Arthropods are composed of four major living groups, Chelicerata (Chap. XX), Myriapoda (herein), Hexapoda (Chaps. XX, YY, and ZZ), and the probably paraphyletic crustaceans (Chaps. XX, YY, and ZZ; see, e.g., Edgecombe 2010; Regier et al. 2010; Giribet and Edgecombe 2013). All recent molecular – but also morphological – phylogenies seem to show a strong support for a Hexapoda + crustacean clade (Tetraconata or Pancrustacea), with chelicerates never appearing as their sister group. The position of the myriapods is still not very strongly supported, and in the recent past some molecular phylogenies have grouped myriapods with chelicerates (e.g., Kusche and Burmester 2001; Mallatt et al. 2004; Pisani et al. 2004). Nevertheless, larger data sets and recognition of problematic issues like long branch attraction show a much stronger support for Mandibulata, where myriapods are sister group of the Pancrustacea (see also Chap. XX). The support for this clade derives from molecular data (e.g., Kusche et al. 2003; Rota-Stabelli and Telford 2008; Regier et al. 2010; Rota-Stabelli et al. 2011, 2013; Rehm et al. 2014), development and gene expression data (e.g., Harzsch et al. 2007; Sharma et al. 2014), and morphological data (e.g., Harzsch 2004; Harzsch et al. 2005; Müller et al. 2007; Sombke et al. 2012; see also Giribet and Edgecombe 2013 for general review).


Trunk Segment Segmentation Gene Yolk Mass Segment Polarity Gene Mandibular Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is very grateful to Thomas Kaufman, Alessandro Minelli and Giuseppe Fusco, and in particular to Michael Akam, who provided space, reagents, and laboratory facilities for the study of the material presented here concerning, respectively, Lithobius atkinsoni, Glomeris pustulata, and Strigamia maritima.


  1. Akam M (1998) Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol 42:445–451PubMedGoogle Scholar
  2. Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747PubMedGoogle Scholar
  3. Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357Google Scholar
  4. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, OxfordGoogle Scholar
  5. Aranda M, Marques-Souza H, Bayer T, Tautz D (2008) The role of the segmentation gene hairy in Tribolium. Dev Genes Evol 218:465–477Google Scholar
  6. Blanke A, Wesener T (2014) Revival of forgotten characters and modern imaging techniques help to produce a robust phylogeny of the Diplopoda (Arthropoda, Myriapoda). Arthropod Struct Dev 43:63–75PubMedGoogle Scholar
  7. Bortolin F, Benna C, Fusco G (2011) Gene expression during postembryonic segmentation in the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha). Dev Genes Evol 221:105–111Google Scholar
  8. Brena C (2014) The embryoid development of Strigamia maritima and its bearing on post-embryonic segmentation of geophilomorph centipedes. Front Zool 11:58Google Scholar
  9. Brena C, Akam M (2012) The embryonic development of the centipede Strigamia maritima. Dev Biol 363:290–307Google Scholar
  10. Brena C, Akam M (2013) An analysis of segmentation dynamics throughout embryogenesis in the centipede Strigamia maritima. BMC Biol 11:112Google Scholar
  11. Brena C, Patarnello T, Minelli A (2005) Abd-B expression in a millipede (Diplopoda) is decoupled from specification of gonopore position. Mech Dev 122:S157–S157Google Scholar
  12. Brena C, Chipman AD, Minelli A, Akam M (2006) Expression of trunk Hox genes in the centipede Strigamia maritima: sense and anti-sense transcripts. Evol Dev 8:252–265Google Scholar
  13. Brena C, Green J, Akam M (2013) Early embryonic determination of the sexual dimorphism in segment number in geophilomorph centipedes. EvoDevo 4:22Google Scholar
  14. Brenneis G, Stollewerk A, Scholtz G (2013) Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 4:32Google Scholar
  15. Brewer MS, Sierwald P, Bond JE (2012) Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group. PLoS One 7:e37240PubMedCentralPubMedGoogle Scholar
  16. Brites D, Brena C, Ebert D, Du Pasquier L (2013) More than one way to produce protein diversity: duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods. Evolution 67:2999–3011PubMedGoogle Scholar
  17. Budd GE, Högström AE, Gogin I (2001) A myriapod-like arthropod from the Upper Cambrian of East Siberia. Paläontol Z 75:37–41Google Scholar
  18. Chaw RC, Vance E, Black SD (2007) Gastrulation in the spider Zygiella x-notata involves three distinct phases of cell internalization. Dev Dyn 236:3484–3495Google Scholar
  19. Chesebro JE, Pueyo JI, Couso JP (2012) Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open 2:227–237Google Scholar
  20. Chipman AD, Akam M (2008) The segmentation cascade in the centipede Strigamia maritima: involvement of the Notch pathway and pair-rule gene homologues. Dev Biol 319:160–169Google Scholar
  21. Chipman AD, Stollewerk A (2006) Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev Biol 290:337–350Google Scholar
  22. Chipman AD, Arthur W, Akam M (2004a) Early development and segment formation in the centipede, Strigamia maritima (Geophilomorpha). Evol Dev 6:78–89Google Scholar
  23. Chipman AD, Arthur W, Akam M (2004b) A double segment periodicity underlies segment generation in centipede development. Curr Biol 14:1250–1255PubMedGoogle Scholar
  24. Chipman AD, Ferrier DEK, Brena C et al (2014) Prototypical arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol 12:e1002005Google Scholar
  25. Choe CP, Brown SJ (2009) Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 325:482–491Google Scholar
  26. Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci U S A 103:6560–6564Google Scholar
  27. Cholodkowski N (1895) Zur Embryologie der Diplopoden. (russisch). Comptes Rendus Sci Soc Imper Nat St Petersbourg 2:10–12 and 17–18Google Scholar
  28. Cohen S, Jürgens G (1991) Drosophila headlines. Trends Genet 7:267–272Google Scholar
  29. Copf T, Rabet N, Celniker SE, Averof M (2003) Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130:5915–5927Google Scholar
  30. Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A (1996) collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol 6:707–718Google Scholar
  31. Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A (1999) Head versus trunk patterning in the Drosophila embryo; collier requirement for formation of the intercalary segment. Development 126:4385–4394Google Scholar
  32. Da Silva ST, Christofoletti CA, Bozzatto V, Fontanetti CS (2013) The use of diplopods in soil ecotoxicology–a review. Ecotoxicol Environ Saf 103:68–73Google Scholar
  33. Damen WG (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250PubMedGoogle Scholar
  34. Damen WGM, Weller M, Tautz D (2000) Expression patterns of hairy, even-skipped, and runt in the spider Cupiennius salei imply that these genes were segmentation genes in a basal arthropod. Proc Natl Acad Sci U S A 97:4515–4519Google Scholar
  35. Damen WGM, Janssen R, Prpic NM (2005) Pair rule gene orthologs in spider segmentation. Evol Dev 7:618–628PubMedGoogle Scholar
  36. Davis GK, Patel NH (2003) Playing by pair-rules? Bioessays 25:425–429PubMedGoogle Scholar
  37. Dawydoff C (1956) Quelques observations sur l’embryogenese des Myriopodes Scolopendromorphes et Geophilomorphes Indochinois. C R Hebd Séances Acad Sci 242:2265–2267Google Scholar
  38. Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472Google Scholar
  39. Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M (2013) Involvement of the Wnt/β-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat Commun 4:1915Google Scholar
  40. Dhaenens M, Van den Spiegel D (2006) Contribution to the study of the post-embryonic development and reproduction of the African millipede Epibolus pulchripes (Gerstacker, 1873)(Diplopoda, Pachybolidae). Belg J Zool 136:43Google Scholar
  41. Döffinger C, Stollewerk A (2010) How can conserved gene expression allow for variation? Lessons from the dorso-ventral patterning gene muscle segment homeobox. Dev Biol 345:105–116PubMedGoogle Scholar
  42. Dohle W (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat Bd 81:241–310Google Scholar
  43. Dohle W (1974) The segmentation of the germ band of Diplopoda compared with other classes of arthropods. Symp Zool Soc Lond 32:143–161Google Scholar
  44. Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130:2161–2171Google Scholar
  45. Dugon MM, Hayden L, Black A, Arthur W (2012) Development of the venom ducts in the centipede Scolopendra : an example of recapitulation. Evol Dev 14:515–521Google Scholar
  46. Economou AD, Telford MJ (2009) Comparative gene expression in the heads of Drosophila melanogaster and Tribolium castaneum and the segmental affinity of the Drosophila hypopharyngeal lobes. Evol Dev 11:88–96Google Scholar
  47. Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87. doi: 10.1016/j.asd.2009.10.002 PubMedGoogle Scholar
  48. Edgecombe GD, Giribet G (2007) Evolutionary biology of centipedes (Myriapoda : Chilopoda). Annu Rev Entomol 52:151–170PubMedGoogle Scholar
  49. Edgecombe GD, Richter S, Wilson GD (2003) The mandibular gnathal edges: homologous structures throughout Mandibulata? Afr Invertebr 44:115–135Google Scholar
  50. El-Sherif E, Averof M, Brown SJ (2012) A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development 139:4341–4346. doi: 10.1242/dev.085126
  51. Enghoff H, Dohle W, Blower JG (1993) Anamorphosis in millipedes (Diplopoda)—the present state of knowledge with some developmental and phylogenetic considerations. Zool J Linn Soc 109:103–234Google Scholar
  52. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884PubMedGoogle Scholar
  53. Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850Google Scholar
  54. Giribet G, Edgecombe GD (2013) The arthropoda: a phylogenetic framework. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer-Verlag, Berlin Heidelberg, pp 17–40Google Scholar
  55. Grbic M, Nagy LM, Carroll SB, Strand M (1996) Polyembryonic development: insect pattern formation in a cellularized environment. Development 122:795–804PubMedGoogle Scholar
  56. Green J, Akam M (2013) Evolution of the pair rule gene network: insights from a centipede. Dev Biol 382:235–245. doi: 10.1016/j.ydbio.2013.06.017 PubMedCentralPubMedGoogle Scholar
  57. Green J, Akam M (2014) Germ cells of the centipede Strigamia maritima are specified early in embryonic development. Dev Biol 392:419–430Google Scholar
  58. Grenier JK, Garber TL, Warren R et al (1997) Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol 7:547–553PubMedGoogle Scholar
  59. Haddad V Jr, Cardoso JLC, Lupi O, Tyring SK (2012) Tropical dermatology: venomous arthropods and human skin: part II. Diplopoda, chilopoda, and arachnida. J Am Acad Dermatol 67:347.e1–347e9Google Scholar
  60. Hannibal RL, Patel NH (2013) What is a segment? EvoDevo 4:35PubMedCentralPubMedGoogle Scholar
  61. Hannibal RL, Price AL, Patel NH (2012) The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis. Dev Biol 361:427–438Google Scholar
  62. Harzsch S (2004) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the chilopoda, diplopoda, and chelicerata: implications for arthropod relationships. J Morphol 259:198–213PubMedGoogle Scholar
  63. Harzsch S, Muller CHG, Wolf H (2005) From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 215:53–68PubMedGoogle Scholar
  64. Harzsch S, Melzer RR, Müller CHG (2007) Mechanisms of eye development and evolution of the arthropod visual system: the lateral eyes of myriapoda are not modified insect ommatidia. Org Divers Evol 7:20–32Google Scholar
  65. Hayden L, Arthur W (2014) The centipede Strigamia maritima possesses a large complement of Wnt genes with diverse expression patterns. Evol Dev 16:127–138Google Scholar
  66. Heathcote FG (1886) The early development of Julus terrestris. Q J Microsc Sci 2:449–470Google Scholar
  67. Hertzel G (1983) Cuticuläre Hüllen in der Embryogenese von Lithobius forficatus (L.) (Myriapoda, Chilopoda). Zool Jb Anat 110:395–401Google Scholar
  68. Hertzel G (1984) The segmentation of the germ band of Lithobius forficatus (Myriapoda, Chilopoda). Zool Jb Anat 112:369–386Google Scholar
  69. Hertzel G (1985) Die Embryonalentwicklung von Lithobius forficatus (L.) im Vergleich zur Entwicklung anderer Chilopoden. Dissertation, Pädagogische Hochschule Erfurt-MühlhausenGoogle Scholar
  70. Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zool Stuttg 13:1–244Google Scholar
  71. Hopkin SP, Read HJ (1992) The biology of millipedes. Oxford University Press, OxfordGoogle Scholar
  72. Horneland EO, Meidell BA (2009) Postembryonic development of Strigamia maritima (Leach, 1817) (Chilopoda: geophilomorpha: linotaeniidae) with emphasis on how to separate the different stadia. Soil Org 81:373–386Google Scholar
  73. Hughes CL, Kaufman TC (2002a) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238PubMedGoogle Scholar
  74. Hughes CL, Kaufman TC (2002b) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed, and wingless in a centipede. Dev Biol 247:47–61Google Scholar
  75. Hunnekuhl VS (2013) Molecular subdivision and cell type specification in centipede head and brain development. University of Cambridge, Cambridge, UKGoogle Scholar
  76. Hunnekuhl VS, Akam M (2014) An anterior medial cell population with an apical-organ-like transcriptional profile that pioneers the central nervous system in the centipede Strigamia maritima. Dev Biol 396:136–149.Google Scholar
  77. Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25–34Google Scholar
  78. Ingham P, Gergen P (1988) Interactions between the pair-rule genes runt, hairy, even-skipped and fushi tarazu and the establishment of periodic pattern in the Drosophila embryo. Development 104:51–60Google Scholar
  79. Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521Google Scholar
  80. Jaeger J (2011) The gap gene network. Cell Mol Life Sci 68:243–274Google Scholar
  81. Janssen R (2011) Diplosegmentation in the pill millipede Glomeris marginata is the result of dorsal fusion. Evol Dev 13:477–487Google Scholar
  82. Janssen R (2012) Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods. Dev Genes Evol 222:299–309PubMedGoogle Scholar
  83. Janssen R (2013) Developmental abnormalities in Glomeris marginata (Villers 1789) (Myriapoda: Diplopoda): implications for body axis determination in a myriapod. Naturwissenschaften 100:33–43Google Scholar
  84. Janssen R, Budd GE (2010) Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda. EvoDevo 1:4PubMedCentralPubMedGoogle Scholar
  85. Janssen R, Damen WGM (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465Google Scholar
  86. Janssen R, Posnien N (2014) Identification and embryonic expression of Wnt2, Wnt4, Wnt5 and Wnt9 in the millipede Glomeris marginata (Myriapoda: Diplopoda). Gene Expr Patterns 14:55–61Google Scholar
  87. Janssen R, Prpic NM, Damen WGM (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104Google Scholar
  88. Janssen R, Prpic NM, Damen WGM (2006) A review of the correlation of tergites, sternites, and leg pairs in diplopods. Front Zool 3:2PubMedCentralPubMedGoogle Scholar
  89. Janssen R, Budd GE, Damen WGM, Prpic NM (2008) Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 218:361–370Google Scholar
  90. Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ (2010) Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol 10:374PubMedCentralPubMedGoogle Scholar
  91. Janssen R, Budd GE, Damen WGM (2011a) Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 357:64–72PubMedGoogle Scholar
  92. Janssen R, Budd GE, Prpic NM, Damen WG (2011b) Expression of myriapod pair rule gene orthologs. EvoDevo 2:5PubMedCentralPubMedGoogle Scholar
  93. Janssen R, Damen WG, Budd GE (2011c) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50PubMedCentralPubMedGoogle Scholar
  94. Janssen R, Damen WGM, Budd GE (2012) Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms? BMC Dev Biol 12:15PubMedCentralPubMedGoogle Scholar
  95. Kadner D, Stollewerk A (2004) Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates than to insects. Dev Genes Evol 214:367–379Google Scholar
  96. Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026Google Scholar
  97. Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H (2011) Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun 2:500PubMedCentralPubMedGoogle Scholar
  98. Kettle C, Arthur W (2000) Latitudinal cline in segment number in an arthropod species, Strigamia maritima. Proc R Soc Lond Ser B-Biol Sci 267:1393–1397Google Scholar
  99. Kettle C, Johnstone J, Jowett T, Arthur H, Arthur W (2003) The pattern of segment formation, as revealed by engrailed expression, in a centipede with a variable number of segments. Evol Dev 5:198–207PubMedGoogle Scholar
  100. Knoll HJ (1974) Untersuchungen zur Entwicklungsgeschichte von Scutigera coleoptrata L. (Chilopoda). Zool Jb Anat Bd 92:47–132Google Scholar
  101. Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573PubMedGoogle Scholar
  102. Kusche K, Hembach A, Hagner-Holler S et al (2003) Complete subunit sequences, structure and evolution of the 6 x 6-mer hemocyanin from the common house centipede, Scutigera coleoptrata. Eur J Biochem 270:2860–2868Google Scholar
  103. Lee JJ, von Kessler DP, Parks S, Beachy PA (1992) Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71:33–50PubMedGoogle Scholar
  104. Lewis JGE (1981) The biology of centipedes. Cambridge University Press, Cambridge, UKGoogle Scholar
  105. Lignau N (1911) Embryonalentwicklung des Polydesmus abshasius. Zool Anz 37:144–153Google Scholar
  106. Linne V, Eriksson BJ, Stollewerk A (2012) Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 364:66–76PubMedGoogle Scholar
  107. Liu PZ, Kaufman TC (2005) even-skipped is not a pair-rule gene but has segmental and gap-like functions in Oncopeltus fasciatus, an intermediate germband insect. Development 132:2081–2092PubMedGoogle Scholar
  108. Liu Z-C, Zhang R, Zhao F, Chen Z-M, Liu H-W, Wang Y-J, Jiang P, Zhang Y, Wu Y, Ding J-P (2012) Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. J Proteome Res 11:6197–6212PubMedGoogle Scholar
  109. Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–865PubMedGoogle Scholar
  110. Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191PubMedGoogle Scholar
  111. Martinez-Arias A (1993) Development and patterning of the larval epidermis of Drosophila. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 517–608Google Scholar
  112. Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature 313:639–642PubMedGoogle Scholar
  113. Mayer G, Whitington PM (2009) Velvet worm development links myriapods with chelicerates. Proc R Soc B-Biol Sci 276:3571–3579Google Scholar
  114. McGregor AP (2005) How to get ahead: the origin, evolution and function of bicoid. Bioessays 27:904–913PubMedGoogle Scholar
  115. McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WGM (2008) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498PubMedGoogle Scholar
  116. Metschnikoff E (1874) Embryologie der doppeltfüssigen Myriapoden (Chilognatha). Z Für Wiss Zool 24:253–283, Taf XXIV–XXVIIGoogle Scholar
  117. Minelli A (ed) (2011) Treatise on zoology-anatomy, taxonomy, biology. The myriapoda. Brill, LeidenGoogle Scholar
  118. Minelli A, Fusco G (2013) Arthropod post-embryonic development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer-Verlag Berlin Heidelberg, pp 91–122Google Scholar
  119. Minelli A, Foddai D, Pereira LA, Lewis JGE (2000) The evolution of segmentation of centipede trunk and appendages. J Zool Syst Evol Res 38:103–117Google Scholar
  120. Minelli A, Brena C, Deflorian G, Maruzzo D, Fusco G (2006) From embryo to adult-beyond the conventional periodization of arthropod development. Dev Genes Evol 216:373–383PubMedGoogle Scholar
  121. Mito T, Shinmyo Y, Kurita K, Nakamura T, Ohuchi H, Noji S (2011) Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 138:3823–3833PubMedGoogle Scholar
  122. Miyazawa H, Ueda C, Yahata K, Su Z-H (2014) Molecular phylogeny of Myriapoda provides insights into evolutionary patterns of the mode in post-embryonic development. Sci Rep 4:4127PubMedCentralPubMedGoogle Scholar
  123. Mohler J (1993) Genetic regulation of CNC expression in the pharyngeal primordia of Drosophila blastoderm embryos. Rouxs Arch Dev Biol 202:214–223Google Scholar
  124. Müller CHG, Sombke A, Rosenberg J (2007) The fine structure of the eyes of some bristly millipedes (Penicillata, Diplopoda): additional support for the homology of mandibulate ommatidia. Arthropod Struct Dev 36:463–476PubMedGoogle Scholar
  125. Nagy LM, Carroll S (1994) Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367:460–463PubMedGoogle Scholar
  126. Newport G (1845) Monograph of the class Myriapoda, order Chilopoda. Trans Linn Soc Lond 19:349–439Google Scholar
  127. Nieuwkoop PD, Sutasurya LA (1981) Primordial germ cells in the invertebrates: from epigenesis to preformation. Cambridge University Press, Cambridge, UKGoogle Scholar
  128. Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381PubMedGoogle Scholar
  129. Noveen A, Daniel A, Hartenstein V (2000) Early development of the Drosophila mushroom body: the roles of eyeless and dachshund. Development 127:3475–3488PubMedGoogle Scholar
  130. Oates AC, Morelli LG, Ares S (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139:625–639. doi: 10.1242/dev.063735 PubMedGoogle Scholar
  131. Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y (2007) Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development 134:2195–2205PubMedGoogle Scholar
  132. Ortega-Hernández J, Brena C (2012) Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites. PLoS One 7:e52623PubMedCentralPubMedGoogle Scholar
  133. Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212PubMedGoogle Scholar
  134. Pavlopoulos A, Akam M (2011) Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis. Proc Natl Acad Sci U S A 108:2855–2860PubMedCentralPubMedGoogle Scholar
  135. Pechmann M, McGregor AP, Schwager EE, Feitosa NM, Damen WGM (2009) Dynamic gene expression is required for anterior regionalization in a spider. Proc Natl Acad Sci U S A 106:1468–1472PubMedCentralPubMedGoogle Scholar
  136. Peel A (2004) The evolution of arthropod segmentation mechanisms. Bioessays 26:1108–1116PubMedGoogle Scholar
  137. Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068PubMedGoogle Scholar
  138. Pflugfelder O (1932) Über den Mechanismus der Segmentbildung bei der Embryonalentwicklung und Anamorphose von Platyrrhacus amauros Attems. Z Für Wissenschatliche Zool 140:650–723Google Scholar
  139. Pioro HL, Stollewerk A (2006) The expression pattern of genes involved in early neurogenesis suggests distinct and conserved functions in the diplopod Glomeris marginata. Dev Genes Evol 216:417–430PubMedGoogle Scholar
  140. Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1PubMedCentralPubMedGoogle Scholar
  141. Popadić A, Panganiban G, Rusch D, Shear WA, Kaufman TC (1998) Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Dev Genes Evol 208:142–150PubMedGoogle Scholar
  142. Posnien N, Bashasab F, Bucher G (2009) The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev 11:480–488PubMedGoogle Scholar
  143. Posnien N, Schinko JB, Kittelmann S, Bucher G (2010) Genetics, development and composition of the insect head–a beetle’s view. Arthropod Struct Dev 39:399–410PubMedGoogle Scholar
  144. Prpic NM (2004) Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda). Front Zool 1:6PubMedCentralPubMedGoogle Scholar
  145. Prpic NM (2005) Duplicated Pax6 genes in Glomeris marginata (Myriapoda: Diplopoda), an arthropod with simple lateral eyes. Zoology 108:47–53PubMedGoogle Scholar
  146. Prpic NM, Tautz D (2003) The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 260:97–112PubMedGoogle Scholar
  147. Prpic NM, Janssen R, Damen WGM, Tautz D (2005) Evolution of dorsal-ventral axis formation in arthropod appendages: H15 and optomotor-blind/bifid-type T-box genes in the millipede Glomeris marginata (Myriapoda: Diplopoda). Evol Dev 7:51–57PubMedGoogle Scholar
  148. Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105:16614–16619PubMedCentralPubMedGoogle Scholar
  149. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–U98PubMedGoogle Scholar
  150. Rehm P, Meusemann K, Borner J, Misof B, Burmester T (2014) Phylogenetic position of Myriapoda revealed by 454 transcriptome sequencing. Mol Phylogenet Evol 77:25–33PubMedGoogle Scholar
  151. Rota-Stabelli O, Telford MJ (2008) A multi criterion approach for the selection of optimal outgroups in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics. Mol Phylogenet Evol 48:103–111PubMedGoogle Scholar
  152. Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc B-Biol Sci 278:298–306Google Scholar
  153. Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398PubMedGoogle Scholar
  154. Rubenstein JL, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477PubMedGoogle Scholar
  155. Saadaoui M, Merabet S, Litim-Mecheri I, Arbeille E, Sambrani N, Damen W, Brena C, Pradel J, Graba Y (2011) Selection of distinct Hox-Extradenticle interaction modes fine-tunes Hox protein activity. Proc Natl Acad Sci U S A 108:2276–2281PubMedCentralPubMedGoogle Scholar
  156. Sakuma M, Machida R (2002) Germ band formation of the Centipede Scolopocryptops rubiginosus L. Koch (Chilopoda: Scolopendromorpha). Proc Arthropod Embryol Soc Jpn 37:19–23Google Scholar
  157. Sakuma M, Machida R (2003) “Cumulus Posterior”-like structure in the centipede Scolopocryptops rubiginosus L. Koch (Chilopoda: Scolopendromorpha). Proc Arthropod Embryol Soc Jpn 38:37–39Google Scholar
  158. Sarrazin AF, Peel AD, Averof M (2012) A segmentation clock with two-segment periodicity in insects. Science 336:338–341. doi: 10.1126/science.1218256 PubMedGoogle Scholar
  159. Schaeper ND, Pechmann M, Damen WG, Prpic N-M, Wimmer EA (2010) Evolutionary plasticity of collier function in head development of diverse arthropods. Dev Biol 344:363–376PubMedGoogle Scholar
  160. Schinko JB, Kreuzer N, Offen N et al (2008) Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol 317:600–613Google Scholar
  161. Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415PubMedGoogle Scholar
  162. Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer-Verlag Berlin Heidelberg, pp 63–89Google Scholar
  163. Scholtz G, Mittmann B, Gerberding M (1998) The pattern of Distal-less expression in the mouthparts of crustaceans, myriapods and insects: new evidence for a gnathobasic mandible and the common origin of Mandibulata. Int J Dev Biol 42:801–810PubMedGoogle Scholar
  164. Schömann K (1956) Zur Biologie von Polyxenus lagurus (L. 1758). Zool Jahrb Syst 84:195–256Google Scholar
  165. Schoppmeier M, Damen WGM (2005) Suppressor of Hairless and Presenilin phenotypes imply involvement of canonical Notch-signalling in segmentation of the spider Cupiennius salei. Dev Biol 280:211–224PubMedGoogle Scholar
  166. Schroeder MD, Pearce M, Fak J, Fan H, Unnerstall U, Emberly E, Rajewsky N, Siggia ED, Gaul U (2004) Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol 2:e271PubMedCentralPubMedGoogle Scholar
  167. Seifert G (1960) Über die Metamerie 2. Ordnung bei Diplopoden. Zool Anz 165:407–412Google Scholar
  168. Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG (2014) Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. EvoDevo 5:3. doi: 10.1186/2041-9139-5-3 PubMedCentralPubMedGoogle Scholar
  169. Shear WA, Edgecombe GD (2010) The geological record and phylogeny of the Myriapoda. Arthropod Struct Dev 39:174–190PubMedGoogle Scholar
  170. Sierwald P, Bond JE (2007) Current status of the myriapod class diplopoda (Millipedes): taxonomic diversity and phylogeny. Annu Rev Entomol 52:401–420PubMedGoogle Scholar
  171. Silvestri F (1950) Segmentazione del corpo dei Colobognati (Diplopodi). Boll Dei Lab Entomolc Agrar Portici 9:3–9Google Scholar
  172. Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F (2013) The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 11:e1001488PubMedCentralPubMedGoogle Scholar
  173. Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New YorkGoogle Scholar
  174. Sograff N (1883) Materialen zur Kenntnis der Embryonalentwicklung von Geophilus ferrugineus L. K. und Geophilus proximus L. K. Nachr Ges Freunde Naturkunde Anthr Ethnol Moskau 43:1–77Google Scholar
  175. Sombke A, Lipke E, Kenning M, Müller CH, Hansson BS, Harzsch S (2012) Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 13:1PubMedCentralPubMedGoogle Scholar
  176. Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko R, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14PubMedCentralPubMedGoogle Scholar
  177. Stollewerk A, Chipman AD (2006) Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integr Comp Biol 46:195–206PubMedGoogle Scholar
  178. Stollewerk A, Weller M, Tautz D (2001) Neurogenesis in the spider Cupiennius salei. Development 128:2673–2688PubMedGoogle Scholar
  179. Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865Google Scholar
  180. Subramanian V, Meyer BI, Gruss P (1995) Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83:641–653PubMedGoogle Scholar
  181. Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Microsc Sci 82:1–225Google Scholar
  182. Tiegs OW (1942a) The “dorsal organ” of Collembolan embryos. Q J Microsc Sci 83:153–170Google Scholar
  183. Tiegs OW (1942b) The “dorsal organ” of the embryo of Campodea. Q J Microsc Sci 84:35–47Google Scholar
  184. Tiegs OW (1945) The post-embryonic development of Hanseniella agilis (Symphyla). Q J Microsc Sci 85:191–328Google Scholar
  185. Tiegs OW (1947a) The development and affinities of the Pauropoda, based on astudy of Pauropus-silvaticus. Part I. Q J Microsc Sci 88:165–268PubMedGoogle Scholar
  186. Tiegs OW (1947b) The development and affinities of the Pauropoda, based on a study of Pauropus-silvaticus. Part II. Q J Microsc Sci 88:275–336Google Scholar
  187. Undheim EA, King GF (2011) On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon 57:512–524PubMedGoogle Scholar
  188. Urbach R, Technau GM (2003) Early steps in building the insect brain: neuroblast formation and segmental patterning in the developing brain of different insect species. Arthropod Struct Dev 32:103–123PubMedGoogle Scholar
  189. Valentin G, Oates AC (2013) Opening a can of centipedes: new insights into mechanisms of body segmentation. BMC Biol 11:116PubMedCentralPubMedGoogle Scholar
  190. Vedel V, Chipman AD, Akam M, Arthur W (2008) Temperature-dependent plasticity of segment number in an arthropod species: the centipede Strigamia maritima. Evol Dev 10:487–492PubMedGoogle Scholar
  191. Vedel V, Brena C, Arthur W (2009) Demonstration of a heritable component of the variation in segment number in the centipede Strigamia maritima. Evol Dev 11:434–440PubMedGoogle Scholar
  192. Vedel V, Apostolou Z, Arthur W, Akam M, Brena C (2010) An early temperature-sensitive period for the plasticity of segment number in the centipede Strigamia maritima. Evol Dev 12:347–352PubMedGoogle Scholar
  193. Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: insights from the onychophora. Arthropod Struct Dev 40:193–209PubMedGoogle Scholar
  194. Whitington PM, Meier T, King P (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Ethmostigmus rubripes (Brandt). Rouxs Arch Dev Biol 199:349–363Google Scholar
  195. Zhang Z-Q (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Magnolia Press, AucklandGoogle Scholar
  196. Zhang L, Yang X, Yang S, Zhang J (2011) The Wnt/β-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 33:1–8PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Laboratory for Development and Evolution, Department of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations