Hexapoda: A Drosophila’s View of Development

  • Volker Hartenstein
  • Ariel D. Chipman


By any criterion, Insecta (as a subtaxon of Hexapoda) is the most successful taxon on the planet (see Chaps. 2 and 3 for the inclusion of the various subtaxa in Hexapoda versus Insecta). The number of described insect species nears one million, and they are found in almost every ecosystem, forming the major component of animal biomass in most. Within the insects, the largest group comprises the holometabolous insects. In the holometabolous insects, the outcome of embryogenesis is a larva, which normally has a relatively simple morphology, with no wings or reproductive organs and either no legs or rudimentary legs. The larva goes through several molts, pupates, and undergoes metamorphosis within the pupa, finally hatching from the pupa as an adult with limbs, wings, and reproductive organs. Most of the remaining species belong to the hemimetabolous insects, a paraphyletic group wherein the outcome of embryogenesis is a nymph, superficially similar to an adult, but with no wings or reproductive organs. The nymph undergoes several molts, each being slightly larger and closer in shape and size to the adult, with the final adult molt developing wings and reproductive organs, without going through a pupal stage or undergoing a dramatic metamorphosis. Finally, a small group of insects undergoes ametabolous development, wherein there is no terminal adult stage, and the animal continues to molt even after developing reproductive organs. These insects are all primitively wingless.


Imaginal Disc Ventral Nerve Cord Malpighian Tubule Tendon Cell Dorsal Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



VH wrote most of the text of this chapter and prepared the figures. He warmly thanks ADC for writing the introductory sections and contributing to other sections.


  1. Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139:641–656PubMedCentralPubMedGoogle Scholar
  2. Affolter M, Caussinus E (2008) Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development 135:2055–2064Google Scholar
  3. Ainsworth C, Wan S, Skaer H (2000) Coordinating cell fate and morphogenesis in Drosophila renal tubules. Philos Trans R Soc Lond B Biol Sci 355:931–937PubMedCentralPubMedGoogle Scholar
  4. Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1–22PubMedGoogle Scholar
  5. Andrew DJ, Ewald AJ (2010) Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev Biol 341:34–55PubMedCentralPubMedGoogle Scholar
  6. Andrew DJ, Henderson KD, Seshaiah P (2000) Salivary gland development in Drosophila melanogaster. Mech Dev 92:5–17PubMedGoogle Scholar
  7. Bae YK, Trisnadi N, Kadam S, Stathopoulos A (2012) The role of FGF signaling in guiding coordinate movement of cell groups: guidance cue and cell adhesion regulator? Cell Adh Migr 6:397–403PubMedCentralPubMedGoogle Scholar
  8. Barrett K, Leptin M, Settleman J (1997) The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91:905–915PubMedGoogle Scholar
  9. Barrett AL, Krueger S, Datta S (2008) Branchless and Hedgehog operate in a positive feedback loop to regulate the initiation of neuroblast division in the Drosophila larval brain. Dev Biol 317:234–245PubMedGoogle Scholar
  10. Bate M (1993) The mesoderm and its derivatives. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012Google Scholar
  11. Bate M, Rushton E, Currie DA (1991) Cells with persistent twist expression are the embryonic precursors of adult muscles in Drosophila. Development 113:79–89PubMedGoogle Scholar
  12. Baylies MK, Bate M, Ruiz Gomez M (1997) The specification of muscle in Drosophila. Cold Spring Harb Symp Quant Biol 62:385–393PubMedGoogle Scholar
  13. Beckervordersandforth RM, Rickert C, Altenhein B, Technau GM (2008) Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression. Mech Dev 125:542–557PubMedGoogle Scholar
  14. Bello BC, Izergina N, Caussinus E, Reichert H (2008) Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5PubMedCentralPubMedGoogle Scholar
  15. Betschinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14:R674–R685PubMedGoogle Scholar
  16. Bhat KM (1999) Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays 21:472–485PubMedGoogle Scholar
  17. Bienz M (1994) Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet 10:22–26PubMedGoogle Scholar
  18. Bodmer R, Barbel S, Sheperd S, Jack JW, Jan LY, Jan YN (1987) Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell 51:293–307PubMedGoogle Scholar
  19. Bodmer R, Golden K, Lockwood WB, Ocorr KA, Park M, Su MT, Venkatesh TV (1997) Heart development in Drosophila. In: Wasserman P (ed) Advances in developmental biology, vol 5. JAI Press, Greenwich, pp 201–236Google Scholar
  20. Borkowski OM, Brown NH, Bate M (1995) Anterior-posterior subdivision and the diversification of the mesoderm in Drosophila. Development 121:4183–4193PubMedGoogle Scholar
  21. Boyle M, DiNardo S (1995) Specification, migration and assembly of the somatic cells of the Drosophila gonad. Development 121:1815–1825PubMedGoogle Scholar
  22. Boyle M, Bonini N, DiNardo S (1997) Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development 124:971–982Google Scholar
  23. Brody T, Odenwald WF (2005) Regulation of temporal identities during Drosophila neuroblast lineage development. Curr Opin Cell Biol 17:672–675PubMedGoogle Scholar
  24. Broihier HT, Moore LA, Van Doren M, Newman S, Lehmann R (1998) Zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development 125:655–666PubMedGoogle Scholar
  25. Bryantsev AL, Cripps RM (2009) Cardiac gene regulatory networks in Drosophila. Biochim Biophys Acta 1789:343–353PubMedCentralPubMedGoogle Scholar
  26. Buechling T, Akasaka T, Vogler G, Ruiz-Lozano P, Ocorr K, Bodmer R (2009) Non-autonomous modulation of heart rhythm, contractility and morphology in adult fruit flies. Dev Biol 328:483–492PubMedCentralPubMedGoogle Scholar
  27. Buff E, Carmena A, Gisselbrecht S, Jiménez F, Michelson AM (1998) Signalling by the Drosophila epidermal growth factor receptor is required for the specification and diversification of embryonic muscle progenitors. Development 125:2075–2086PubMedGoogle Scholar
  28. Cagan R (1993) Cell fate specification in the developing Drosophila retina. Dev Suppl 1993:19–28Google Scholar
  29. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster, 2nd edn. Springer, Berlin/HeidelbergGoogle Scholar
  30. Campos-Ortega JA, Jan YN (1991) Genetic and molecular bases of neurogenesis in Drosophila melanogaster. Annu Rev Neurosci 14:399–420PubMedGoogle Scholar
  31. Carmena A, Bate M, Jiménez F (1995) Lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Genes Dev 9:2373–2383PubMedGoogle Scholar
  32. Carmena A, Murugasu-Oei B, Menon D, Jiménez F, Chia W (1998) Inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Genes Dev 12:304–315PubMedCentralPubMedGoogle Scholar
  33. Carmena A, Buff E, Halfon MS, Gisselbrecht S, Jiménez F, Baylies MK, Michelson AM (2002) Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm. Dev Biol 244:226–242PubMedGoogle Scholar
  34. Carratalá M, Vernós I, Ransom R, Marco R (1989) Modeling the regulation of the bithorax complex in Drosophila melanogaster: the phenotypic effects of Ubx, abd-A and Abd-B heterozygotic larvae, and a homozygous Ubx- abd A hybrid gene. Int J Dev Biol 33:455–466Google Scholar
  35. Casanova J, Sánchez-Herrero E, Morata G (1986) Identification and characterization of a parasegment specific regulatory element of the abdominal-B gene of Drosophila. Cell 47:627–636PubMedGoogle Scholar
  36. Casares F, Sánchez-Herrero E (1995) Regulation of the infraabdominal regions of the bithorax complex of Drosophila by gap genes. Development 121:1855–1866PubMedGoogle Scholar
  37. Chell JM, Brand AH (2010) Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–1173PubMedCentralPubMedGoogle Scholar
  38. Chen F, Krasnow MA (2014) Progenitor outgrowth from the niche in Drosophila trachea is guided by FGF from decaying branches. Science 343:186–189PubMedCentralPubMedGoogle Scholar
  39. Cohen SM, Jürgens G (1990) Mediation of Drosophila head development by gap-like segmentation genes. Nature 346:482–485PubMedGoogle Scholar
  40. Cooley L, Theurkauf WE (1994) Cytoskeletal functions during Drosophila oogenesis. Science 266:590–596PubMedGoogle Scholar
  41. Corty MM, Matthews BJ, Grueber WB (2009) Molecules and mechanisms of dendrite development in Drosophila. Development 136:1049–1061PubMedCentralPubMedGoogle Scholar
  42. Costa M, Wilson ET, Wieschaus E (1994) A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76:1075–1089PubMedGoogle Scholar
  43. Crozatier M, Meister M (2007) Drosophila haematopoiesis. Cell Microbiol 9:1117–1126PubMedGoogle Scholar
  44. Crozatier M, Ubeda JM, Vincent A, Meister M (2004) Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol 2:E196PubMedCentralPubMedGoogle Scholar
  45. Dambly-Chaudière C, Jamet E, Burri M, Bopp D, Basler K, Hafen E, Dumont N, Spielmann P, Ghysen A, Noll M (1992) The paired box gene pox neuro: a determinant of poly-innervated sense organs in Drosophila. Cell 69:159–172PubMedGoogle Scholar
  46. Dansereau DA, Lasko P (2008) The development of germline stem cells in Drosophila. Methods Mol Biol 450:3–26PubMedCentralPubMedGoogle Scholar
  47. Dawes-Hoang RE, Parmar KM, Christiansen AE, Phelps CB, Brand AH, Wieschaus EF (2005) Folded gastrulation, cell shape change and the control of myosin localization. Development 132(18):4165–4178Google Scholar
  48. de Velasco B, Mandal L, Mkrtchyan M, Hartenstein V (2006) Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster. Dev Genes Evol 216:39–51PubMedGoogle Scholar
  49. Denholm B, Hu N, Fauquier T, Caubit X, Fasano L, Skaer H (2013) The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. Development 140:1100–1110PubMedCentralPubMedGoogle Scholar
  50. Deshpande G, Swanhart L, Chiang P, Schedl P (2001) Hedgehog signaling in germ cell migration. Cell 106:759–769PubMedGoogle Scholar
  51. Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675PubMedGoogle Scholar
  52. Di Cara F, King-Jones K (2013) How clocks and hormones act in concert to control the timing of insect development. Curr Top Dev Biol 105:1–36Google Scholar
  53. DiNardo S, Sher E, Heemskerk-Jongens J, Kassis JA, O’Farrell PH (1988) Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature 332:604–609PubMedCentralPubMedGoogle Scholar
  54. DiNardo S, Heemskerk J, Dougan S, O’Farrell PH (1994) The making of a maggot: patterning the Drosophila embryonic epidermis. Curr Opin Genet Dev 4:529–534PubMedCentralPubMedGoogle Scholar
  55. Doe CQ, Technau GM (1993) Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci 16:510–514PubMedGoogle Scholar
  56. Dubreuil RR (2004) Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol 36:745–752PubMedGoogle Scholar
  57. Dumstrei K, Wang F, Hartenstein V (2003) Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. J Neurosci 23:3325–3335PubMedGoogle Scholar
  58. Eastham LES (1930a) The formation of germ layers in insects. Biol Rev 5:1–29Google Scholar
  59. Eastham LES (1930b) The embryology of Pieris rapae. Organogeny. Philos Trans R Soc Lond B 219:1–50Google Scholar
  60. Ebens AJ, Garren H, Cheyette BN, Zipursky SL (1993) The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell 74:15–27PubMedGoogle Scholar
  61. Edwards TN, Nuschke AC, Nern A, Meinertzhagen IA (2012) Organization and metamorphosis of glia in the Drosophila visual system. J Comp Neurol 520:2067–2085PubMedGoogle Scholar
  62. Evans CJ, Hartenstein V, Banerjee U (2003) Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev Cell 5:673–690PubMedGoogle Scholar
  63. Fernandes JJ, Celniker SE, VijayRaghavan K (1996) Development of the indirect flight muscle attachment sites in Drosophila: role of the PS integrins and the stripe gene. Dev Biol 176:166–184PubMedGoogle Scholar
  64. Figeac N, Jagla T, Aradhya R, Da Ponte JP, Jagla K (2010) Drosophila adult muscle precursors form a network of interconnected cells and are specified by the rhomboid-triggered EGF pathway. Development 137:1965–1973PubMedGoogle Scholar
  65. Fischbach KF, Hiesinger PR (2008) Optic lobe development. Adv Exp Med Biol 628:115–136PubMedGoogle Scholar
  66. Fossett N, Tevosian SG, Gajewski K, Zhang Q, Orkin SH, Schulz RA (2001) The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc Natl Acad Sci U S A 98:7342–7347PubMedCentralPubMedGoogle Scholar
  67. Fossett N, Hyman K, Gajewski K, Orkin SH, Schulz RA (2003) Combinatorial interactions of serpent, lozenge, and U-shaped regulate crystal cell lineage commitment during Drosophila hematopoiesis. Proc Natl Acad Sci U S A 100:11451–11456PubMedCentralPubMedGoogle Scholar
  68. Franke JD, Montague RA, Kiehart DP (2005) Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr Biol 15:2208–2221PubMedGoogle Scholar
  69. Frasch M (1999) Intersecting signalling and transcriptional pathways in Drosophila heart specification. Semin Cell Dev Biol 10:61–71PubMedGoogle Scholar
  70. Fuller MT, Spradling AC (2007) Male and female Drosophila germline stem cells: two versions of immortality. Science 316:402–404PubMedGoogle Scholar
  71. Fuss B, Hoch M (2002) Notch signaling controls cell fate specification along the dorsoventral axis of the Drosophila gut. Curr Biol 12:171–179PubMedGoogle Scholar
  72. Fuss B, Josten F, Feix M, Hoch M (2004) Cell movements controlled by the Notch signalling cascade during foregut development in Drosophila. Development 131:1587–1595PubMedGoogle Scholar
  73. García-Bellido A (1975) Genetic control of wing disc development in Drosophila. Ciba Found Symp 0:161–182PubMedGoogle Scholar
  74. Gaul U, Jäckle H (1990) Role of gap genes in early Drosophila development. Adv Genet 27:239–275PubMedGoogle Scholar
  75. Gaul U, Weigel D (1990) Regulation of Krüppel expression in the anlage of the Malpighian tubules in the Drosophila embryo. Mech Dev 33:57–67PubMedGoogle Scholar
  76. Gehring WJ (1985–1986) Homeotic genes, the homeobox, and the spatial organization of the embryo. Harvey Lect 81:153–172Google Scholar
  77. Gendre N, Lüer K, Friche S, Grillenzoni N, Ramaekers A, Technau GM, Stocker RF (2004) Integration of complex larval chemosensory organs into the adult nervous system of Drosophila. Development 131:83–92PubMedGoogle Scholar
  78. Ghysen A, Dambly-Chaudière C, Jan LY, Jan YN (1993) Cell interactions and gene interactions in peripheral neurogenesis. Genes Dev 7:723–733PubMedGoogle Scholar
  79. Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates, Inc, SunderlandGoogle Scholar
  80. Godt D, Laski FA (1995) Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric à brac. Development 121:173–187PubMedGoogle Scholar
  81. Godt D, Tepass U (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395:387–391PubMedGoogle Scholar
  82. Goodman CS, Doe CQ (1993) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012Google Scholar
  83. Goulding SE, zur Lage P, Jarman AP (2000) Amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78PubMedGoogle Scholar
  84. Grenningloh G, Goodman CS (1992) Pathway recognition by neuronal growth cones: genetic analysis of neural cell adhesion molecules in Drosophila. Curr Opin Neurobiol 2:42–47PubMedGoogle Scholar
  85. Grigorian M, Mandal L, Hakimi M, Ortiz I, Hartenstein V (2011) The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm. Dev Biol 353:105–118PubMedCentralPubMedGoogle Scholar
  86. Guha A, Kornberg TB (2005) Tracheal branch repopulation precedes induction of the Drosophila dorsal air sac primordium. Dev Biol 287:192–200PubMedGoogle Scholar
  87. Guillemin K, Groppe J, Ducker K, Treisman R, Hafen E, Affolter M, Krasnow MA (1996) The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development 122:1353–1362Google Scholar
  88. Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17:27–41PubMedGoogle Scholar
  89. Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:428–439PubMedGoogle Scholar
  90. Hanyu-Nakamura K, Kobayashi S, Nakamura A (2004) Germ cell-autonomous Wunen2 is required for germline development in Drosophila embryos. Development 131:4545–4553PubMedGoogle Scholar
  91. Harbecke R, Janning W (1989) The segmentation gene Krüppel of Drosophila melanogaster has homeotic properties. Genes Dev 3:114–122PubMedGoogle Scholar
  92. Harding K, Wedeen C, McGinnis W, Levine M (1985) Spatially regulated expression of homeotic genes in Drosophila. Science 229:1236–1242PubMedGoogle Scholar
  93. Hartenstein V (1997) Development of the insect stomatogastric nervous system. Trends Neurosci 20:421–427PubMedGoogle Scholar
  94. Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570PubMedGoogle Scholar
  95. Hartenstein V (2011) Morphological diversity and development of glia in Drosophila. Glia 59:1237–1252PubMedCentralPubMedGoogle Scholar
  96. Hartenstein AY, Rugendorff A, Tepass U, Hartenstein V (1992) The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 116:1203–1220PubMedGoogle Scholar
  97. Hartenstein V, Spindler S, Pereanu W, Fung S (2008) The development of the Drosophila larval brain. Adv Exp Med Biol 628:1–31PubMedGoogle Scholar
  98. Hartmann B, Reichert H (1998) The genetics of embryonic brain development in Drosophila. Mol Cell Neurosci 12:194–205PubMedGoogle Scholar
  99. Hayes SA, Miller JM, Hoshizaki DK (2001) Serpent, a GATA-like transcription factor gene, induces fat-cell development in Drosophila melanogaster. Development 128:1193–1200PubMedGoogle Scholar
  100. Hoch M, Broadie K, Jäckle H, Skaer H (1994) Sequential fates in a single cell are established by the neurogenic cascade in the Malpighian tubules of Drosophila. Development 120:3439–3450Google Scholar
  101. Hoch M, Pankratz MJ (1996) Control of gut development by fork head and cell signaling molecules in Drosophila. Mech Dev 58:3–14PubMedGoogle Scholar
  102. Ingham PW (1991) Segment polarity genes and cell patterning within the Drosophila body segment. Curr Opin Genet Dev 1:261–267Google Scholar
  103. Ip YT, Levine M, Small SJ (1992) The bicoid and dorsal morphogens use a similar strategy to make stripes in the Drosophila embryo. J Cell Sci Suppl 16:33–38PubMedGoogle Scholar
  104. Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 149:134–148PubMedGoogle Scholar
  105. Jacinto A, Woolner S, Martin P (2002) Dynamic analysis of dorsal closure in Drosophila: from genetics to cell biology. Dev Cell 3:9–19PubMedGoogle Scholar
  106. Jäckle H, Hoch M, Pankratz MJ, Gerwin N, Sauer F, Brönner G (1992) Transcriptional control by Drosophila gap genes. J Cell Sci Suppl 16:39–51PubMedGoogle Scholar
  107. Jagla K, Bellard M, Frasch M (2001) A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays 23:125–133Google Scholar
  108. Jan YN, Jan LY (1994) Genetic control of cell fate specification in Drosophila peripheral nervous system. Annu Rev Genet 28:373–393PubMedGoogle Scholar
  109. Jarman AP, Groves AK (2013) The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 24:438–447PubMedCentralPubMedGoogle Scholar
  110. Jiang H, Edgar BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136:483–493PubMedCentralPubMedGoogle Scholar
  111. Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95PubMedCentralPubMedGoogle Scholar
  112. Jones BW (2005) Transcriptional control of glial cell development in Drosophila. Dev Biol 278:265–273PubMedGoogle Scholar
  113. Jung AC, Denholm B, Skaer H, Affolter M (2005) Renal tubule development in Drosophila: a closer look at the cellular level. J Am Soc Nephrol 16:322–328PubMedGoogle Scholar
  114. Jürgens G, Hartenstein V (1993) The terminal regions of the body patter. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012Google Scholar
  115. Kaltschmidt JA, Brand AH (2002) Asymmetric cell division: microtubule dynamics and spindle asymmetry. J Cell Sci 115:2257–2264PubMedGoogle Scholar
  116. Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137:4135–4145PubMedCentralPubMedGoogle Scholar
  117. Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–362Google Scholar
  118. Keshishian H, Chang TN, Jarecki J (1994) Precision and plasticity during Drosophila neuromuscular development. FASEB J 8:731–737PubMedGoogle Scholar
  119. Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA (2000) Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 149:471–490PubMedCentralPubMedGoogle Scholar
  120. Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545PubMedGoogle Scholar
  121. King RC (1970) Ovarian development in Drosophila melanogaster. Academic, New YorkGoogle Scholar
  122. Kirilly D, Xie T (2007) The Drosophila ovary: an active stem cell community. Cell Res 17:15–25. Erratum in: Cell Res 17:271PubMedGoogle Scholar
  123. Klämbt C, Hummel T, Granderath S, Schimmelpfeng K (2001) Glial cell development in Drosophila. Int J Dev Neurosci 19:373–378PubMedGoogle Scholar
  124. Klapper R (2000) The longitudinal visceral musculature of Drosophila melanogaster persists through metamorphosis. Mech Dev 95:47–54PubMedGoogle Scholar
  125. Klapper R, Stute C, Schomaker O, Strasser T, Janning W, Renkawitz-Pohl R, Holz A (2002) The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mech Dev 110:85–96PubMedGoogle Scholar
  126. Klingler M (1990) The organization of the antero-posterior axis. Semin Cell Biol 1:151–160PubMedGoogle Scholar
  127. Kobayashi S, Okada M (1988) Molecular analysis of a cytoplasmic factor essential for pole cell formation in Drosophila embryos. Cell Differ Dev 25:25–29PubMedGoogle Scholar
  128. Krzemień J, Dubois L, Makki R, Meister M, Vincent A, Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446:325–328PubMedGoogle Scholar
  129. Krzemien J, Crozatier M, Vincent A (2010) Ontogeny of the Drosophila larval hematopoietic organ, hemocyte homeostasis and the dedicated cellular immune response to parasitism. Int J Dev Biol 54:1117–1125PubMedGoogle Scholar
  130. Kuo YM, Jones N, Zhou B, Panzer S, Larson V, Beckendorf SK (1996) Salivary duct determination in Drosophila: roles of the EGF receptor signalling pathway and the transcription factors fork head and trachealess. Development 122:1909–1917PubMedGoogle Scholar
  131. Lai EC, Orgogozo V (2004) A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev Biol 269:1–17PubMedGoogle Scholar
  132. Landgraf M, Sánchez-Soriano N, Technau GM, Urban J, Prokop A (2003) Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites. Dev Biol 260:207–225PubMedGoogle Scholar
  133. Larsen C, Shy D, Spindler SR, Fung S, Pereanu W, Younossi-Hartenstein A, Hartenstein V (2009) Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain. Dev Biol 335:289–304PubMedCentralPubMedGoogle Scholar
  134. Lawrence PA (1987) Pair-rule genes: do they paint stripes or draw lines? Cell 51:879–880PubMedGoogle Scholar
  135. Lebestky T, Chang T, Hartenstein V, Banerjee U (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288:146–149PubMedGoogle Scholar
  136. Lebestky T, Jung SH, Banerjee U (2003) A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev 17:348–353PubMedCentralPubMedGoogle Scholar
  137. Lee WC, Beebe K, Sudmeier L, Micchelli CA (2009) Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 136:2255–2264PubMedGoogle Scholar
  138. Lehmann R, Nüsslein-Volhard C (1991) The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112:679–691PubMedGoogle Scholar
  139. Lengyel JA, Iwaki DD (2002) It takes guts: the Drosophila hindgut as a model system for organogenesis. Dev Biol 243:1–19PubMedGoogle Scholar
  140. Leptin M (1995) Drosophila gastrulation: from pattern formation to morphogenesis. Annu Rev Cell Dev Biol 11:189–212PubMedGoogle Scholar
  141. Levine M, Harding K (1987) Spatial regulation of homeo box gene expression in Drosophila. Oxf Surv Eukaryot Genes 4:116–142PubMedGoogle Scholar
  142. Li MA, Alls JD, Avancini RM, Koo K, Godt D (2003) The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nat Cell Biol 5:994–1000PubMedGoogle Scholar
  143. Li X, Erclik T, Bertet C, Chen Z, Voutev R, Venkatesh S, Morante J, Celik A, Desplan C (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498:456–462PubMedCentralPubMedGoogle Scholar
  144. Lin G, Xu N, Xi R (2008) Paracrine wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455:1119–1123PubMedGoogle Scholar
  145. Liu S, Jack J (1992) Regulatory interactions and role in cell type specification of the Malpighian tubules by the cut, Krüppel, and caudal genes of Drosophila. Dev Biol 150:133–143PubMedGoogle Scholar
  146. Lo PC, Frasch M (2003) Establishing A-P polarity in the embryonic heart tube: a conserved function of Hox genes in Drosophila and vertebrates? Trends Cardiovasc Med 13:182–187PubMedGoogle Scholar
  147. Lohmann I, McGinnis N, Bodmer M, McGinnis W (2002) The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110:457–466Google Scholar
  148. Lu X, Perkins LA, Perrimon N (1993) The torso pathway in Drosophila: a model system to study receptor tyrosine kinase signal transduction. Dev Suppl 1993:47–56Google Scholar
  149. Lubarsky B, Krasnow MA (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28PubMedGoogle Scholar
  150. Lucchetta EM, Ohlstein B (2012) The Drosophila midgut: a model for stem cell driven tissue regeneration. Wiley Interdiscip Rev Dev Biol 1:781–788PubMedGoogle Scholar
  151. Mandal L, Dumstrei K, Hartenstein V (2004a) Role of FGFR signaling in the morphogenesis of the Drosophila visceral musculature. Dev Dyn 231:342–348PubMedGoogle Scholar
  152. Mandal L, Banerjee U, Hartenstein V (2004b) Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat Genet 36:1019–1023PubMedGoogle Scholar
  153. Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446:320–324Google Scholar
  154. Manning G, Krasnow MA (1993) The development of the Drosophila tracheal system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012Google Scholar
  155. Manning AJ, Rogers SL (2014) The Fog signaling pathway: insights into signaling in morphogenesis. Dev Biol 394:6–14PubMedCentralPubMedGoogle Scholar
  156. Martin BS, Ruiz-Gómez M, Landgraf M, Bate M (2001) A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo. Development 128:3331–3338PubMedGoogle Scholar
  157. Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature 313:639–642PubMedGoogle Scholar
  158. Mathur D, Bost A, Driver I, Ohlstein B (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327:210–213PubMedCentralPubMedGoogle Scholar
  159. Matsuzaki F (2000) Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr Opin Neurobiol 10:38–44PubMedGoogle Scholar
  160. Meinertzhagen IA, Hanson TE (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 1363–1492Google Scholar
  161. Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479PubMedGoogle Scholar
  162. Miller A (1950) The internal anatomy and histology of the imago of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 420–534Google Scholar
  163. Mondal BC, Mukherjee T, Mandal L, Evans CJ, Sinenko SA, Martinez-Agosto JA, Banerjee U (2011) Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147:1589–1600PubMedCentralPubMedGoogle Scholar
  164. Morisato D, Anderson KV (1995) Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 29:371–399PubMedGoogle Scholar
  165. Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila embryo–shaping and transducing a morphogen gradient. Curr Biol 15:R887–R899PubMedGoogle Scholar
  166. Murakami R, Takashima S, Hamaguchi T (1999) Developmental genetics of the Drosophila gut: specification of primordia, subdivision and overt-differentiation. Cell Mol Biol (Noisy-le-Grand) 45:661–676Google Scholar
  167. Murakami R, Okumura T, Uchiyama H (2005) GATA factors as key regulatory molecules in the development of Drosophila endoderm. Dev Growth Differ 47:581–589PubMedGoogle Scholar
  168. Nassif C, Noveen A, Hartenstein V (2003) Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol 455:417–434PubMedGoogle Scholar
  169. Noselli S, Agnès F (1999) Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr Opin Genet Dev 9:466–472PubMedGoogle Scholar
  170. Nüsslein-Volhard C (1991) Determination of the embryonic axes of Drosophila. Dev Suppl 1:1–10PubMedGoogle Scholar
  171. Nüsslein-Volhard C, Roth S (1989) Axis determination in insect embryos. Ciba Found Symp 144:37–55PubMedGoogle Scholar
  172. Oda H, Tsukita S, Takeichi M (1998) Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Dev Biol 203:435–450PubMedGoogle Scholar
  173. Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474PubMedGoogle Scholar
  174. Omoto JJ, Yogi P, Hartenstein V (2015) Origin and development of neuropil glia of the Drosophila larval and adult brain: two distinct glial populations derived from separate progenitors. Dev Biol (2015 Mar 14. pii: S0012-1606(15)00111-6). doi:  10.1016/j.ydbio.2015.03.004. [Epub ahead of print]
  175. Panzer S, Weigel D, Beckendorf SK (1992) Organogenesis in Drosophila melanogaster: embryonic salivary gland determination is controlled by homeotic and dorsoventral patterning genes. Development 114:49–57PubMedGoogle Scholar
  176. Park Y, Rangel C, Reynolds MM, Caldwell MC, Johns M, Nayak M, Welsh CJ, McDermott S, Datta S (2003) Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev Biol 253:247–257PubMedGoogle Scholar
  177. Parks S, Wieschaus E (1991) The Drosophila gastrulation gene concertina encodes a G alpha-like protein. Cell 64:447–458PubMedGoogle Scholar
  178. Pearson BJ, Doe CQ (2004) Specification of temporal identity in the developing nervous system. Annu Rev Cell Dev Biol 20:619–647PubMedGoogle Scholar
  179. Pereanu W, Shy D, Hartenstein V (2005) Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol 283:191–203PubMedGoogle Scholar
  180. Pereanu W, Kumar A, Jennett A, Reichert H, Hartenstein V (2010) Development-based compartmentalization of the Drosophila central brain. J Comp Neurol 518:2996–3023PubMedCentralPubMedGoogle Scholar
  181. Pitsouli C, Perrimon N (2010) Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis. Development 137:3615–3624PubMedCentralPubMedGoogle Scholar
  182. Prokop A, Bray S, Harrison E, Technau GM (1998) Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system. Mech Dev 74:99–110PubMedGoogle Scholar
  183. Rajagopalan S, Vivancos V, Nicolas E, Dickson BJ (2000) Selecting a longitudinal pathway: robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 103:1033–1045Google Scholar
  184. Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53:217–240PubMedGoogle Scholar
  185. Rehorn KP, Thelen H, Michelson AM, Reuter R (1996) A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 122:4023–4031PubMedGoogle Scholar
  186. Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107:21064–210649PubMedCentralPubMedGoogle Scholar
  187. Riechmann V, Irion U, Wilson R, Grosskortenhaus R, Leptin M (1997) Control of cell fates and segmentation in the Drosophila mesoderm. Development 124:2915–2922PubMedGoogle Scholar
  188. Riechmann V, Rehorn KP, Reuter R, Leptin M (1998) The genetic control of the distinction between fat body and gonadal mesoderm in Drosophila. Development 125:713–723PubMedGoogle Scholar
  189. Riley PD, Carroll SB, Scott MP (1987) The expression and regulation of Sex combs reduced protein in Drosophila embryos. Genes Dev 1:716–730PubMedGoogle Scholar
  190. Rivera-Pomar R, Lu X, Perrimon N, Taubert H, Jäckle H (1995) Activation of posterior gap gene expression in the Drosophila blastoderm. Nature 376:253–256PubMedGoogle Scholar
  191. Rizki TM (1980) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2b. Academic, LondonGoogle Scholar
  192. Rochlin K, Yu S, Roy S, Baylies MK (2010) Myoblast fusion: when it takes more to make one. Dev Biol 341:66–83PubMedCentralPubMedGoogle Scholar
  193. Roy S, VijayRaghavan K (1997) Homeotic genes and the regulation of myoblast migration, fusion and fibre-specific gene expression during adult myogenesis in Drosophila. Development 124:3333–3341PubMedGoogle Scholar
  194. Roy S, VijayRaghavan K (1999) Muscle pattern diversification in Drosophila: the story of imaginal myogenesis. Bioessays 21:486–498PubMedGoogle Scholar
  195. Roy S, Shashidhara LS, VijayRaghavan K (1997) Muscles in the Drosophila second thoracic segment are patterned independently of autonomous homeotic gene function. Curr Biol 7:222–227PubMedGoogle Scholar
  196. Rugendorff AE, Younossi-Hartenstein A, Hartenstein V (1993) Embryonic development of the Drosophila heart. Roux’s Arch Dev Biol 203:266–280Google Scholar
  197. Ruohola-Baker H, Jan LY, Jan YN (1994) The role of gene cassettes in axis formation during Drosophila oogenesis. Trends Genet 10:89–94PubMedGoogle Scholar
  198. Rusch J, Levine M (1996) Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. Curr Opin Genet Dev 6:416–423PubMedGoogle Scholar
  199. Rushlow C, Arora K (1990) Dorsal-ventral polarity and pattern formation in the Drosophila embryo. Semin Cell Biol 1:137–149PubMedGoogle Scholar
  200. Samakovlis C, Manning G, Steneberg P, Hacohen N, Cantera R, Krasnow MA (1996) Genetic control of epithelial tube fusion during Drosophila tracheal development. Development 122:3531–3536PubMedGoogle Scholar
  201. Sato M, Kornberg TB (2002) FGF is an essential mitogen and chemoattractant for the air sacs of the Drosophila tracheal system. Dev Cell 3:195–207PubMedGoogle Scholar
  202. Sato M, Suzuki T, Nakai Y (2013) Waves of differentiation in the fly visual system. Dev Biol 380:1–11PubMedGoogle Scholar
  203. Schottenfeld J, Song Y, Ghabrial AS (2010) Tube continued: morphogenesis of the Drosophila tracheal system. Curr Opin Cell Biol 22:633–639PubMedCentralPubMedGoogle Scholar
  204. Schulz RA, Fossett N (2005) Hemocyte development during Drosophila embryogenesis. Methods Mol Med 105:109–122PubMedGoogle Scholar
  205. Schulz C, Tautz D (1995) Zygotic caudal regulation by hunchback and its role in abdominal segment formation of the Drosophila embryo. Development 121:1023–1028PubMedGoogle Scholar
  206. Schüpbach T, Roth S (1994) Dorsoventral patterning in Drosophila oogenesis. Curr Opin Genet Dev 4:502–507PubMedGoogle Scholar
  207. Schweisguth F, Vincent A, Lepesant JA (1991) Genetic analysis of the cellularization of the Drosophila embryo. Biol Cell 72:15–23PubMedGoogle Scholar
  208. Schweitzer R, Zelzer E, Volk T (2010) Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 137:2807–2817. Erratum in: development (2010) 137:3347Google Scholar
  209. Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731–1744PubMedGoogle Scholar
  210. Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137:4147–4158PubMedCentralPubMedGoogle Scholar
  211. Shim J, Mukherjee T, Banerjee U (2012) Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat Cell Biol 14:394–400PubMedCentralPubMedGoogle Scholar
  212. Siegmund T, Korge G (2001) Innervation of the ring gland of Drosophila melanogaster. J Comp Neurol 431:481–491PubMedGoogle Scholar
  213. Sinenko SA, Mandal L, Martinez-Agosto JA, Banerjee U (2009) Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev Cell 16:756–763PubMedCentralPubMedGoogle Scholar
  214. Singh SR, Liu W, Hou SX (2007) The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191–203PubMedCentralPubMedGoogle Scholar
  215. Singh SR, Zeng X, Zheng Z, Hou SX (2011) The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle 10:1109–1120PubMedCentralPubMedGoogle Scholar
  216. Skaer H (1993) The alimentary canal. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012Google Scholar
  217. Skeath JB, Carroll SB (1994) The achaete-scute complex: generation of cellular pattern and fate within the Drosophila nervous system. FASEB J 8:714–721PubMedGoogle Scholar
  218. Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15PubMedGoogle Scholar
  219. Small S, Levine M (1991) The initiation of pair-rule stripes in the Drosophila blastoderm. Curr Opin Genet Dev 1:255–260PubMedGoogle Scholar
  220. Søndergaard L (1993) Homology between the mammalian liver and the Drosophila fat body. Trends Genet 9:193PubMedGoogle Scholar
  221. Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471:508–512PubMedCentralPubMedGoogle Scholar
  222. Soustelle L, Giangrande A (2007) Glial differentiation and the Gcm pathway. Neuron Glia Biol 3:5–16PubMedGoogle Scholar
  223. Spindler SR, Hartenstein V (2010) The Drosophila neural lineages: a model system to study brain development and circuitry. Dev Genes Evol 220:1–10Google Scholar
  224. Spradling A, Fuller MT, Braun RE, Yoshida S (2011) Germline stem cells. Cold Spring Harb Perspect Biol 3:a002642PubMedCentralPubMedGoogle Scholar
  225. Staehling-Hampton K, Hoffmann FM, Baylies MK, Rushton E, Bate M (1994) Dpp induces mesodermal gene expression in Drosophila. Nature 372:783–786PubMedGoogle Scholar
  226. Stanojevi D, Hoey T, Levine M (1989) Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila. Nature 341:331–335Google Scholar
  227. Stork T, Bernardos R, Freeman MR (2012) Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 2012:1–17PubMedGoogle Scholar
  228. Stork T, Sheehan A, Tasdemir-Yilmaz OE, Freeman MR (2014) Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron 83:388–403PubMedCentralPubMedGoogle Scholar
  229. Takashima S, Hartenstein V (2012) Genetic control of intestinal stem cell specification and development: a comparative view. Stem Cell Rev 8:597–608PubMedCentralPubMedGoogle Scholar
  230. Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454:651–655PubMedGoogle Scholar
  231. Takashima S, Adams KL, Ortiz PA, Ying CT, Moridzadeh R, Younossi-Hartenstein A, Hartenstein V (2011a) Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway. Dev Biol 353:161–172PubMedGoogle Scholar
  232. Takashima S, Younossi-Hartenstein A, Ortiz PA, Hartenstein V (2011b) A novel tissue in an established model system: the Drosophila pupal midgut. Dev Genes Evol 221:69–81PubMedCentralPubMedGoogle Scholar
  233. Takashima S, Paul M, Aghajanian P, Younossi-Hartenstein A, Hartenstein V (2013) Migration of Drosophila intestinal stem cells across organ boundaries. Development 140:1903–1911PubMedCentralPubMedGoogle Scholar
  234. Takashima S, Aghajanian P, Younossi-Hartenstein A, Paul M, Hartenstein V (2014) Origin and dynamic lineage characteristics of the developing Drosophila midgut stem cells (in review)Google Scholar
  235. Tasdemir-Yilmaz OE, Freeman MR (2014) Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev 28:20–33PubMedCentralPubMedGoogle Scholar
  236. Tepass U, Hartenstein V (1994a) The development of cellular junctions in the Drosophila embryo. Dev Biol 161:563–596PubMedGoogle Scholar
  237. Tepass U, Hartenstein V (1994b) Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development 120:579–590PubMedGoogle Scholar
  238. Tepass U, Hartenstein V (1995) Neurogenic and proneural genes control cell fate specification in the Drosophila endoderm. Development 121:393–405PubMedGoogle Scholar
  239. Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–1837PubMedGoogle Scholar
  240. Tilney LG, DeRosier DJ (2005) How to make a curved Drosophila bristle using straight actin bundles. Proc Natl Acad Sci U S A 102:18785–18792PubMedCentralPubMedGoogle Scholar
  241. Tixier V, Bataillé L, Jagla K (2010) Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 316:3019–3027PubMedGoogle Scholar
  242. Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:research0088.1Google Scholar
  243. Treisman JE (2013) Retinal differentiation in Drosophila. Wiley Interdiscip Rev Dev Biol 2:545–557PubMedCentralPubMedGoogle Scholar
  244. Truman JW, Moats W, Altman J, Marin EC, Williams DW (2010) Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster. Development 137:53–61PubMedCentralPubMedGoogle Scholar
  245. Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549PubMedGoogle Scholar
  246. Uemura T, Shepherd S, Ackerman L, Jan LY, Jan YN (1989) numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58:349–360Google Scholar
  247. VanHook A, Letsou A (2008) Head involution in Drosophila: genetic and morphogenetic connections to dorsal closure. Dev Dyn 237:28–38PubMedGoogle Scholar
  248. Viktorin G, Riebli N, Popkova A, Giangrande A, Reichert H (2011) Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol 356:553–565PubMedGoogle Scholar
  249. Volk T (1999) Singling out Drosophila tendon cells: a dialogue between two distinct cell types. Trends Genet 15:448–453PubMedGoogle Scholar
  250. von Ohlen T, Doe CQ (2000) Convergence of dorsal, dpp, and egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns. Dev Biol 224:362–372Google Scholar
  251. Wang S, Tulina N, Carlin DL, Rulifson EJ (2007) The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proc Natl Acad Sci U S A 104:19873–19878PubMedCentralPubMedGoogle Scholar
  252. Ward EJ, Skeath JB (2000) Characterization of a novel subset of cardiac cells and their progenitors in the Drosophila embryo. Development 127:4959–4969PubMedGoogle Scholar
  253. Warn RM, Warn A, Planques V, Robert-Nicoud M (1990) Cytokinesis in the early Drosophila embryo. Ann N Y Acad Sci 582:222–232PubMedGoogle Scholar
  254. Warrior R (1994) Primordial germ cell migration and the assembly of the Drosophila embryonic gonad. Dev Biol 166:180–194PubMedGoogle Scholar
  255. Weavers H, Prieto-Sánchez S, Grawe F, Garcia-López A, Artero R, Wilsch-Bräuninger M, Ruiz-Gómez M, Skaer H, Denholm B (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457:322–326PubMedCentralPubMedGoogle Scholar
  256. Wernet MF, Desplan C (2004) Building a retinal mosaic: cell-fate decision in the fly eye. Trends Cell Biol 14:576–584PubMedGoogle Scholar
  257. White RA, Lehmann R (1986) A gap gene, hunchback, regulates the spatial expression of Ultrabithorax. Cell 47:311–321PubMedGoogle Scholar
  258. Williams DW, Shepherd D (2002) Persistent larval sensory neurones are required for the normal development of the adult sensory afferent projections in Drosophila. Development 129:617–624PubMedGoogle Scholar
  259. Wilson R, Leptin M (2000) Fibroblast growth factor receptor-dependent morphogenesis of the Drosophila mesoderm. Philos Trans R Soc Lond B Biol Sci 355:891–895PubMedCentralPubMedGoogle Scholar
  260. Wodarz A (2005) Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Curr Opin Cell Biol 17:475–481PubMedGoogle Scholar
  261. Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 1277–1326Google Scholar
  262. Wolpert L (1989) Positional information revisited. Development 107:3–12PubMedGoogle Scholar
  263. Wolpert L (2002) Principles of development, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  264. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330PubMedGoogle Scholar
  265. Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R (2011) EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 354:31–43PubMedGoogle Scholar
  266. Yu HH, Kolodkin AL (1999) Semaphorin signaling: a little less per-plexin. Neuron 22:11–14PubMedGoogle Scholar
  267. Yu F, Kuo CT, Jan YN (2006) Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 51:13–20PubMedGoogle Scholar
  268. Zamore PD, Lehmann R (1996) Drosophila development: homeodomains and translational control. Curr Biol 6:773–775PubMedGoogle Scholar
  269. Zhuang S, Shao H, Guo F, Trimble R, Pearce E, Abmayr SM (2009) Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development 136:2335–2344PubMedCentralPubMedGoogle Scholar
  270. Zlatic M, Landgraf M, Bate M (2003) Genetic specification of axonal arbors: atonal regulates robo3 to position terminal branches in the Drosophila nervous system. Neuron 37:41–51PubMedGoogle Scholar
  271. Zlatic M, Li F, Strigini M, Grueber W, Bate M (2009) Positional cues in the Drosophila nerve cord: semaphorins pattern the dorso-ventral axis. PLoS Biol 7:e1000135PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Molecular Cell and Developmental BiologyUniversity of California Los AngelesLos AngelesUSA
  2. 2.The Department of Ecology, Evolution and BehaviorThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations