Skip to main content

Abstract

Hexapoda not only constitutes the largest taxon in the biological world; its representatives are also the best-studied invertebrates. This chapter will give an overview of general principles of hexapod development, mostly in reference to the detailed description of Drosophila melanogaster (see Chap. 1). The description will be divided along key developmental processes in early development, leading from oogenesis through early patterning and ending in segmentation. Later development is covered in Chap. 3.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DT (1972a) The development of hemimetabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 96–165

    Google Scholar 

  • Anderson DT (1972b) The development of holometabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 166–242

    Google Scholar 

  • Ben-David J, Chipman AD (2010) Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus. Dev Biol 346:140–149

    Article  CAS  PubMed  Google Scholar 

  • Benton MA, Akam M, Pavlopoulos A (2013) Cell and tissue dynamics during Tribolium embryogenesis revealed by versatile fluorescence labeling approaches. Development 140(15):3210–3220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birkan M, Schaeper ND, Chipman AD (2011) Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus. Evol Dev 13(5):436–447

    Article  PubMed  Google Scholar 

  • Brena C, Akam M (2012) The embryonic development of the centipede Strigamia maritima. Dev Biol 363(1):290–307

    Article  CAS  PubMed  Google Scholar 

  • Bucher G, Klingler M (2004) Divergent segmentation mechanism in the short germ insect Tribolium revealed by giant expression and function. Development 131(8):1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Buchta T, Ozuak O, Stappert D, Roth S, Lynch JA (2013) Patterning the dorsal-ventral axis of the wasp Nasonia vitripennis. Dev Biol 381(1):189–202

    Article  CAS  PubMed  Google Scholar 

  • Cerny AC, Grossmann D, Bucher G, Klingler M (2008) The Tribolium ortholog of knirps and knirps-related is crucial for head segmentation but plays a minor role during abdominal patterning. Dev Biol 321(1):284–294

    Article  CAS  PubMed  Google Scholar 

  • Chesebro JE, Pueyo JI, Couso JP (2013) Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open 2(2):227–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chipman AD (2008) Thoughts and speculations on the ancestral arthropod segmentation pathway. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 339–355

    Google Scholar 

  • Chipman AD, Akam M (2008) The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues. Dev Biol 319(1):160–169

    Article  CAS  PubMed  Google Scholar 

  • Choe CP, Brown SJ (2009) Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 325(2):482–491

    Article  CAS  PubMed  Google Scholar 

  • Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci U S A 103(17):6560–6564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooke J, Zeeman EC (1976) Clock and wavefront model for control of number of repeated structures during animal morphogenesis. J Theor Biol 58(2):455–476

    Article  CAS  PubMed  Google Scholar 

  • Copf T, Rabet N, Celniker SE, Averof M (2003) Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130(24):5915–5927

    Article  CAS  PubMed  Google Scholar 

  • Copf T, Schroder R, Averof M (2004) Ancestral role of caudal genes in axis elongation and segmentation. Proc Natl Acad Sci U S A 101(51):17711–17715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Counce SJ, Waddington CH (eds) (1972) Developmental systems: insects, vol 1. Academic, London

    Google Scholar 

  • Curtis D, Apfeld J, Lehmann R (1995) Nanos is an evolutionarily conserved organizer of anterior-posterior polarity. Development 121(6):1899–1910

    CAS  PubMed  Google Scholar 

  • da Fonseca RN, Lynch JA, Roth S (2009) Evolution of axis formation: mRNA localization, regulatory circuits and posterior specification in non-model arthropods. Curr Opin Genet Dev 19(4):404–411

    Article  PubMed  Google Scholar 

  • Davis GK, Patel NH (2002) Short, long, and beyond: molecular and embryological approaches to insect segmentation. Ann Rev Entomol 47:669–699

    Article  CAS  Google Scholar 

  • Duncan EJ, Benton MA, Dearden PK (2013) Canonical terminal patterning is an evolutionary novelty. Dev Biol 377(1):245–261

    Article  CAS  PubMed  Google Scholar 

  • El-Sherif E, Averof M, Brown SJ (2012) A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development 139(23):4341–4346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • García-Solache M, Jaeger J, Akam M (2010) A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata. Dev Biol 344(1):306–318

    Article  PubMed  Google Scholar 

  • Goltsev Y, Hsiong W, Lanzaro G, Levine M (2004) Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev Biol 275(2):435–446

    Article  CAS  PubMed  Google Scholar 

  • Green J, Akam M (2013) Evolution of the pair rule gene network: insights from a centipede. Dev Biol 382(1):235–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho K, Dunin-Borkowski OM, Akam M (1997) Cellularization in locust embryos occurs before blastoderm formation. Development 124(14):2761–2768

    CAS  PubMed  Google Scholar 

  • Jacobs CGC, Spaink HP, van der Zee M (2014) The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. Elife 3:e04111

    Google Scholar 

  • Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68(2):243–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaeger J, Goodwin BC (2001) A cellular oscillator model for periodic pattern formation. J Theor Biol 213(2):171–181

    Article  CAS  PubMed  Google Scholar 

  • Jura C (1972) Development of apterygote insects. In: Counce SJ, Waddington CH (eds) Developmental Systems: insects. Academic Press, London, pp 49–95

    Google Scholar 

  • Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138(22):5015–5026

    Article  CAS  PubMed  Google Scholar 

  • Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev 39(6):436–445

    Article  PubMed  Google Scholar 

  • Konopova B, Akam M (2014) The Hox genes Ultrabithorax and abdominal-A specify three different types of abdominal appendage in the springtail Orchesella cincta (Collembola). EvoDevo 5:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Kotkamp K, Klingler M, Schoppmeier M (2010) Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Development 137(11):1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Krause G (1939) Die Eytipen der Insekten. Biol Zbl 59:495–536

    Google Scholar 

  • Lall S, Ludwig MZ, Patel NH (2003) Nanos plays a conserved role in axial patterning outside of the Diptera. Curr Biol 13(3):224–229

    Article  CAS  PubMed  Google Scholar 

  • Liu PZ, Kaufman TC (2004a) Hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 131(7):1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Liu PZ, Kaufman TC (2004b) Krüppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segments. Development 131(18):4567–4579

    Article  CAS  PubMed  Google Scholar 

  • Liu PZ, Kaufman TC (2005) Even-skipped is not a pair-rule gene but has segmental and gap-like functions in Oncopeltus fasciatus, an intermediate germband insect. Development 132(9):2081–2092

    Article  CAS  PubMed  Google Scholar 

  • Liu PZ, Patel NH (2010) Giant is a bona fide gap gene in the intermediate germband insect, Oncopeltus fasciatus. Development 137(5):835–844

    Article  PubMed Central  PubMed  Google Scholar 

  • Lynch JA, Desplan C (2010) Novel modes of localization and function of nanos in the wasp Nasonia. Development 137(22):3813–3821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JA, Brent AE, Leaf DS, Pultz MA, Desplan C (2006a) Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 7077:728–732

    Article  Google Scholar 

  • Lynch JA, Olesnicky EC, Desplan C (2006b) Regulation and function of tailless in the long germ wasp Nasonia vitripennis. Dev Genes Evol 216(7–8):493–498

    Article  PubMed  Google Scholar 

  • Lynch JA, Peel AD, Drechsler A, Averof M, Roth S (2010) EGF signaling and the origin of axial polarity among the insects. Curr Biol 20(11):1042–1047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahowald AP (1972) Oogenesis. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 1–48

    Google Scholar 

  • Martin JR, Raibaud A, Ollo R (1994) Terminal pattern elements in Drosophila embryo induced by the Torso-like protein. Nature 367(6465):741–745

    Article  CAS  PubMed  Google Scholar 

  • McGregor AP (2006) Wasps, beetles and the beginning of the ends. Bioessays 28(7):683–686

    Article  CAS  PubMed  Google Scholar 

  • Minelli A (2001) A three-phase model of arthropod segmentation. Dev Genes Evol 211(10):509–521

    Article  CAS  PubMed  Google Scholar 

  • Mito T, Sarashina I, Zhang HJ, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S (2005) Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 132(9):2069–2079

    Article  CAS  PubMed  Google Scholar 

  • Mito T, Okamoto H, Shinahara W, Shinmyo Y, Miyawaki K, Ohuchi H, Noji S (2006) Krüppel acts as a gap gene regulating expression of hunchback and even-skipped in the intermediate germ cricket Gryllus bimaculatus. Dev Biol 294(2):471–481

    Article  CAS  PubMed  Google Scholar 

  • Mito T, Shinmyo Y, Kurita K, Nakamura T, Ohuchi H, Noji S (2011) Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 138(17):3823–3833

    Article  CAS  PubMed  Google Scholar 

  • Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222(4):189–216

    Article  PubMed  Google Scholar 

  • Nakamoto A, Hester SD, Constantinou SJ, Blaine WG, Tewksbury AB, Matei MT, Nagy LM, Williams TA (2015) Changing cell behaviours during beetle embryogenesis correlates with slowing of segmentation. Nat Commun 6:6635

    Google Scholar 

  • Nakamura T, Yoshizaki M, Ogawa S, Okamoto H, Shinmyo Y, Bando T, Ohuchi H, Noji S, Mito T (2010) Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr Biol 20(18):1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Olesnicky EC, Desplan C (2007) Distinct mechanisms for mRNA localization during embryonic axis specification in the wasp Nasonia. Dev Biol 306(1):134–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olesnicky EC, Brent AE, Tonnes L, Walker M, Pultz MA, Leaf D, Desplan C (2006) A caudal mRNA gradient controls posterior development in the wasp Nasonia. Development 133(20):3973–3982

    Article  CAS  PubMed  Google Scholar 

  • Panfilio KA (2008) Extraembryonic development in insects and the acrobatics of blastokinesis. Dev Biol 313(2):471–491

    Article  CAS  PubMed  Google Scholar 

  • Patel NH, Hayward DC, Lall S, Pirkl NR, DiPietro D, Ball EE (2001) Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development 128(18):3459–3472

    CAS  PubMed  Google Scholar 

  • Peel A (2004) The evolution of arthropod segmentation mechanisms. Bioessays 26(10):1108–1116

    Article  CAS  PubMed  Google Scholar 

  • Pueyo JI, Lanfear R, Couso JP (2008) Ancestral notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105(43):16614–16619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238

    Article  Google Scholar 

  • Sarrazin AF, Peel AD, Averof M (2012) A segmentation clock with two-segment periodicity in insects. Science 336(6079):338–341

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Engel C, Cerny AC, Schoppmeier M (2012) A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Dev Biol 364(2):224–235

    Article  CAS  PubMed  Google Scholar 

  • Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band formation. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution – molecules, development, morphology. Springer, Heidelberg, pp 63–90

    Chapter  Google Scholar 

  • Schoppmeier M, Schröder R (2005) Maternal torso signaling controls body axis elongation in a short germ insect. Curr Biol 15(23):2131–2136

    Article  CAS  PubMed  Google Scholar 

  • Schoppmeier M, Fischer S, Schmitt-Engel C, Löhr U, Klingler M (2009) An ancient anterior patterning system promotes caudal repression and head formation in Ecdysozoa. Curr Biol 19(21):1811–1815

    Article  CAS  PubMed  Google Scholar 

  • Schröder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422(6932):621–625

    Article  PubMed  Google Scholar 

  • Schröder R, Eckert C, Wolff C, Tautz D (2000) Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 97(12):6591–6596

    Article  PubMed Central  PubMed  Google Scholar 

  • Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S (2005) Caudal is required for gnathal and thoracic patterning and for posterior elongation in the intermediate-germband cricket Gryllus bimaculatus. Mech Dev 122(2):231–239

    Article  CAS  PubMed  Google Scholar 

  • Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423(6942):863–865

    Article  CAS  PubMed  Google Scholar 

  • Stys P, Bilinski S (1990) Ovariole types and the phylogeny of hexapods. Biol Rev 65(4):401–429

    Article  Google Scholar 

  • Weisbrod A, Cohen M, Chipman AD (2013) Evolution of the insect terminal patterning system-Insights from the milkweed bug, Oncopeltus fasciatus. Dev Biol 380:125–131

    Article  CAS  PubMed  Google Scholar 

  • Williams T, Blachuta B, Hegna TA, Nagy LM (2012) Decoupling elongation and segmentation: notch involvement in anostracan crustacean segmentation. Evol Dev 14(4):372–382

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, Dearden PK (2009) Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Dev Biol 335(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, Dearden PK (2011) Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 138(16):3497–3507

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, Havler M, Dearden PK (2010) Giant, Kruppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Dev Biol 339(1):200–211

    Article  CAS  PubMed  Google Scholar 

  • Wolff C (2009) The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219(11–12):545–564

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel D. Chipman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Chipman, A.D. (2015). Hexapoda: Comparative Aspects of Early Development. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 5. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1868-9_2

Download citation

Publish with us

Policies and ethics