Skip to main content

Abstract

Arthropods are composed of four major living groups, Chelicerata (Chap. XX), Myriapoda (herein), Hexapoda (Chaps. XX, YY, and ZZ), and the probably paraphyletic crustaceans (Chaps. XX, YY, and ZZ; see, e.g., Edgecombe 2010; Regier et al. 2010; Giribet and Edgecombe 2013). All recent molecular – but also morphological – phylogenies seem to show a strong support for a Hexapoda + crustacean clade (Tetraconata or Pancrustacea), with chelicerates never appearing as their sister group. The position of the myriapods is still not very strongly supported, and in the recent past some molecular phylogenies have grouped myriapods with chelicerates (e.g., Kusche and Burmester 2001; Mallatt et al. 2004; Pisani et al. 2004). Nevertheless, larger data sets and recognition of problematic issues like long branch attraction show a much stronger support for Mandibulata, where myriapods are sister group of the Pancrustacea (see also Chap. XX). The support for this clade derives from molecular data (e.g., Kusche et al. 2003; Rota-Stabelli and Telford 2008; Regier et al. 2010; Rota-Stabelli et al. 2011, 2013; Rehm et al. 2014), development and gene expression data (e.g., Harzsch et al. 2007; Sharma et al. 2014), and morphological data (e.g., Harzsch 2004; Harzsch et al. 2005; Müller et al. 2007; Sombke et al. 2012; see also Giribet and Edgecombe 2013 for general review).

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akam M (1998) Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol 42:445–451

    CAS  PubMed  Google Scholar 

  • Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747

    CAS  PubMed  Google Scholar 

  • Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357

    Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford

    Google Scholar 

  • Aranda M, Marques-Souza H, Bayer T, Tautz D (2008) The role of the segmentation gene hairy in Tribolium. Dev Genes Evol 218:465–477

    Google Scholar 

  • Blanke A, Wesener T (2014) Revival of forgotten characters and modern imaging techniques help to produce a robust phylogeny of the Diplopoda (Arthropoda, Myriapoda). Arthropod Struct Dev 43:63–75

    PubMed  Google Scholar 

  • Bortolin F, Benna C, Fusco G (2011) Gene expression during postembryonic segmentation in the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha). Dev Genes Evol 221:105–111

    Google Scholar 

  • Brena C (2014) The embryoid development of Strigamia maritima and its bearing on post-embryonic segmentation of geophilomorph centipedes. Front Zool 11:58

    Google Scholar 

  • Brena C, Akam M (2012) The embryonic development of the centipede Strigamia maritima. Dev Biol 363:290–307

    Google Scholar 

  • Brena C, Akam M (2013) An analysis of segmentation dynamics throughout embryogenesis in the centipede Strigamia maritima. BMC Biol 11:112

    Google Scholar 

  • Brena C, Patarnello T, Minelli A (2005) Abd-B expression in a millipede (Diplopoda) is decoupled from specification of gonopore position. Mech Dev 122:S157–S157

    Google Scholar 

  • Brena C, Chipman AD, Minelli A, Akam M (2006) Expression of trunk Hox genes in the centipede Strigamia maritima: sense and anti-sense transcripts. Evol Dev 8:252–265

    Google Scholar 

  • Brena C, Green J, Akam M (2013) Early embryonic determination of the sexual dimorphism in segment number in geophilomorph centipedes. EvoDevo 4:22

    Google Scholar 

  • Brenneis G, Stollewerk A, Scholtz G (2013) Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 4:32

    Google Scholar 

  • Brewer MS, Sierwald P, Bond JE (2012) Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group. PLoS One 7:e37240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brites D, Brena C, Ebert D, Du Pasquier L (2013) More than one way to produce protein diversity: duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods. Evolution 67:2999–3011

    PubMed  Google Scholar 

  • Budd GE, Högström AE, Gogin I (2001) A myriapod-like arthropod from the Upper Cambrian of East Siberia. Paläontol Z 75:37–41

    Google Scholar 

  • Chaw RC, Vance E, Black SD (2007) Gastrulation in the spider Zygiella x-notata involves three distinct phases of cell internalization. Dev Dyn 236:3484–3495

    Google Scholar 

  • Chesebro JE, Pueyo JI, Couso JP (2012) Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open 2:227–237

    Google Scholar 

  • Chipman AD, Akam M (2008) The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues. Dev Biol 319:160–169

    Google Scholar 

  • Chipman AD, Stollewerk A (2006) Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev Biol 290:337–350

    Google Scholar 

  • Chipman AD, Arthur W, Akam M (2004a) Early development and segment formation in the centipede, Strigamia maritima (Geophilomorpha). Evol Dev 6:78–89

    Google Scholar 

  • Chipman AD, Arthur W, Akam M (2004b) A double segment periodicity underlies segment generation in centipede development. Curr Biol 14:1250–1255

    CAS  PubMed  Google Scholar 

  • Chipman AD, Ferrier DEK, Brena C et al (2014) Prototypical arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 12:e1002005

    Google Scholar 

  • Choe CP, Brown SJ (2009) Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 325:482–491

    Google Scholar 

  • Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci U S A 103:6560–6564

    Google Scholar 

  • Cholodkowski N (1895) Zur Embryologie der Diplopoden. (russisch). Comptes Rendus Sci Soc Imper Nat St Petersbourg 2:10–12 and 17–18

    Google Scholar 

  • Cohen S, Jürgens G (1991) Drosophila headlines. Trends Genet 7:267–272

    Google Scholar 

  • Copf T, Rabet N, Celniker SE, Averof M (2003) Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130:5915–5927

    Google Scholar 

  • Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A (1996) collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol 6:707–718

    Google Scholar 

  • Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A (1999) Head versus trunk patterning in the Drosophila embryo; collier requirement for formation of the intercalary segment. Development 126:4385–4394

    Google Scholar 

  • Da Silva ST, Christofoletti CA, Bozzatto V, Fontanetti CS (2013) The use of diplopods in soil ecotoxicology–a review. Ecotoxicol Environ Saf 103:68–73

    Google Scholar 

  • Damen WG (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    CAS  PubMed  Google Scholar 

  • Damen WGM, Weller M, Tautz D (2000) Expression patterns of hairy, even-skipped, and runt in the spider Cupiennius salei imply that these genes were segmentation genes in a basal arthropod. Proc Natl Acad Sci U S A 97:4515–4519

    Google Scholar 

  • Damen WGM, Janssen R, Prpic NM (2005) Pair rule gene orthologs in spider segmentation. Evol Dev 7:618–628

    PubMed  Google Scholar 

  • Davis GK, Patel NH (2003) Playing by pair-rules? Bioessays 25:425–429

    CAS  PubMed  Google Scholar 

  • Dawydoff C (1956) Quelques observations sur l’embryogenese des Myriopodes Scolopendromorphes et Geophilomorphes Indochinois. C R Hebd Séances Acad Sci 242:2265–2267

    Google Scholar 

  • Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472

    Google Scholar 

  • Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M (2013) Involvement of the Wnt/β-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat Commun 4:1915

    Google Scholar 

  • Dhaenens M, Van den Spiegel D (2006) Contribution to the study of the post-embryonic development and reproduction of the African millipede Epibolus pulchripes (Gerstacker, 1873)(Diplopoda, Pachybolidae). Belg J Zool 136:43

    Google Scholar 

  • Döffinger C, Stollewerk A (2010) How can conserved gene expression allow for variation? Lessons from the dorso-ventral patterning gene muscle segment homeobox. Dev Biol 345:105–116

    PubMed  Google Scholar 

  • Dohle W (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat Bd 81:241–310

    Google Scholar 

  • Dohle W (1974) The segmentation of the germ band of Diplopoda compared with other classes of arthropods. Symp Zool Soc Lond 32:143–161

    Google Scholar 

  • Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130:2161–2171

    Google Scholar 

  • Dugon MM, Hayden L, Black A, Arthur W (2012) Development of the venom ducts in the centipede Scolopendra : an example of recapitulation. Evol Dev 14:515–521

    Google Scholar 

  • Economou AD, Telford MJ (2009) Comparative gene expression in the heads of Drosophila melanogaster and Tribolium castaneum and the segmental affinity of the Drosophila hypopharyngeal lobes. Evol Dev 11:88–96

    Google Scholar 

  • Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87. doi:10.1016/j.asd.2009.10.002

    PubMed  Google Scholar 

  • Edgecombe GD, Giribet G (2007) Evolutionary biology of centipedes (Myriapoda : Chilopoda). Annu Rev Entomol 52:151–170

    CAS  PubMed  Google Scholar 

  • Edgecombe GD, Richter S, Wilson GD (2003) The mandibular gnathal edges: homologous structures throughout Mandibulata? Afr Invertebr 44:115–135

    Google Scholar 

  • El-Sherif E, Averof M, Brown SJ (2012) A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development 139:4341–4346. doi:10.1242/dev.085126

  • Enghoff H, Dohle W, Blower JG (1993) Anamorphosis in millipedes (Diplopoda)—the present state of knowledge with some developmental and phylogenetic considerations. Zool J Linn Soc 109:103–234

    Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    CAS  PubMed  Google Scholar 

  • Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850

    Google Scholar 

  • Giribet G, Edgecombe GD (2013) The arthropoda: a phylogenetic framework. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer-Verlag, Berlin Heidelberg, pp 17–40

    Google Scholar 

  • Grbic M, Nagy LM, Carroll SB, Strand M (1996) Polyembryonic development: insect pattern formation in a cellularized environment. Development 122:795–804

    CAS  PubMed  Google Scholar 

  • Green J, Akam M (2013) Evolution of the pair rule gene network: insights from a centipede. Dev Biol 382:235–245. doi:10.1016/j.ydbio.2013.06.017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green J, Akam M (2014) Germ cells of the centipede Strigamia maritima are specified early in embryonic development. Dev Biol 392:419–430

    Google Scholar 

  • Grenier JK, Garber TL, Warren R et al (1997) Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol 7:547–553

    CAS  PubMed  Google Scholar 

  • Haddad V Jr, Cardoso JLC, Lupi O, Tyring SK (2012) Tropical dermatology: venomous arthropods and human skin: part II. Diplopoda, chilopoda, and arachnida. J Am Acad Dermatol 67:347.e1–347e9

    Google Scholar 

  • Hannibal RL, Patel NH (2013) What is a segment? EvoDevo 4:35

    PubMed Central  PubMed  Google Scholar 

  • Hannibal RL, Price AL, Patel NH (2012) The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis. Dev Biol 361:427–438

    Google Scholar 

  • Harzsch S (2004) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the chilopoda, diplopoda, and chelicerata: implications for arthropod relationships. J Morphol 259:198–213

    CAS  PubMed  Google Scholar 

  • Harzsch S, Muller CHG, Wolf H (2005) From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 215:53–68

    PubMed  Google Scholar 

  • Harzsch S, Melzer RR, Müller CHG (2007) Mechanisms of eye development and evolution of the arthropod visual system: the lateral eyes of myriapoda are not modified insect ommatidia. Org Divers Evol 7:20–32

    Google Scholar 

  • Hayden L, Arthur W (2014) The centipede Strigamia maritima possesses a large complement of Wnt genes with diverse expression patterns. Evol Dev 16:127–138

    Google Scholar 

  • Heathcote FG (1886) The early development of Julus terrestris. Q J Microsc Sci 2:449–470

    Google Scholar 

  • Hertzel G (1983) Cuticuläre Hüllen in der Embryogenese von Lithobius forficatus (L.) (Myriapoda, Chilopoda). Zool Jb Anat 110:395–401

    Google Scholar 

  • Hertzel G (1984) The segmentation of the germ band of Lithobius forficatus (Myriapoda, Chilopoda). Zool Jb Anat 112:369–386

    Google Scholar 

  • Hertzel G (1985) Die Embryonalentwicklung von Lithobius forficatus (L.) im Vergleich zur Entwicklung anderer Chilopoden. Dissertation, Pädagogische Hochschule Erfurt-Mühlhausen

    Google Scholar 

  • Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zool Stuttg 13:1–244

    Google Scholar 

  • Hopkin SP, Read HJ (1992) The biology of millipedes. Oxford University Press, Oxford

    Google Scholar 

  • Horneland EO, Meidell BA (2009) Postembryonic development of Strigamia maritima (Leach, 1817) (Chilopoda: geophilomorpha: linotaeniidae) with emphasis on how to separate the different stadia. Soil Org 81:373–386

    Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede. Dev Biol 247:47–61

    Google Scholar 

  • Hunnekuhl VS (2013) Molecular subdivision and cell type specification in centipede head and brain development. University of Cambridge, Cambridge, UK

    Google Scholar 

  • Hunnekuhl VS, Akam M (2014) An anterior medial cell population with an apical-organ-like transcriptional profile that pioneers the central nervous system in the centipede Strigamia maritima. Dev Biol 396:136–149.

    Google Scholar 

  • Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25–34

    Google Scholar 

  • Ingham P, Gergen P (1988) Interactions between the pair-rule genes runt, hairy, even-skipped and fushi tarazu and the establishment of periodic pattern in the Drosophila embryo. Development 104:51–60

    Google Scholar 

  • Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521

    Google Scholar 

  • Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68:243–274

    Google Scholar 

  • Janssen R (2011) Diplosegmentation in the pill millipede Glomeris marginata is the result of dorsal fusion. Evol Dev 13:477–487

    Google Scholar 

  • Janssen R (2012) Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods. Dev Genes Evol 222:299–309

    PubMed  Google Scholar 

  • Janssen R (2013) Developmental abnormalities in Glomeris marginata (Villers 1789) (Myriapoda: Diplopoda): implications for body axis determination in a myriapod. Naturwissenschaften 100:33–43

    Google Scholar 

  • Janssen R, Budd GE (2010) Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda. EvoDevo 1:4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssen R, Damen WGM (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465

    Google Scholar 

  • Janssen R, Posnien N (2014) Identification and embryonic expression of Wnt2, Wnt4, Wnt5 and Wnt9 in the millipede Glomeris marginata (Myriapoda: Diplopoda). Gene Expr Patterns 14:55–61

    Google Scholar 

  • Janssen R, Prpic NM, Damen WGM (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104

    Google Scholar 

  • Janssen R, Prpic NM, Damen WGM (2006) A review of the correlation of tergites, sternites, and leg pairs in diplopods. Front Zool 3:2

    PubMed Central  PubMed  Google Scholar 

  • Janssen R, Budd GE, Damen WGM, Prpic NM (2008) Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 218:361–370

    Google Scholar 

  • Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ (2010) Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol 10:374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssen R, Budd GE, Damen WGM (2011a) Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 357:64–72

    CAS  PubMed  Google Scholar 

  • Janssen R, Budd GE, Prpic NM, Damen WG (2011b) Expression of myriapod pair rule gene orthologs. EvoDevo 2:5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssen R, Damen WG, Budd GE (2011c) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50

    PubMed Central  PubMed  Google Scholar 

  • Janssen R, Damen WGM, Budd GE (2012) Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms? BMC Dev Biol 12:15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadner D, Stollewerk A (2004) Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates than to insects. Dev Genes Evol 214:367–379

    Google Scholar 

  • Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026

    Google Scholar 

  • Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H (2011) Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun 2:500

    PubMed Central  PubMed  Google Scholar 

  • Kettle C, Arthur W (2000) Latitudinal cline in segment number in an arthropod species, Strigamia maritima. Proc R Soc Lond Ser B-Biol Sci 267:1393–1397

    Google Scholar 

  • Kettle C, Johnstone J, Jowett T, Arthur H, Arthur W (2003) The pattern of segment formation, as revealed by engrailed expression, in a centipede with a variable number of segments. Evol Dev 5:198–207

    PubMed  Google Scholar 

  • Knoll HJ (1974) Untersuchungen zur Entwicklungsgeschichte von Scutigera coleoptrata L. (Chilopoda). Zool Jb Anat Bd 92:47–132

    Google Scholar 

  • Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

    CAS  PubMed  Google Scholar 

  • Kusche K, Hembach A, Hagner-Holler S et al (2003) Complete subunit sequences, structure and evolution of the 6 x 6-mer hemocyanin from the common house centipede, Scutigera coleoptrata. Eur J Biochem 270:2860–2868

    Google Scholar 

  • Lee JJ, von Kessler DP, Parks S, Beachy PA (1992) Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71:33–50

    CAS  PubMed  Google Scholar 

  • Lewis JGE (1981) The biology of centipedes. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Lignau N (1911) Embryonalentwicklung des Polydesmus abshasius. Zool Anz 37:144–153

    Google Scholar 

  • Linne V, Eriksson BJ, Stollewerk A (2012) Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 364:66–76

    CAS  PubMed  Google Scholar 

  • Liu PZ, Kaufman TC (2005) even-skipped is not a pair-rule gene but has segmental and gap-like functions in Oncopeltus fasciatus, an intermediate germband insect. Development 132:2081–2092

    CAS  PubMed  Google Scholar 

  • Liu Z-C, Zhang R, Zhao F, Chen Z-M, Liu H-W, Wang Y-J, Jiang P, Zhang Y, Wu Y, Ding J-P (2012) Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. J Proteome Res 11:6197–6212

    CAS  PubMed  Google Scholar 

  • Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–865

    CAS  PubMed  Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    CAS  PubMed  Google Scholar 

  • Martinez-Arias A (1993) Development and patterning of the larval epidermis of Drosophila. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 517–608

    Google Scholar 

  • Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature 313:639–642

    CAS  PubMed  Google Scholar 

  • Mayer G, Whitington PM (2009) Velvet worm development links myriapods with chelicerates. Proc R Soc B-Biol Sci 276:3571–3579

    Google Scholar 

  • McGregor AP (2005) How to get ahead: the origin, evolution and function of bicoid. Bioessays 27:904–913

    CAS  PubMed  Google Scholar 

  • McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WGM (2008) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498

    PubMed  Google Scholar 

  • Metschnikoff E (1874) Embryologie der doppeltfüssigen Myriapoden (Chilognatha). Z Für Wiss Zool 24:253–283, Taf XXIV–XXVII

    Google Scholar 

  • Minelli A (ed) (2011) Treatise on zoology-anatomy, taxonomy, biology. The myriapoda. Brill, Leiden

    Google Scholar 

  • Minelli A, Fusco G (2013) Arthropod post-embryonic development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer-Verlag Berlin Heidelberg, pp 91–122

    Google Scholar 

  • Minelli A, Foddai D, Pereira LA, Lewis JGE (2000) The evolution of segmentation of centipede trunk and appendages. J Zool Syst Evol Res 38:103–117

    Google Scholar 

  • Minelli A, Brena C, Deflorian G, Maruzzo D, Fusco G (2006) From embryo to adult-beyond the conventional periodization of arthropod development. Dev Genes Evol 216:373–383

    PubMed  Google Scholar 

  • Mito T, Shinmyo Y, Kurita K, Nakamura T, Ohuchi H, Noji S (2011) Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 138:3823–3833

    CAS  PubMed  Google Scholar 

  • Miyazawa H, Ueda C, Yahata K, Su Z-H (2014) Molecular phylogeny of Myriapoda provides insights into evolutionary patterns of the mode in post-embryonic development. Sci Rep 4:4127

    PubMed Central  PubMed  Google Scholar 

  • Mohler J (1993) Genetic regulation of CNC expression in the pharyngeal primordia of Drosophila blastoderm embryos. Rouxs Arch Dev Biol 202:214–223

    CAS  Google Scholar 

  • Müller CHG, Sombke A, Rosenberg J (2007) The fine structure of the eyes of some bristly millipedes (Penicillata, Diplopoda): additional support for the homology of mandibulate ommatidia. Arthropod Struct Dev 36:463–476

    PubMed  Google Scholar 

  • Nagy LM, Carroll S (1994) Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367:460–463

    CAS  PubMed  Google Scholar 

  • Newport G (1845) Monograph of the class Myriapoda, order Chilopoda. Trans Linn Soc Lond 19:349–439

    Google Scholar 

  • Nieuwkoop PD, Sutasurya LA (1981) Primordial germ cells in the invertebrates: from epigenesis to preformation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    CAS  PubMed  Google Scholar 

  • Noveen A, Daniel A, Hartenstein V (2000) Early development of the Drosophila mushroom body: the roles of eyeless and dachshund. Development 127:3475–3488

    CAS  PubMed  Google Scholar 

  • Oates AC, Morelli LG, Ares S (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139:625–639. doi:10.1242/dev.063735

    CAS  PubMed  Google Scholar 

  • Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y (2007) Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development 134:2195–2205

    CAS  PubMed  Google Scholar 

  • Ortega-Hernández J, Brena C (2012) Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites. PLoS One 7:e52623

    PubMed Central  PubMed  Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    CAS  PubMed  Google Scholar 

  • Pavlopoulos A, Akam M (2011) Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis. Proc Natl Acad Sci U S A 108:2855–2860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pechmann M, McGregor AP, Schwager EE, Feitosa NM, Damen WGM (2009) Dynamic gene expression is required for anterior regionalization in a spider. Proc Natl Acad Sci U S A 106:1468–1472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peel A (2004) The evolution of arthropod segmentation mechanisms. Bioessays 26:1108–1116

    CAS  PubMed  Google Scholar 

  • Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068

    CAS  PubMed  Google Scholar 

  • Pflugfelder O (1932) Über den Mechanismus der Segmentbildung bei der Embryonalentwicklung und Anamorphose von Platyrrhacus amauros Attems. Z Für Wissenschatliche Zool 140:650–723

    Google Scholar 

  • Pioro HL, Stollewerk A (2006) The expression pattern of genes involved in early neurogenesis suggests distinct and conserved functions in the diplopod Glomeris marginata. Dev Genes Evol 216:417–430

    CAS  PubMed  Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1

    PubMed Central  PubMed  Google Scholar 

  • Popadić A, Panganiban G, Rusch D, Shear WA, Kaufman TC (1998) Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Dev Genes Evol 208:142–150

    PubMed  Google Scholar 

  • Posnien N, Bashasab F, Bucher G (2009) The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev 11:480–488

    CAS  PubMed  Google Scholar 

  • Posnien N, Schinko JB, Kittelmann S, Bucher G (2010) Genetics, development and composition of the insect head–a beetle’s view. Arthropod Struct Dev 39:399–410

    PubMed  Google Scholar 

  • Prpic NM (2004) Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda). Front Zool 1:6

    PubMed Central  PubMed  Google Scholar 

  • Prpic NM (2005) Duplicated Pax6 genes in Glomeris marginata (Myriapoda: Diplopoda), an arthropod with simple lateral eyes. Zoology 108:47–53

    CAS  PubMed  Google Scholar 

  • Prpic NM, Tautz D (2003) The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 260:97–112

    CAS  PubMed  Google Scholar 

  • Prpic NM, Janssen R, Damen WGM, Tautz D (2005) Evolution of dorsal-ventral axis formation in arthropod appendages: H15 and optomotor-blind/bifid-type T-box genes in the millipede Glomeris marginata (Myriapoda: Diplopoda). Evol Dev 7:51–57

    CAS  PubMed  Google Scholar 

  • Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105:16614–16619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–U98

    CAS  PubMed  Google Scholar 

  • Rehm P, Meusemann K, Borner J, Misof B, Burmester T (2014) Phylogenetic position of Myriapoda revealed by 454 transcriptome sequencing. Mol Phylogenet Evol 77:25–33

    PubMed  Google Scholar 

  • Rota-Stabelli O, Telford MJ (2008) A multi criterion approach for the selection of optimal outgroups in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics. Mol Phylogenet Evol 48:103–111

    CAS  PubMed  Google Scholar 

  • Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc B-Biol Sci 278:298–306

    CAS  Google Scholar 

  • Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398

    CAS  PubMed  Google Scholar 

  • Rubenstein JL, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477

    CAS  PubMed  Google Scholar 

  • Saadaoui M, Merabet S, Litim-Mecheri I, Arbeille E, Sambrani N, Damen W, Brena C, Pradel J, Graba Y (2011) Selection of distinct Hox-Extradenticle interaction modes fine-tunes Hox protein activity. Proc Natl Acad Sci U S A 108:2276–2281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakuma M, Machida R (2002) Germ band formation of the Centipede Scolopocryptops rubiginosus L. Koch (Chilopoda: Scolopendromorpha). Proc Arthropod Embryol Soc Jpn 37:19–23

    Google Scholar 

  • Sakuma M, Machida R (2003) “Cumulus Posterior”-like structure in the centipede Scolopocryptops rubiginosus L. Koch (Chilopoda: Scolopendromorpha). Proc Arthropod Embryol Soc Jpn 38:37–39

    Google Scholar 

  • Sarrazin AF, Peel AD, Averof M (2012) A segmentation clock with two-segment periodicity in insects. Science 336:338–341. doi:10.1126/science.1218256

    CAS  PubMed  Google Scholar 

  • Schaeper ND, Pechmann M, Damen WG, Prpic N-M, Wimmer EA (2010) Evolutionary plasticity of collier function in head development of diverse arthropods. Dev Biol 344:363–376

    CAS  PubMed  Google Scholar 

  • Schinko JB, Kreuzer N, Offen N et al (2008) Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol 317:600–613

    Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415

    PubMed  Google Scholar 

  • Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer-Verlag Berlin Heidelberg, pp 63–89

    Google Scholar 

  • Scholtz G, Mittmann B, Gerberding M (1998) The pattern of Distal-less expression in the mouthparts of crustaceans, myriapods and insects: new evidence for a gnathobasic mandible and the common origin of Mandibulata. Int J Dev Biol 42:801–810

    CAS  PubMed  Google Scholar 

  • Schömann K (1956) Zur Biologie von Polyxenus lagurus (L. 1758). Zool Jahrb Syst 84:195–256

    Google Scholar 

  • Schoppmeier M, Damen WGM (2005) Suppressor of Hairless and Presenilin phenotypes imply involvement of canonical Notch-signalling in segmentation of the spider Cupiennius salei. Dev Biol 280:211–224

    CAS  PubMed  Google Scholar 

  • Schroeder MD, Pearce M, Fak J, Fan H, Unnerstall U, Emberly E, Rajewsky N, Siggia ED, Gaul U (2004) Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol 2:e271

    PubMed Central  PubMed  Google Scholar 

  • Seifert G (1960) Über die Metamerie 2. Ordnung bei Diplopoden. Zool Anz 165:407–412

    Google Scholar 

  • Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG (2014) Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. EvoDevo 5:3. doi:10.1186/2041-9139-5-3

    PubMed Central  PubMed  Google Scholar 

  • Shear WA, Edgecombe GD (2010) The geological record and phylogeny of the Myriapoda. Arthropod Struct Dev 39:174–190

    PubMed  Google Scholar 

  • Sierwald P, Bond JE (2007) Current status of the myriapod class diplopoda (Millipedes): taxonomic diversity and phylogeny. Annu Rev Entomol 52:401–420

    CAS  PubMed  Google Scholar 

  • Silvestri F (1950) Segmentazione del corpo dei Colobognati (Diplopodi). Boll Dei Lab Entomolc Agrar Portici 9:3–9

    Google Scholar 

  • Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F (2013) The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 11:e1001488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Sograff N (1883) Materialen zur Kenntnis der Embryonalentwicklung von Geophilus ferrugineus L. K. und Geophilus proximus L. K. Nachr Ges Freunde Naturkunde Anthr Ethnol Moskau 43:1–77

    Google Scholar 

  • Sombke A, Lipke E, Kenning M, Müller CH, Hansson BS, Harzsch S (2012) Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 13:1

    PubMed Central  PubMed  Google Scholar 

  • Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko R, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14

    PubMed Central  PubMed  Google Scholar 

  • Stollewerk A, Chipman AD (2006) Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integr Comp Biol 46:195–206

    PubMed  Google Scholar 

  • Stollewerk A, Weller M, Tautz D (2001) Neurogenesis in the spider Cupiennius salei. Development 128:2673–2688

    CAS  PubMed  Google Scholar 

  • Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865

    Google Scholar 

  • Subramanian V, Meyer BI, Gruss P (1995) Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83:641–653

    CAS  PubMed  Google Scholar 

  • Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Microsc Sci 82:1–225

    Google Scholar 

  • Tiegs OW (1942a) The “dorsal organ” of Collembolan embryos. Q J Microsc Sci 83:153–170

    Google Scholar 

  • Tiegs OW (1942b) The “dorsal organ” of the embryo of Campodea. Q J Microsc Sci 84:35–47

    Google Scholar 

  • Tiegs OW (1945) The post-embryonic development of Hanseniella agilis (Symphyla). Q J Microsc Sci 85:191–328

    Google Scholar 

  • Tiegs OW (1947a) The development and affinities of the Pauropoda, based on astudy of Pauropus-silvaticus. Part I. Q J Microsc Sci 88:165–268

    CAS  PubMed  Google Scholar 

  • Tiegs OW (1947b) The development and affinities of the Pauropoda, based on a study of Pauropus-silvaticus. Part II. Q J Microsc Sci 88:275–336

    Google Scholar 

  • Undheim EA, King GF (2011) On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon 57:512–524

    CAS  PubMed  Google Scholar 

  • Urbach R, Technau GM (2003) Early steps in building the insect brain: neuroblast formation and segmental patterning in the developing brain of different insect species. Arthropod Struct Dev 32:103–123

    PubMed  Google Scholar 

  • Valentin G, Oates AC (2013) Opening a can of centipedes: new insights into mechanisms of body segmentation. BMC Biol 11:116

    PubMed Central  PubMed  Google Scholar 

  • Vedel V, Chipman AD, Akam M, Arthur W (2008) Temperature-dependent plasticity of segment number in an arthropod species: the centipede Strigamia maritima. Evol Dev 10:487–492

    PubMed  Google Scholar 

  • Vedel V, Brena C, Arthur W (2009) Demonstration of a heritable component of the variation in segment number in the centipede Strigamia maritima. Evol Dev 11:434–440

    PubMed  Google Scholar 

  • Vedel V, Apostolou Z, Arthur W, Akam M, Brena C (2010) An early temperature-sensitive period for the plasticity of segment number in the centipede Strigamia maritima. Evol Dev 12:347–352

    PubMed  Google Scholar 

  • Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: insights from the onychophora. Arthropod Struct Dev 40:193–209

    PubMed  Google Scholar 

  • Whitington PM, Meier T, King P (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Ethmostigmus rubripes (Brandt). Rouxs Arch Dev Biol 199:349–363

    Google Scholar 

  • Zhang Z-Q (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Magnolia Press, Auckland

    Google Scholar 

  • Zhang L, Yang X, Yang S, Zhang J (2011) The Wnt/β-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 33:1–8

    PubMed  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Thomas Kaufman, Alessandro Minelli and Giuseppe Fusco, and in particular to Michael Akam, who provided space, reagents, and laboratory facilities for the study of the material presented here concerning, respectively, Lithobius atkinsoni, Glomeris pustulata, and Strigamia maritima.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Brena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Brena, C. (2015). Myriapoda. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 3. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1865-8_6

Download citation

Publish with us

Policies and ethics