogenomic data support the monophyly of Lophophorata and an ectoproct-phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol Biol 13:253PubMedCentralPubMedCrossRefGoogle Scholar
  45. Pennerstorfer M, Scholtz G (2012) Early cleavage in Phoronis muelleri (Phoronida) displays spiral features. Evol Dev 14:484–500PubMedCrossRefGoogle Scholar
  46. Pixell HLM (1912) Memoirs: two new species of the Phoronidea from Vancouver Island. Q J Microsc Sci 58:257–284Google Scholar
  47. Rattenbury JC (1953) Reproduction in Phoronopsis viridis. The annual cycle in the gonads, maturation and fertilization of the ovum. Biol Bull 104:182–196CrossRefGoogle Scholar
  48. Rattenbury JC (1954) The embryology of Phoronopsis viridis. J Morphol 95:289–349CrossRefGoogle Scholar
  49. Reunov A, Klepal W (2004) Ultrastructural study of spermatogenesis in Phoronopsis harmeri (Lophophorata, Phoronida). Helgoländer Meeresun 58:1–10Google Scholar
  50. Santagata S (2002) Structure and metamorphic remodeling of the larval nervous system and musculature of Phoronis pallida (Phoronida). Evol Dev 4:28–42PubMedCrossRefGoogle Scholar
  51. Santagata S (2004a) A waterborne behavioral cue for the actinotroch larva of Phoronis pallida (Phoronida) produced by Upogebia pugettensis (Decapoda: Thalassinidea). Biol Bull 207:103–115PubMedCrossRefGoogle Scholar
  52. Santagata S (2004b) Larval development of Phoronis pallida (Phoronida): implications for morphological convergence and divergence among larval body plans. J Morphol 259:347–358PubMedCrossRefGoogle Scholar
  53. Santagata S (2011) Evaluating neurophylogenetic patterns in the larval nervous systems of brachiopods and their evolutionary significance to other bilaterian phyla. J Morphol 272:1153–1169PubMedCrossRefGoogle Scholar
  54. Santagata S (2014) Reconciling morphology, molecules, and species diversity with phoronid phylogenetic relationships, presented at the 2014 conference of the Society for Integrative and Comparative Biology, Austin, TXGoogle Scholar
  55. Santagata S, Cohen BL (2009) Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zool J Linnean Soc 157:34–50CrossRefGoogle Scholar
  56. Santagata S, Zimmer RL (2002) Comparison of the neuromuscular systems among actinotroch larvae: systematic and evolutionary implications. Evol Dev 4:43–54PubMedCrossRefGoogle Scholar
  57. Shibazaki Y, Shimizu M, Kuroda R (2004) Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr Biol 14:1462–1467PubMedCrossRefGoogle Scholar
  58. Silén L (1954a) On the nervous system of Phoronis. Arch Zool 6:1–40Google Scholar
  59. Silén L (1954b) Developmental biology of Phoronidea of the Gullmar Fiord area (west coast of Sweden). Acta Zool Stockh 35:215–257CrossRefGoogle Scholar
  60. Skovsted CB, Brock GA, Paterson JR, Holmer LE, Budd GE (2008) The scleritome of Eccentrotheca from the Lower Cambrian of South Australia: lophophorate affinities and implications for tommotiid phylogeny. Geology 36:171CrossRefGoogle Scholar
  61. Skovsted CB, Brock GA, Topper TP, Paterson JR, Holmer LE (2011) Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the Early Cambrian of South Australia. Palaeontology 54:253–286CrossRefGoogle Scholar
  62. Sonnleitner B, Schwaha T, Wanninger A (2013) Inter- and intraspecific plasticity in distribution patterns of immunoreactive compounds in actinotroch larvae of Phoronida (Lophotrochozoa). J Zool Syst Evol Res 52:1–14CrossRefGoogle Scholar
  63. Sperling EA, Pisani D, Peterson KJ (2011) Molecular paleobiological insights into the origin of the Brachiopoda. Evol Dev 13:290–303PubMedCrossRefGoogle Scholar
  64. Staver JM, Strathmann RR (2002) Evolution of fast development of planktonic embryos to early swimming. Biol Bull 203:58–69PubMedCrossRefGoogle Scholar
  65. Strathmann RR, Bone Q (1997) Ciliary feeding assisted by suction from the muscular oral hood of phoronid larvae. Biol Bull 193:153–162CrossRefGoogle Scholar
  66. Temereva EN (2012) Ventral nerve cord in Phoronopsis harmeri larvae. J Exp Zool 318:26–34CrossRefGoogle Scholar
  67. Temereva EN, Malakhov VV (2006) Trimeric coelom organization in the larvae of Phoronopsis harmeri Pixell, 1912 (Phoronida, Lophophorata). Dokl Biol Sci 410:396–399PubMedCrossRefGoogle Scholar
  68. Temereva EN, Malakhov VV (2007) Embryogenesis and larval development of Phoronopsis harmeri Pixell, 1912 (Phoronida): dual origin of the coelomic mesoderm. Invertebr Reprod Dev 50:57–66CrossRefGoogle Scholar
  69. Temereva EN, Malakhov VV (2009a) Microscopic anatomy and ultrastructure of the nervous system of Phoronopsis harmeri Pixell, 1912 (Lophophorata: Phoronida). Russ J Mar Biol 35:388–404CrossRefGoogle Scholar
  70. Temereva EN, Malakhov VV (2009b) On the organization of the lophophore in phoronids (Lophophorata: Phoronida). Russ J Mar Biol 35:479–489CrossRefGoogle Scholar
  71. Temereva EN, Malakhov VV (2011) Organization of the epistome in Phoronopsis harmeri (Phoronida) and consideration of the coelomic organization in Phoronida. Zoomorphology 130:121–134CrossRefGoogle Scholar
  72. Temereva E, Neretina T (2013) A distinct phoronid larva: morphological and molecular evidence. Invertebr Syst 27:622–633Google Scholar
  73. Temereva EN, Tsitrin EB (2013) Development, organization, and remodeling of phoronid muscles from embryo to metamorphosis (Lophotrochozoa: Phoronida). BMC Dev Biol 13:1–24CrossRefGoogle Scholar
  74. Temereva EN, Tsitrin EB (2014) Development and organization of the larval nervous system in Phoronopsis harmeri: new insights into phoronid phylogeny. Front Zool 11:1–25CrossRefGoogle Scholar
  75. Temereva E, Wanninger A (2012) Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evol Biol 12:121PubMedCentralPubMedCrossRefGoogle Scholar
  76. Thomas AO (1911) A fossil burrowing sponge from the Iowa Devonian. Bull Lab Nat Hist State Univ Iowa Iowa City 6:165–166Google Scholar
  77. Thompson RK (1972) Functional morphology of the hindgut gland of Upogebia pugettensis (Crustacea, Thalassinidea) and its role in burrow construction. University of California, Berkeley, 202 pGoogle Scholar
  78. Thomson RC, Plachetzki DC, Luke Mahler D, Moore BR (2014) A critical appraisal of the use of microRNA data in phylogenetics. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1407207111 Google Scholar
  79. Veillet A (1941) Descriptions et mécanismes la métamorphose de la larve actinotroque de Phoronis sabatieri Roule. Bull Inst Océanogr Monaco 810:1–10Google Scholar
  80. Wright TS (1856) Description of two tubicolar animals. Proc R Soc Edinb 1:165–167Google Scholar
  81. Wu B, Chen M, Sun R (1980) On the occurrence of Phoronis ijimai Oka in the Huang Hai, with notes on its larval development. Stud Mar Sin 16:101–122Google Scholar
  82. Zimmer RL (1964) Reproductive biology and development of Phoronida. Ph.D. Thesis, University of Washington, Seattle. 416 pGoogle Scholar
  83. Zimmer RL (1967) The morphology and function of accessory reproductive glands in the lophophores of Phoronis vancouverensis and Phoronopsis harmeri. J Morphol 121:159–178PubMedCrossRefGoogle Scholar
  84. Zimmer RL (1978) The comparative structure of the preoral hood coelom. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larva. Elsevier, New York, pp 23–40Google Scholar
  85. Zimmer RL (1980) Mesoderm proliferation and formation of the protocoel and metacoel in early embryos of Phoronis vancouverensis (Phoronida). Zool Jahrb Abt Anat Ontog Tiere 103:219–232Google Scholar
  86. Zimmer RL (1991) Phoronida. In: Pearse JS, Pearse VB, Giese AC (eds) Reproduction of marine invertebrates, volume VI: echinoderms and lophophorates. Boxwood Press, Pacific Grove, pp 1–45Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Biology DepartmentLong Island University-PostGreenvaleUSA

Personalised recommendations