The taxon Gnathifera was erected based on morphological data by Ahlrichs (1995, 1997). The taxon comprises the Gnathostomulida and Syndermata (which unites Rotifera, Acanthocephala, Seisonida) (Fig. 1.1). With the discovery of Limnognathia maerski (Kristensen and Funch 2000), the taxon Micrognathozoa has been included into the Gnathifera. The name Gnathifera is based on the presence of a complex jaw apparatus in the pharynx of all groups, except Acanthocephala (Sørensen 2003; Funch et al. 2005). Gnathifera are tiny, bilaterally symmetric animals that live in aquatic habitats. Only the parasitic acanthocephalans reach body lengths of up to 80 cm. The acanthocephalans have lost many morphological characters as adaptations to their parasitic lifestyle, including the jaw apparatus and the digestive tract.


Polar Body Postembryonic Development Dwarf Male Bdelloid Rotifer Parasitic Lifestyle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahlrichs WH (1995) Ultrastruktur und Phylogenie von Seison nebaliae (Grube 1859) und Seison annulatus (Claus 1876). PhD thesis, Georg August University GöttingenGoogle Scholar
  2. Ahlrichs WH (1997) Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology 117:41–48CrossRefGoogle Scholar
  3. Boschetti C, Ricci C, Sotgia C, Fascio U (2005) The development of a bdelloid egg: a contribution after 100 years. Hydrobiologia 546:323–331. doi: 10.1007/S10750-005-4241-Z CrossRefGoogle Scholar
  4. Car L (1899) Die embryonale Entwicklung von Asplanchna brightwellii. Biol Zentbl 19:59–74Google Scholar
  5. Clément P, Wurdak E (1991) Rotifera. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates. Wiler Liss, New York, pp 219–297Google Scholar
  6. Conklin EG (1897) The embryology of Crepidula. J Morphol 13:1–226CrossRefGoogle Scholar
  7. Dunn CW, Hejnol A, Matus DQ et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi: 10.1038/nature06614, nature06614 [pii]PubMedCrossRefGoogle Scholar
  8. Flot JF, Hespeels B, Li X et al (2013) Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500:453–457. doi: 10.1038/nature12326 PubMedCrossRefGoogle Scholar
  9. Funch P, Sørensen MV, Obst M (2005) On the phylogenetic position of Rotifera – have we come any further? Hydrobiologia 546:11–28CrossRefGoogle Scholar
  10. Gilbert JJ (1989) Rotifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Wiley, Chichester, pp 179–199Google Scholar
  11. Hamann O (1891) Monographie der Acanthocephalen (Echinorhynchen). Jena Z Naturw 25:113–231Google Scholar
  12. Hejnol A (2010) A twist in time – the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol 50:695–706. doi: 10.1093/icb/icq103 PubMedCrossRefGoogle Scholar
  13. Hejnol A, Obst M, Stamatakis A et al (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Ser B 276:4261–4270. doi: 10.1098/rspb.2009.0896 CrossRefGoogle Scholar
  14. Jennings HS (1896) The early development of Asplanchna herrickii De Guerne. Bull Mus Comp Zool 30:1–117Google Scholar
  15. Kaiser J (1893) Die Acanthocephalen und ihre Entwickelung. Bibl Zool 2:1–374Google Scholar
  16. Knauss E (1979) Indication of an anal pore in Gnathostomulida. Zool Scr 8:181–186CrossRefGoogle Scholar
  17. Kristensen RM, Funch P (2000) Micrognathozoa: a new class with complicated jaws like those of Rotifera and Gnathostomulida. J Morphol 246:1–49PubMedCrossRefGoogle Scholar
  18. Kristensen RM, Nørrevang A (1977) On the fine structure of Rastrognathia macrostoma gen. et sp.n. placed in Rastrognathiidae fam.n. (Gnathostomulida). Zool Scr 6:27–41CrossRefGoogle Scholar
  19. Lechner M (1966) Untersuchungen zur Embryonalentwicklung des Rädertieres Asplanchna girodi De Guerne. Roux’ Arch f Entwicklungsmech 157:117–173CrossRefGoogle Scholar
  20. Maslakova SA, Martindale MQ, Norenburg JL (2004) Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Dev Biol 267:342–360. doi: 10.1016/j.ydbio.2003.10.022 PubMedCrossRefGoogle Scholar
  21. Meyer A (1928) Die Furchung nebst Eibildung, Reifung und Befruchtung des Gigantorhynchus gigas. Zool Jb Anatomie 50:117–218Google Scholar
  22. Meyer A (1933) Acanthocephala. Akademische Verlagsgemeinschaft, LeipzigGoogle Scholar
  23. Mrázek A (1897) Zur Embryonalentwicklung der Gattung Asplanchna. Sitz-Ber Kgl Böhm Gesell Wiss 58:1–11Google Scholar
  24. Müller MCM, Sterrer W (2004) Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labeling, immunohistochemistry, and cLSM, and their phylogenetic significance. Zoomorphologie 123:169–177Google Scholar
  25. Nachtwey R (1925) Untersuchungen über die Keimbahn, Organogenese und Anatomie von Asplanchna priodonta Gosse. Z Wiss Zool 126:239–492Google Scholar
  26. Nielsen C (2005) Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. J Exp Zool B Mol Dev Evol 304:401–447. doi: 10.1002/jez.b.21050 PubMedCrossRefGoogle Scholar
  27. Pray F (1965) Studies on the early development of the rotifer Monostyla cornuta MÜLLER. Trans Am Microsc Soc 84:1965CrossRefGoogle Scholar
  28. Riedl RJ (1969) Gnathostomulida from America. Science 163:445–452PubMedCrossRefGoogle Scholar
  29. Schmidt G (1985) Development and life cycles. In: Crompton D, Nickol B (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge, pp 273–305Google Scholar
  30. Siewing R (1969) Lehrbuch der vergleichenden Entwicklungsgeschichte der Tiere. Verlag Paul Parey, Hamburg/BerlinGoogle Scholar
  31. Smith JM, Cridge AG, Dearden PK (2010) Germ cell specification and ovary structure in the rotifer Brachionus plicatilis. EvoDevo 1:5. doi: 10.1186/2041-9139-1-5 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Snell TW, Shearer TL, Smith HA (2011) Exposure to dsRNA elicits RNA interference in Brachionus manjavacas (Rotifera). Mar Biotechnol (NY) 13:264–274. doi: 10.1007/s10126-010-9295-x CrossRefGoogle Scholar
  33. Sørensen MV (2003) Further structures in the jaw apparatus of Limnognathia maerski (Micrognathozoa), with notes on the phylogeny of the Gnathifera. J Morphol 255:131–145PubMedCrossRefGoogle Scholar
  34. Sørensen MV, Sterrer W, Giribet G (2006) Gnathostomulid phylogeny inferred from a combined approach of four molecular loci and morphology. Cladistics 22:32–58CrossRefGoogle Scholar
  35. Sterrer W (1972) Systematics and evolution within the Gnathostomulida. Syst Zool 21:151–173CrossRefGoogle Scholar
  36. Tannreuther GW (1919) Studies on the rotifer Asplanchnia ebbesbornii, with special reference to the male. Biol Bull 37:194–207CrossRefGoogle Scholar
  37. Tannreuther GW (1920) The development of Asplanchna ebbesbornii (Rotifer). J Morphol 33:389–419CrossRefGoogle Scholar
  38. Tessin G (1886) Über Eibildung und Entwicklung der Rotatorien. Z Wiss Zool 44:273–302Google Scholar
  39. Wey-Fabrizius AR, Herlyn H, Rieger B, Rosenkranz D, Witek A, Welch DBM, Ebersberger I, Hankeln T (2014) Transcriptome data reveal Syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage. PLoS One 9:e88618. doi: 10.1371/journal.pone.0088618 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Witek A, Herlyn H, Meyer A, Boell L, Bucher G, Hankeln T (2008) EST-based phylogenomics of Syndermata questions monophyly of Eurotatoria. BMC Evol Biol 8:345. doi: 10.1186/1471-2148-8-345 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Witek A, Herlyn H, Ebersberger I, Mark Welch DB, Hankeln T (2009) Support for the monophyletic origin of Gnathifera from phylogenomics. Mol Phylogenet Evol 53:1037–1041. doi: 10.1016/j.ympev.2009.07.031 PubMedCrossRefGoogle Scholar
  42. Zelinka C (1892) Studien über Räderthiere. III. Zur Entwicklungsgeschichte der Räderthiere nebst Bemerkungen über ihre Anatomie und Biologie. Z Wiss Zool 53:1–159Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Sars International Centre for Marine Molecular BiologyUniversity of BergenBergenNorway

Personalised recommendations