Hexapoda: Comparative Aspects of Early Development

  • Ariel D. Chipman


Hexapoda not only constitutes the largest taxon in the biological world; its representatives are also the best-studied invertebrates. This chapter will give an overview of general principles of hexapod development, mostly in reference to the detailed description of Drosophila melanogaster (see Chap. 1). The description will be divided along key developmental processes in early development, leading from oogenesis through early patterning and ending in segmentation. Later development is covered in Chap. 3.


Nurse Cell Tribolium Castaneum Holometabolous Insect Terminal System Pair Rule Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson DT (1972a) The development of hemimetabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 96–165Google Scholar
  2. Anderson DT (1972b) The development of holometabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 166–242Google Scholar
  3. Ben-David J, Chipman AD (2010) Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus. Dev Biol 346:140–149CrossRefPubMedGoogle Scholar
  4. Benton MA, Akam M, Pavlopoulos A (2013) Cell and tissue dynamics during Tribolium embryogenesis revealed by versatile fluorescence labeling approaches. Development 140(15):3210–3220PubMedCentralCrossRefPubMedGoogle Scholar
  5. Birkan M, Schaeper ND, Chipman AD (2011) Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus. Evol Dev 13(5):436–447CrossRefPubMedGoogle Scholar
  6. Brena C, Akam M (2012) The embryonic development of the centipede Strigamia maritima. Dev Biol 363(1):290–307CrossRefPubMedGoogle Scholar
  7. Bucher G, Klingler M (2004) Divergent segmentation mechanism in the short germ insect Tribolium revealed by giant expression and function. Development 131(8):1729–1740CrossRefPubMedGoogle Scholar
  8. Buchta T, Ozuak O, Stappert D, Roth S, Lynch JA (2013) Patterning the dorsal-ventral axis of the wasp Nasonia vitripennis. Dev Biol 381(1):189–202CrossRefPubMedGoogle Scholar
  9. Cerny AC, Grossmann D, Bucher G, Klingler M (2008) The Tribolium ortholog of knirps and knirps-related is crucial for head segmentation but plays a minor role during abdominal patterning. Dev Biol 321(1):284–294CrossRefPubMedGoogle Scholar
  10. Chesebro JE, Pueyo JI, Couso JP (2013) Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open 2(2):227–237PubMedCentralCrossRefPubMedGoogle Scholar
  11. Chipman AD (2008) Thoughts and speculations on the ancestral arthropod segmentation pathway. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 339–355Google Scholar
  12. Chipman AD, Akam M (2008) The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues. Dev Biol 319(1):160–169CrossRefPubMedGoogle Scholar
  13. Choe CP, Brown SJ (2009) Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 325(2):482–491CrossRefPubMedGoogle Scholar
  14. Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci U S A 103(17):6560–6564PubMedCentralCrossRefPubMedGoogle Scholar
  15. Cooke J, Zeeman EC (1976) Clock and wavefront model for control of number of repeated structures during animal morphogenesis. J Theor Biol 58(2):455–476CrossRefPubMedGoogle Scholar
  16. Copf T, Rabet N, Celniker SE, Averof M (2003) Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130(24):5915–5927CrossRefPubMedGoogle Scholar
  17. Copf T, Schroder R, Averof M (2004) Ancestral role of caudal genes in axis elongation and segmentation. Proc Natl Acad Sci U S A 101(51):17711–17715PubMedCentralCrossRefPubMedGoogle Scholar
  18. Counce SJ, Waddington CH (eds) (1972) Developmental systems: insects, vol 1. Academic, LondonGoogle Scholar
  19. Curtis D, Apfeld J, Lehmann R (1995) Nanos is an evolutionarily conserved organizer of anterior-posterior polarity. Development 121(6):1899–1910PubMedGoogle Scholar
  20. da Fonseca RN, Lynch JA, Roth S (2009) Evolution of axis formation: mRNA localization, regulatory circuits and posterior specification in non-model arthropods. Curr Opin Genet Dev 19(4):404–411CrossRefPubMedGoogle Scholar
  21. Davis GK, Patel NH (2002) Short, long, and beyond: molecular and embryological approaches to insect segmentation. Ann Rev Entomol 47:669–699CrossRefGoogle Scholar
  22. Duncan EJ, Benton MA, Dearden PK (2013) Canonical terminal patterning is an evolutionary novelty. Dev Biol 377(1):245–261CrossRefPubMedGoogle Scholar
  23. El-Sherif E, Averof M, Brown SJ (2012) A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development 139(23):4341–4346PubMedCentralCrossRefPubMedGoogle Scholar
  24. García-Solache M, Jaeger J, Akam M (2010) A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata. Dev Biol 344(1):306–318CrossRefPubMedGoogle Scholar
  25. Goltsev Y, Hsiong W, Lanzaro G, Levine M (2004) Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev Biol 275(2):435–446CrossRefPubMedGoogle Scholar
  26. Green J, Akam M (2013) Evolution of the pair rule gene network: insights from a centipede. Dev Biol 382(1):235–245PubMedCentralCrossRefPubMedGoogle Scholar
  27. Ho K, Dunin-Borkowski OM, Akam M (1997) Cellularization in locust embryos occurs before blastoderm formation. Development 124(14):2761–2768PubMedGoogle Scholar
  28. Jacobs CGC, Spaink HP, van der Zee M (2014) The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. Elife 3:e04111Google Scholar
  29. Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68(2):243–274PubMedCentralCrossRefPubMedGoogle Scholar
  30. Jaeger J, Goodwin BC (2001) A cellular oscillator model for periodic pattern formation. J Theor Biol 213(2):171–181CrossRefPubMedGoogle Scholar
  31. Jura C (1972) Development of apterygote insects. In: Counce SJ, Waddington CH (eds) Developmental Systems: insects. Academic Press, London, pp 49–95Google Scholar
  32. Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138(22):5015–5026CrossRefPubMedGoogle Scholar
  33. Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev 39(6):436–445CrossRefPubMedGoogle Scholar
  34. Konopova B, Akam M (2014) The Hox genes Ultrabithorax and abdominal-A specify three different types of abdominal appendage in the springtail Orchesella cincta (Collembola). EvoDevo 5:2PubMedCentralCrossRefPubMedGoogle Scholar
  35. Kotkamp K, Klingler M, Schoppmeier M (2010) Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Development 137(11):1853–1862CrossRefPubMedGoogle Scholar
  36. Krause G (1939) Die Eytipen der Insekten. Biol Zbl 59:495–536Google Scholar
  37. Lall S, Ludwig MZ, Patel NH (2003) Nanos plays a conserved role in axial patterning outside of the Diptera. Curr Biol 13(3):224–229CrossRefPubMedGoogle Scholar
  38. Liu PZ, Kaufman TC (2004a) Hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 131(7):1515–1527CrossRefPubMedGoogle Scholar
  39. Liu PZ, Kaufman TC (2004b) Krüppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segments. Development 131(18):4567–4579CrossRefPubMedGoogle Scholar
  40. Liu PZ, Kaufman TC (2005) Even-skipped is not a pair-rule gene but has segmental and gap-like functions in Oncopeltus fasciatus, an intermediate germband insect. Development 132(9):2081–2092CrossRefPubMedGoogle Scholar
  41. Liu PZ, Patel NH (2010) Giant is a bona fide gap gene in the intermediate germband insect, Oncopeltus fasciatus. Development 137(5):835–844PubMedCentralCrossRefPubMedGoogle Scholar
  42. Lynch JA, Desplan C (2010) Novel modes of localization and function of nanos in the wasp Nasonia. Development 137(22):3813–3821PubMedCentralCrossRefPubMedGoogle Scholar
  43. Lynch JA, Brent AE, Leaf DS, Pultz MA, Desplan C (2006a) Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 7077:728–732CrossRefGoogle Scholar
  44. Lynch JA, Olesnicky EC, Desplan C (2006b) Regulation and function of tailless in the long germ wasp Nasonia vitripennis. Dev Genes Evol 216(7–8):493–498CrossRefPubMedGoogle Scholar
  45. Lynch JA, Peel AD, Drechsler A, Averof M, Roth S (2010) EGF signaling and the origin of axial polarity among the insects. Curr Biol 20(11):1042–1047PubMedCentralCrossRefPubMedGoogle Scholar
  46. Mahowald AP (1972) Oogenesis. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 1–48Google Scholar
  47. Martin JR, Raibaud A, Ollo R (1994) Terminal pattern elements in Drosophila embryo induced by the Torso-like protein. Nature 367(6465):741–745CrossRefPubMedGoogle Scholar
  48. McGregor AP (2006) Wasps, beetles and the beginning of the ends. Bioessays 28(7):683–686CrossRefPubMedGoogle Scholar
  49. Minelli A (2001) A three-phase model of arthropod segmentation. Dev Genes Evol 211(10):509–521CrossRefPubMedGoogle Scholar
  50. Mito T, Sarashina I, Zhang HJ, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S (2005) Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 132(9):2069–2079CrossRefPubMedGoogle Scholar
  51. Mito T, Okamoto H, Shinahara W, Shinmyo Y, Miyawaki K, Ohuchi H, Noji S (2006) Krüppel acts as a gap gene regulating expression of hunchback and even-skipped in the intermediate germ cricket Gryllus bimaculatus. Dev Biol 294(2):471–481CrossRefPubMedGoogle Scholar
  52. Mito T, Shinmyo Y, Kurita K, Nakamura T, Ohuchi H, Noji S (2011) Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 138(17):3823–3833CrossRefPubMedGoogle Scholar
  53. Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222(4):189–216CrossRefPubMedGoogle Scholar
  54. Nakamoto A, Hester SD, Constantinou SJ, Blaine WG, Tewksbury AB, Matei MT, Nagy LM, Williams TA (2015) Changing cell behaviours during beetle embryogenesis correlates with slowing of segmentation. Nat Commun 6:6635Google Scholar
  55. Nakamura T, Yoshizaki M, Ogawa S, Okamoto H, Shinmyo Y, Bando T, Ohuchi H, Noji S, Mito T (2010) Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr Biol 20(18):1641–1647CrossRefPubMedGoogle Scholar
  56. Olesnicky EC, Desplan C (2007) Distinct mechanisms for mRNA localization during embryonic axis specification in the wasp Nasonia. Dev Biol 306(1):134–142PubMedCentralCrossRefPubMedGoogle Scholar
  57. Olesnicky EC, Brent AE, Tonnes L, Walker M, Pultz MA, Leaf D, Desplan C (2006) A caudal mRNA gradient controls posterior development in the wasp Nasonia. Development 133(20):3973–3982CrossRefPubMedGoogle Scholar
  58. Panfilio KA (2008) Extraembryonic development in insects and the acrobatics of blastokinesis. Dev Biol 313(2):471–491CrossRefPubMedGoogle Scholar
  59. Patel NH, Hayward DC, Lall S, Pirkl NR, DiPietro D, Ball EE (2001) Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development 128(18):3459–3472PubMedGoogle Scholar
  60. Peel A (2004) The evolution of arthropod segmentation mechanisms. Bioessays 26(10):1108–1116CrossRefPubMedGoogle Scholar
  61. Pueyo JI, Lanfear R, Couso JP (2008) Ancestral notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105(43):16614–16619PubMedCentralCrossRefPubMedGoogle Scholar
  62. Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238CrossRefGoogle Scholar
  63. Sarrazin AF, Peel AD, Averof M (2012) A segmentation clock with two-segment periodicity in insects. Science 336(6079):338–341CrossRefPubMedGoogle Scholar
  64. Schmitt-Engel C, Cerny AC, Schoppmeier M (2012) A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Dev Biol 364(2):224–235CrossRefPubMedGoogle Scholar
  65. Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band formation. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution – molecules, development, morphology. Springer, Heidelberg, pp 63–90CrossRefGoogle Scholar
  66. Schoppmeier M, Schröder R (2005) Maternal torso signaling controls body axis elongation in a short germ insect. Curr Biol 15(23):2131–2136CrossRefPubMedGoogle Scholar
  67. Schoppmeier M, Fischer S, Schmitt-Engel C, Löhr U, Klingler M (2009) An ancient anterior patterning system promotes caudal repression and head formation in Ecdysozoa. Curr Biol 19(21):1811–1815CrossRefPubMedGoogle Scholar
  68. Schröder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422(6932):621–625CrossRefPubMedGoogle Scholar
  69. Schröder R, Eckert C, Wolff C, Tautz D (2000) Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 97(12):6591–6596PubMedCentralCrossRefPubMedGoogle Scholar
  70. Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S (2005) Caudal is required for gnathal and thoracic patterning and for posterior elongation in the intermediate-germband cricket Gryllus bimaculatus. Mech Dev 122(2):231–239CrossRefPubMedGoogle Scholar
  71. Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423(6942):863–865CrossRefPubMedGoogle Scholar
  72. Stys P, Bilinski S (1990) Ovariole types and the phylogeny of hexapods. Biol Rev 65(4):401–429CrossRefGoogle Scholar
  73. Weisbrod A, Cohen M, Chipman AD (2013) Evolution of the insect terminal patterning system-Insights from the milkweed bug, Oncopeltus fasciatus. Dev Biol 380:125–131CrossRefPubMedGoogle Scholar
  74. Williams T, Blachuta B, Hegna TA, Nagy LM (2012) Decoupling elongation and segmentation: notch involvement in anostracan crustacean segmentation. Evol Dev 14(4):372–382CrossRefPubMedGoogle Scholar
  75. Wilson MJ, Dearden PK (2009) Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Dev Biol 335(1):276–287CrossRefPubMedGoogle Scholar
  76. Wilson MJ, Dearden PK (2011) Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 138(16):3497–3507CrossRefPubMedGoogle Scholar
  77. Wilson MJ, Havler M, Dearden PK (2010) Giant, Kruppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Dev Biol 339(1):200–211CrossRefPubMedGoogle Scholar
  78. Wolff C (2009) The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219(11–12):545–564CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.The Department of Ecology, Evolution and BehaviorThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations