Skip to main content

Chelicerata

  • Chapter

Abstract

Chelicerata is a subphylum of arthropods that includes terrestrial as well as marine animals. Both the fossil record and molecular data place the origin of the chelicerates over 500 million years ago in the Cambrian (e.g., see Dunlop 2010; Rota-Stabelli et al. 2013). It has been shown that the chelicerates are a monophyletic group, and although they have previously been grouped together with the myriapods as Myriochelata, it is generally accepted that chelicerates represent the sister group of Mandibulata (pancrustaceans and myriapods; see Chaps. XX, YY, and ZZ) (Friedrich and Tautz 1995; Cook et al. 2001; Giribet et al. 2001; Hwang et al. 2001; Pisani et al. 2004; Dunn et al. 2008; Meusemann et al. 2010; Regier et al. 2010; Rota-Stabelli et al. 2011).

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abzhanov A, Kaufman TC (1999) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283

    Google Scholar 

  • Aeschlimann A (1958) Développement embryonnaire d’Ornithodorus moubata (Murray) et transmission transovarienne de Borrelia duttoni. Acta Trop 15:15–64

    CAS  PubMed  Google Scholar 

  • Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747

    CAS  PubMed  Google Scholar 

  • Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357. doi:10.1242/dev.02400

    CAS  PubMed  Google Scholar 

  • Akiyama-Oda Y, Oda H (2010) Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development 137:1263–1273. doi:10.1242/dev.045625

    CAS  PubMed  Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford

    Google Scholar 

  • Arango CP (2002) Morphological and molecular phylogenetic analysis of the sea spiders (Arthropoda, Pycnogonida) and taxonomic study of tropical Australian forms. PhD Thesis, James Cook University

    Google Scholar 

  • Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:255–293. doi:10.1111/j.1096-0031.2007.00143.x

    Google Scholar 

  • Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385:627–630

    CAS  PubMed  Google Scholar 

  • Ax P (2000) Multicellular animals, vol II, The phylogenetic system of the metazoa. Springer, Berlin

    Google Scholar 

  • Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2:e514. doi:10.1371/journal.pone.0000514

    PubMed Central  PubMed  Google Scholar 

  • Ayoub NA, Garb JE, Kuelbs A, Hayashi CY (2013) Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol Biol Evol 30:589–601. doi:10.1093/molbev/mss254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnett AA, Thomas RH (2012) The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evol Dev 14:383–392. doi:10.1111/j.1525-142X.2012.00556.x

    CAS  PubMed  Google Scholar 

  • Barnett AA, Thomas RH (2013a) Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus. Evodevo 4:23. doi:10.1186/2041-9139-4-23

    PubMed Central  PubMed  Google Scholar 

  • Barnett AA, Thomas RH (2013b) The expression of limb gap genes in the mite Archegozetes longisetosus reveals differential patterning mechanisms in chelicerates. Evol Dev 15:280–292. doi:10.1111/ede.12038

    CAS  PubMed  Google Scholar 

  • Barreto FS, Avise JC (2011) The genetic mating system of a sea spider with male-biased sexual size dimorphism: evidence for paternity skew despite random mating success. Behav Ecol Sociobiol 65:1595–1604. doi:10.1007/s00265-011-1170-x

    PubMed Central  PubMed  Google Scholar 

  • Beccaloni J (2009) Arachnids. Natural History Museum, London

    Google Scholar 

  • Bergström J, Stürmer W, Winter G (1980) Palaeoisopus, Palaeopantopus and Palaeothea, pycnogonid arthropods from the Lower Devonian Hunsrück Slate, West Germany. Paläontol Z 54:7–54. doi:10.1007/BF02985882

    Google Scholar 

  • Bitsch J, Bitsch C (2007) The segmental organization of the head region in Chelicerata: a critical review of recent studies and hypotheses. Acta Zool 88:317–335

    Google Scholar 

  • Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle B-A, Brown NL (2008) Isolation and expression of Pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn 237:2209–2219. doi:10.1002/dvdy.21634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Börner J, Rehm P, Schill RO, Ebersberger I, Burmester T (2014) A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol. doi:10.1016/j.ympev.2014.08.001

    Google Scholar 

  • Botero-Trujillo R (2014) A new Colombian species of Cryptocellus (Arachnida, Ricinulei), with notes on the taxonomy of the genus. Zootaxa 3814:121–132. doi:10.11646/zootaxa.3814.1.7

    PubMed  Google Scholar 

  • Boxshall GA (2004) The evolution of arthropod limbs. Biol Rev Camb Philos Soc 79:253–300

    PubMed  Google Scholar 

  • Brauer A (1894) Beiträge zur Kenntnis der Entwicklungsgeschichte des Skorpions. II. Z Wiss Zool 59:351–433

    Google Scholar 

  • Brenneis G, Scholtz G (2014) The “ventral organs” of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development. PLoS ONE 9:e95435. doi:10.1371/journal.pone.0095435

    PubMed Central  PubMed  Google Scholar 

  • Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724. doi:10.1111/j.1525-142X.2008.00285.x

    PubMed  Google Scholar 

  • Brenneis G, Arango CP, Scholtz G (2011a) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) II: postembryonic development. Dev Genes Evol 221:329–350. doi:10.1007/s00427-011-0381-5

    PubMed  Google Scholar 

  • Brenneis G, Arango CP, Scholtz G (2011b) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) I: embryonic development. Dev Genes Evol 221:309–328. doi:10.1007/s00427-011-0382-4

    PubMed  Google Scholar 

  • Brenneis G, Stollewerk A, Scholtz G (2013) Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. Evodevo 4:32, 10.1186/2041-9139-4-32

    PubMed Central  PubMed  Google Scholar 

  • Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Garwood RJ, Legg D (2012) Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proc Natl Acad Sci U S A 109:15702–15705. doi:10.1073/pnas.1205875109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bristowe WS (1932) The liphistiid spiders. Proc Zool Soc Lond 102:1015–1057

    Google Scholar 

  • Brownell PH, Farley RD (1974) The organization of the malleolar sensory system in the solpugid, Chanbria sp. Tissue Cell 6:471–485

    CAS  PubMed  Google Scholar 

  • Brunetta L, Craig CL (2010) Spider silk: evolution and 400 million years of spinning, waiting, snagging, and mating. Yale University Press, New Haven

    Google Scholar 

  • Budd GE (2002) A palaeontological solution to the arthropod head problem. Nature 417:271–275. doi:10.1038/417271a

    CAS  PubMed  Google Scholar 

  • Butt AG, Taylor HH (1991) The function of spider coxal organs: effects of feeding and salt-loading on Porrhothele antipodiana (Mygalomorpha: Dipluridae). J Exp Biol 158:439–461

    Google Scholar 

  • Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, Chen Z, Yang W, Shen Z, He X, Sheng J, Xu X, Pan B, Feng J, Yang X, Hong W, Zhao W, Li Z, Huang K, Li T, Kong Y, Liu H, Jiang D, Zhang B, Hu J, Hu Y, Wang B, Dai J, Yuan B, Feng Y, Huang W, Xing X, Zhao G, Li X, Li Y, Li W (2013) The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun 4:2602. doi:10.1038/ncomms3602

    PubMed Central  PubMed  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity, molecular genetics and the evolution of animal design, 2nd edn. Blackwell Publishing, Malden

    Google Scholar 

  • Challis RJ, Goodacre SL, Hewitt GM (2006) Evolution of spider silks: conservation and diversification of the C-terminus. Insect Mol Biol 15:45–56. doi:10.1111/j.1365-2583.2005.00606.x

    CAS  PubMed  Google Scholar 

  • Chen S-H (1999) Cytological studies on six species of spiders from Taiwan (Araneae: Theridiidae, Psechridae, Uloboridae, Oxyopidae, and Ctenidae). Zool Stud 38:423–434

    Google Scholar 

  • Chesebro JE, Pueyo JI, Couso JP (2013) Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open 2:227–237. doi:10.1242/bio.20123699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chipman AD (2010) Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 32:60–70. doi:10.1002/bies.200900130

    CAS  PubMed  Google Scholar 

  • Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, Corbett S, Ayoub NA (2014) Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15:365. doi:10.1186/1471-2164-15-365

    PubMed Central  PubMed  Google Scholar 

  • Cobb M (2010) Pycnogonids. Curr Biol 20:R591–R593. doi:10.1016/j.cub.2010.05.034

    CAS  PubMed  Google Scholar 

  • Condé B (1996) Les Palpigrades, 1885–1995: acquisitions et lacunes. Rev Suisse Zool 1:87–106, hors série

    Google Scholar 

  • Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763

    CAS  PubMed  Google Scholar 

  • Couso JP (2009) Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 53:1305–1316. doi:10.1387/ijdb.072425jc

    PubMed  Google Scholar 

  • Craig CL (1997) Evolution of arthropod silks. Annu Rev Entomol 42:231–267. doi:10.1146/annurev.ento.42.1.231

    CAS  PubMed  Google Scholar 

  • Croucher PJ, Brewer MS, Winchell CJ, Oxford GS, Gillespie RG (2013) De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics 14:862. doi:10.1186/1471-2164-14-862

    PubMed Central  PubMed  Google Scholar 

  • Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    CAS  PubMed  Google Scholar 

  • Damen WGM (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236:1379–1391. doi:10.1002/dvdy.21157

    CAS  PubMed  Google Scholar 

  • Damen WGM (2010) Hox genes and the body plans of chelicerates and pycnogonids. Adv Exp Med Biol 689:125–132

    CAS  PubMed  Google Scholar 

  • Damen WGM, Tautz D (1999) Abdominal-B expression in a spider suggests a general role for Abdominal-B in specifying the genital structure. J Exp Zool 285:85–91

    CAS  PubMed  Google Scholar 

  • Damen WGM, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci U S A 95:10665–10670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Damen WG, Weller M, Tautz D (2000) Expression patterns of hairy, even-skipped, and runt in the spider Cupiennius salei imply that these genes were segmentation genes in a basal arthropod. Proc Natl Acad Sci U S A 97:4515–4519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Damen WGM, Saridaki T, Averof M (2002) Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Curr Biol 12:1711–1716

    CAS  PubMed  Google Scholar 

  • Damen WGM, Janssen R, Prpic N-M (2005) Pair rule gene orthologs in spider segmentation. Evol Dev 7:618–628. doi:10.1111/j.1525-142X.2005.05065.x

    PubMed  Google Scholar 

  • Davis GK, D’Alessio JA, Patel NH (2005) Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy. Dev Biol 285(1):169–184

    CAS  PubMed  Google Scholar 

  • de la Fuente J, Kocan KM, Almazán C, Blouin EF (2007) RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 23:427–433

    Google Scholar 

  • Dearden P, Grbic M, Falciani F, Akam M (2000) Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria. Evol Dev 2:261–270

    CAS  PubMed  Google Scholar 

  • Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472

    CAS  PubMed  Google Scholar 

  • Dearden P, Grbic M, Donly C (2003) Vasa expression and germ-cell specification in the spider mite Tetranychus urticae. Dev Genes Evol 212:599–603. doi:10.1007/s00427-002-0280-x

    CAS  PubMed  Google Scholar 

  • Doeffinger C, Hartenstein V, Stollewerk A (2010) Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body. J Comp Neurol 518:2612–2632. doi:10.1002/cne.22355

    PubMed  Google Scholar 

  • Dunlop JA (1997) The origins of tetrapulmonate book lungs and their significance for chelicerate phylogeny. In: Selden PA (ed) Presented at the proceedings of the 17th European Colloquium of Arachnology, Edinburgh, pp 9–16

    Google Scholar 

  • Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthropod Struct Dev 39:124–142. doi:10.1016/j.asd.2010.01.003

    PubMed  Google Scholar 

  • Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst 43:8–21

    Google Scholar 

  • Dunlop JA, Braddy SJ (2001) Scorpions and their sister-group relationships. In: Fet V, Selden PA (eds) Scorpions 2001: in Memoriam Gary a. Polis. British Arachnological Society, London, pp 1–24

    Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi:10.1038/nature06614

    CAS  PubMed  Google Scholar 

  • Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87. doi:10.1016/j.asd.2009.10.002

    PubMed  Google Scholar 

  • Eisner T, Meinwald J, Monro A, Ghent R (1961) Defence mechanisms of arthropods—I the composition and function of the spray of the whipscorpion, Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida). J Insect Physiol 6:272–298. doi:10.1016/0022-1910(61)90054-3

    CAS  Google Scholar 

  • Fagotto F, Hess E, Aeschlimann A (1988) The early embryonic development of the argasid tick Ornithodorus moubata (Acarina: Ixodoidea: Argasidae). Entomologia Generalis 13:1–8. doi:10.1127/entom.gen/13/1988/1

    Google Scholar 

  • Farley RD (2001) Development of segments and appendages in embryos of the desert scorpion Paruroctonus mesaensis (Scorpiones: Vaejovidae). J Morphol 250:70–88. doi:10.1002/jmor.1060

    CAS  PubMed  Google Scholar 

  • Farley RD (2008) Development of respiratory structures in embryos and first and second instars of the bark scorpion, Centruroides gracilis (Scorpiones: Buthidae). J Morphol 269:1134–1156. doi:10.1002/jmor.10653

    PubMed  Google Scholar 

  • Farley RD (2010) Book gill development in embryos and first and second instars of the horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura). Arthropod Struct Dev 39:369–381. doi:10.1016/j.asd.2010.04.001

    PubMed  Google Scholar 

  • Farley RD (2011) The ultrastructure of book lung development in the bark scorpion Centruroides gracilis (Scorpiones: Buthidae). Front Zool 8:18. doi:10.1186/1742-9994-8-18

    PubMed Central  PubMed  Google Scholar 

  • Faussek V (1889) Über die embryonale Entwicklung der Geschlechtsorgane bei der Afterspinne (Phalangium). Biol Zentralbl 8:359–363

    Google Scholar 

  • Faussek V (1891) Zur Anatomie und Embryologie der Phalangiden. Trav Soc Nat St. Petersbourg Zool Physiol. p 22

    Google Scholar 

  • Foelix RF (2010) Biology of spiders, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167. doi:10.1038/376165a0

    CAS  PubMed  Google Scholar 

  • Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243. doi:10.1186/1471-2148-10-243

    PubMed Central  PubMed  Google Scholar 

  • Garwood RJ, Sharma PP, Dunlop JA, Giribet G (2014) A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Curr Biol 24:1017–1023. doi:10.1016/j.cub.2014.03.039

    CAS  PubMed  Google Scholar 

  • Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291:2603–2605. doi:10.1126/science.1057561

    CAS  PubMed  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161. doi:10.1038/35093097

    CAS  PubMed  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC, Babbitt C (2002) Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18:5–70

    PubMed  Google Scholar 

  • Gnaspini P, Lerche CF (2010) Embryonic development of Ampheres leucopheus and Iporangaia pustulosa (Arachnida: Opiliones: Gonyleptidae). J Exp Zool B Mol Dev Evol 314:489–502. doi:10.1002/jez.b.21355

    PubMed  Google Scholar 

  • Grbic M, Khila A, Lee K-Z, Bjelica A, Grbic V, Whistlecraft J, Verdon L, Navajas M, Nagy L (2007) Mity model: Tetranychus urticae, a candidate for chelicerate model organism. Bioessays 29:489–496. doi:10.1002/bies.20564

    CAS  PubMed  Google Scholar 

  • Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbic V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena É, Magalhães S, Nagy L, Pace RM, Djuranović S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492. doi:10.1038/nature10640

    CAS  PubMed  Google Scholar 

  • Gregory TR, Shorthouse DP (2003) Genome sizes of spiders. J Hered 94:285–290

    CAS  PubMed  Google Scholar 

  • Gromov AV (1998) New family, genus and species of scorpions (Arachnida, Scorpiones) from southern central Asia. Zool Zh 77:1003–1008

    Google Scholar 

  • Harvey MS (1992) The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebr Syst 6:1373–1435. doi:10.1071/IT9921373

    Google Scholar 

  • Harvey MS (2002) The neglected cousins: what do we know about the smaller arachnid orders? J Arachnol 30:357–372

    Google Scholar 

  • Harvey MS (2003) Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing, Collingwood

    Google Scholar 

  • Harvey MS (2011) Pseudoscorpions of the world [WWW Document]. Western Australian Museum, Perth. URL http://www.museum.wa.gov.au/catalogues/pseudoscorpions. Accessed 18 Aug 2014

  • Haupt J, Müller F (2004) New products of defense secretion in south east Asian whip scorpions (Arachnida: Uropygi: Thelyphonida). Z Naturforsch C 59:579–581, Journal of Biosciences

    CAS  PubMed  Google Scholar 

  • Hayashi CY, Lewis RV (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 275:773–784. doi:10.1006/jmbi.1997.1478

    CAS  PubMed  Google Scholar 

  • Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–1479

    CAS  PubMed  Google Scholar 

  • Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275

    CAS  PubMed  Google Scholar 

  • Herold M (1824) Von der Erzeugung der Spinnen im Eie. Joh. Christ. Kriegern und Comp. academischen Buchhändlern, Marbrug

    Google Scholar 

  • Heymons R (1904) Sur les premières phases du développement de Galeodes caspius. In: Bedot M (ed) Presented at the Sixième Congrès International de Zoologie, Geneva, pp 713–719

    Google Scholar 

  • Hilbrant M, Damen WGM, McGregor AP (2012) Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development 139:2655–2662. doi:10.1242/dev.078204

    CAS  PubMed  Google Scholar 

  • Hjelle JT (1990) Anatomy and morphology. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford, pp 5–30

    Google Scholar 

  • Höfer AM, Perry SF, Schmitz A (2000) Respiratory system of arachnids II: morphology of the tracheal system of Leiobunum rotundum and Nemastoma lugubre (Arachnida, Opiliones). Arthropod Struct Dev 29:13–21

    PubMed  Google Scholar 

  • Holm A (1947) On the development of Opilio parietinus Deg. Zool Bidr Upps 29:409–422

    Google Scholar 

  • Holm A (1952) Experimentelle Untersuchungen über die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zool Bidrag 29:293–422

    Google Scholar 

  • Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157. doi:10.1038/35093090

    CAS  PubMed  Google Scholar 

  • Itow T (1990) An experimental study on the formation of body axes in embryos of the horseshoe crab, Tachypleus tridentatus. Bulletin of the Education Faculty, Shizuoka University. Nat Sci Ser 40:1–11

    Google Scholar 

  • Itow T (2005) Invitation to experimental evolution: changes of morphogenesis of horseshoe crabs. Bulletin of the Education Faculty, Shizuoka University. Nat Sci Ser 55:13–28

    Google Scholar 

  • Itow T, Sekiguchi K (1979) Induction of multiple embryos with NaHCO3 or calcium free sea water in the horseshoe crab. Wilhelm Roux’s Arch Dev Biol 187:245–254. doi:10.1007/BF00848620

    CAS  Google Scholar 

  • Itow T, Sekiguchi K (1980) Morphogenic movement and experimentally induced decrease in number of embryonic segments in the Japanese horseshoe crab, Tachypleus tridentatus. Biol Bull 158:324–338

    Google Scholar 

  • Itow T, Kenmochi S, Mochizuki T (1991) Induction of secondary embryos by intra- and interspecific grafts of center cells under the blastopore in horseshoe crabs. Dev Growth Differ 33:251–258

    Google Scholar 

  • Iwanoff PP (1933) Die embryonale Entwicklung von Limulus molluccanus. Zool Jahrb Abt Anat Ontog Tiere 56:163–348

    Google Scholar 

  • Jager M, Murienne J, Clabaut C, Deutsch J, Le Guyader H, Manuel M (2006) Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. Nature 441:506–508. doi:10.1038/nature04591

    CAS  PubMed  Google Scholar 

  • Janssen R, Damen WGM (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465. doi:10.1007/s00427-006-0092-5

    CAS  PubMed  Google Scholar 

  • Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic N-M, Kosiol C, Vervoort M, Damen WGM, Balavoine G, McGregor AP (2010) Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol 10:374. doi:10.1186/1471-2148-10-374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janssen R, Damen WG, Budd GE (2011) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50. doi:10.1186/1471-2148-11-50

    PubMed Central  PubMed  Google Scholar 

  • Janssen R, Eriksson BJ, Tait NN, Budd GE (2014) Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool 11:22. doi:10.1186/1742-9994-11-22

    PubMed Central  PubMed  Google Scholar 

  • Jarvis E, Bruce HS, Patel NH (2012) Evolving specialization of the arthropod nervous system. Proc Natl Acad Sci U S A 109(Suppl 1):10634–10639. doi:10.1073/pnas.1201876109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jędrzejowska I, Mazurkiewicz-Kania M, Garbiec A, Kubrakiewicz J (2013) Differentiation and function of the ovarian somatic cells in the pseudoscorpion, Chelifer cancroides (Linnaeus, 1761) (Chelicerata: Arachnida: Pseudoscorpionida). Arthropod Struct Dev 42:27–36. doi:10.1016/j.asd.2012.09.004

    PubMed  Google Scholar 

  • Jeram AJ (1997) Phylogeny, classification and evolution of Silurian and Devonian scorpions. In: Proceedings of the 17th European Colloquium of Arachnology 1998, Edinburgh. pp 17–31

    Google Scholar 

  • Juberthie C (1964) Recherches sur la biologie des opilions. Ann Spéliol 19:1–238

    Google Scholar 

  • Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026. doi:10.1242/dev.073395

    CAS  PubMed  Google Scholar 

  • Kamenz C, Dunlop JA, Scholtz G (2005) Characters in the book lungs of Scorpiones (Chelicerata, Arachnida) revealed by scanning electron microscopy. Zoomorphology 124:101–109. doi:10.1007/s00435-005-0115-1

    Google Scholar 

  • Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev 39:436–445. doi:10.1016/j.asd.2010.05.009

    PubMed  Google Scholar 

  • Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H (2011) Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun 2:500. doi:10.1038/ncomms1510

    PubMed Central  PubMed  Google Scholar 

  • Karaman IM (2005) Evidence of spermatophores in Cyphophthalmi (Arachnida, Opiliones). Rev Suisse Zool 112:3–11

    Google Scholar 

  • Kästner A (1929) Bau und Funktion der Fächertracheen einiger Spinnen. Z Morphol Okol Tiere 13:463–557

    Google Scholar 

  • Kautzsch G (1909) Über die Entwicklung von Agelena labyrinthica Clerck. I Teil. Zool Jahrb Abt Anat Ontog Tiere 30:535–602

    Google Scholar 

  • Khadjeh SS, Turetzek NN, Pechmann MM, Schwager EEE, Wimmer EAE, Damen WGMW, Prpic N-MN (2012) Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc Natl Acad Sci U S A 109:4921–4926. doi:10.1073/pnas.1116421109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khila A, Grbic M (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol 217:241–251. doi:10.1007/s00427-007-0132-9

    CAS  PubMed  Google Scholar 

  • Kimble M, Coursey Y, Ahmad N, Hinsch GW (2002) Behavior of the yolk nuclei during embryogenesis, and development of the midgut diverticulum in the horseshoe crab Limulus polyphemus. Invertebr Biol 121:365–377. doi:10.1111/j.1744-7410.2002.tb00137.x

    Google Scholar 

  • Kingsley JS (1892) The embryology of Limulus. J Morphol 7:36–66

    Google Scholar 

  • Kishinouye K (1893) On the development of Limulus longispina. J Coll Sci Imp Univ Jpn 5:53–100

    Google Scholar 

  • Kondo A (1969) The fine structures of the early spider embryo. Sci Rep Tokyo Kyoiku Daigaku Sec B 207:47–67

    Google Scholar 

  • Lankester ER (1881) Limulus an arachnid. Q J Microsc Sci 21(504–548):609–649

    Google Scholar 

  • Laumann M, Bergmann P, Norton RA, Heethoff M (2010a) First cleavages, preblastula and blastula in the parthenogenetic mite Archegozetes longisetosus (Acari, Oribatida) indicate holoblastic rather than superficial cleavage. Arthropod Struct Dev 39:276–286. doi:10.1016/j.asd.2010.02.003

    PubMed  Google Scholar 

  • Laumann M, Norton RA, Heethoff M (2010b) Acarine embryology: inconsistencies, artificial results and misinterpretations. Soil Org 82:217–235

    Google Scholar 

  • Laurie M (1890) The embryology of a scorpion (Euscorpius italicus). J Cell Sci 2:105–142

    Google Scholar 

  • Legg G (1977) Sperm transfer and mating in Ricinoides hanseni (Ricinulei: Arachnida). J Zool 182:51–61. doi:10.1111/j.1469-7998.1977.tb04140.x

    Google Scholar 

  • Levi HW (1967) Adaptations of respiratory systems of spiders. Evolution 21:571–583

    Google Scholar 

  • Lighton JRB, Fielden LJ (1996) Gas exchange in wind spiders (Arachnida, Solphugidae): independent evolution of convergent control strategies in solphugids and insects. J Insect Physiol 42:347–357. doi:10.1016/0022-1910(95)00112-3

    CAS  Google Scholar 

  • Lighton JR, Joos B (2002) Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: occurrence, characteristics and temperature dependence. J Insect Sci 2:23 (Online)

    PubMed Central  PubMed  Google Scholar 

  • Linne V, Stollewerk A (2011) Conserved and novel functions for Netrin in the formation of the axonal scaffold and glial sheath cells in spiders. Dev Biol 353:134–146. doi:10.1016/j.ydbio.2011.02.006

    CAS  PubMed  Google Scholar 

  • Linne V, Eriksson BJ, Stollewerk A (2012) Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 364:66–76. doi:10.1016/j.ydbio.2012.01.019

    CAS  PubMed  Google Scholar 

  • Little C (2009) The colonisation of land: origins and adaptations of terrestrial animals. Cambridge University Press, Cambridge

    Google Scholar 

  • Lourenço WR (2000) Reproduction in scorpions, with special reference to parthenogenesis. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 71–85

    Google Scholar 

  • Machado G, Pinto-da-Rocha R, Giribet G (2007) What are harvestmen? In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, MA, pp 1–13

    Google Scholar 

  • Machner J, Scholtz G (2010) A scanning electron microscopy study of the embryonic development of Pycnogonum litorale (Arthropoda, Pycnogonida). J Morphol 271:1306–1318. doi:10.1002/jmor.10871

    PubMed  Google Scholar 

  • Manuel M, Jager M, Murienne J, Clabaut C, Le Guyader H (2006) Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 216:481–491. doi:10.1007/s00427-006-0095-2

    PubMed  Google Scholar 

  • Marples BJ (1967) The spinnerets and epiandrous glands of spiders. Zool J Linn Soc 46:209–222

    Google Scholar 

  • Maxmen A, Browne WE, Martindale MQ, Giribet G (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437:1144–1148. doi:10.1038/nature03984

    CAS  PubMed  Google Scholar 

  • McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic N-M, Damen WGM (2008a) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498. doi:10.1002/bies.20744

    PubMed  Google Scholar 

  • McGregor AP, Pechmann M, Schwager EE, Feitosa NM, Kruck S, Aranda M, Damen WGM (2008b) Wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr Biol 18:1619–1623. doi:10.1016/j.cub.2008.08.045

    CAS  PubMed  Google Scholar 

  • McGregor AP, Pechmann M, Schwager EE, Damen WG (2009) An ancestral regulatory network for posterior development in arthropods. Commun Integr Biol 2:174–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B (2010) A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 27:2451–2464. doi:10.1093/molbev/msq130

    CAS  PubMed  Google Scholar 

  • Mittmann B (2002) Early neurogenesis in the horseshoe crab Limulus polyphemus and its implication for arthropod relationships. Biol Bull 203:221–222

    PubMed  Google Scholar 

  • Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222:189–216. doi:10.1007/s00427-012-0401-0

    PubMed  Google Scholar 

  • Montgomery T (1909) The development of theridium, an aranead, up to the stage of reversion. J Morphol 20:297–352. doi:10.1002/jmor.1050200205

    Google Scholar 

  • Moritz M (1957) Zur Embryonalentwicklung der Phalangiiden (Opiliones, Palpatores) unter besonderer Berücksichtigung der äusseren Morphologie, der Bildung des Mitteldarmes und der Genitalanlage. Zool Jb Anat Ont 76:331–370

    Google Scholar 

  • Mullen GR (1969) Morphology and histology of the silk glands in Araneus sericatus Cl. Trans Am Microsc Soc 88:232–240

    Google Scholar 

  • Muñoz-Cuevas A (1971) Étude du développment embryonnaire de Pachylus quinamavidensis. Bull Mus Natl Hist Nat 2:1238–1250

    Google Scholar 

  • Murienne J, Harvey MS, Giribet G (2008) First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Mol Phylogenet Evol 49:170–184. doi:10.1016/j.ympev.2008.06.002

    CAS  PubMed  Google Scholar 

  • Nambu JR, Franks RG, Hu S, Crews ST (1990) The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63:63–75

    Google Scholar 

  • Nambu JR, Lewis JO, Wharton KA, Crews ST (1991) The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67:1157–1167

    CAS  PubMed  Google Scholar 

  • Nentwig W (2013) Spider ecophysiology. Springer, Heidelberg

    Google Scholar 

  • Ng M, Diaz-Benjumea FJ, Cohen SM (1995) Nubbin encodes a POU-domain protein required for proximal-distal patterning in the Drosophila wing. Development 121:589–599

    CAS  PubMed  Google Scholar 

  • Nossa CW, Havlak P, Yue J-X, Lv J, Vincent KY, Brockmann HJ, Putnam NH (2014) Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. GigaScience 3:9. doi:10.1186/2047-217X-3-9

    PubMed Central  PubMed  Google Scholar 

  • Obst M, Faurby S, Bussarawit S, Funch P (2012) Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Mol Phylogenet Evol 62:21–26. doi:10.1016/j.ympev.2011.08.025

    PubMed  Google Scholar 

  • Oda H, Akiyama-Oda Y (2008) Differing strategies for forming the arthropod body plan: lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea. Dev Growth Differ 50:203–214. doi:10.1111/j.1440-169X.2008.00998.x

    PubMed  Google Scholar 

  • Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y (2007) Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development 134:2195–2205. doi:10.1242/dev.004598

    CAS  PubMed  Google Scholar 

  • Palmer JM (1991) Comparative morphology of the external silk production apparatus of “primitive” spiders. PhD Thesis, Harvard University, Cambridge, MA

    Google Scholar 

  • Palmer JM, Coyle FA, Harrison FW (1982) Structure and cytochemistry of the silk glands of the mygalomorph spider Antrodiaetus unicolor (Araneae, Antrodiaetidae). J Morphol 174:269–274

    CAS  Google Scholar 

  • Pechmann M, Prpic N-M (2009) Appendage patterning in the south American bird spider Acanthoscurria geniculata (Araneae: Mygalomorphae). Dev Genes Evol 219:189–198. doi:10.1007/s00427-009-0279-7

    PubMed  Google Scholar 

  • Pechmann M, McGregor AP, Schwager EE, Feitosa NM, Damen WGM (2009) Dynamic gene expression is required for anterior regionalization in a spider. Proc Natl Acad Sci U S A 106:1468–1472. doi:10.1073/pnas.0811150106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pechmann M, Khadjeh S, Turetzek N, McGregor AP, Damen WGM, Prpic N-M (2011) Novel function of Distal-less as a gap gene during spider segmentation. PLoS Genet 7:e1002342. doi:10.1371/journal.pgen.1002342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pepato AR, da Rocha CEF, Dunlop JA (2010) Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol 10:235. doi:10.1186/1471-2148-10-235

    PubMed Central  PubMed  Google Scholar 

  • Peters HM (1955) Über den Spinnapparat von Nephila madagascariensis. Z Naturforsch 10b:395–404

    Google Scholar 

  • Petrunkevitch A (1955) Arachnida. In: Moore AC (ed) Treatise on invertebrate paleontology, part 2. University of Kansas Press, Lawrence, pp 42–162

    Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1. doi:10.1186/1741-7007-2-1

    PubMed Central  PubMed  Google Scholar 

  • Popadic A, Nagy L (2001) Conservation and variation in Ubx expression among chelicerates. Evol Dev 3:391–396

    CAS  PubMed  Google Scholar 

  • Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, Damen WGM, Prpic N-M, McGregor AP, Extavour CG (2014) A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS ONE 9:e104885. doi:10.1371/journal.pone.0104885

    PubMed Central  PubMed  Google Scholar 

  • Prpic N, Damen W (2004) Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 214:296–302. doi:10.1007/s00427-004-0393-5

    PubMed  Google Scholar 

  • Prpic N-M, Wigand B, Damen WGM, Klingler M (2001) Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol 211:467–477. doi:10.1007/s004270100178

    CAS  PubMed  Google Scholar 

  • Prpic N-M, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140

    CAS  PubMed  Google Scholar 

  • Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105:16614–16619. doi:10.1073/pnas.0804093105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Punzo F (1998) The biology of camel-spiders (Arachnida, Solifugae). Kluwer Academic Publishers, Boston

    Google Scholar 

  • Purcell WF (1909) Development and origin of the respiratory organs in Araneæ. Q J Microsc Sci s2-54:1–110

    Google Scholar 

  • Raspotnig G, Schwab J, Karaman I (2012) High conservatism in the composition of scent gland secretions in cyphophthalmid harvestmen: evidence from Pettalidae. J Chem Ecol 38:437–440. doi:10.1007/s10886-012-0108-8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083. doi:10.1038/nature08742

    CAS  PubMed  Google Scholar 

  • Reisinger PWM, Tutter I, Welsch U (1991) Fine structure of the gills of the horseshoe crabs Limulus polyphemus and Tachypleus tridentatus and of the book lungs of the spider Eurypelma californicum. Zool Jahrb Abt Anat Ontog Tiere 121:331–357

    Google Scholar 

  • Roeding F, Börner J, Kube M, Klages S, Reinhardt R, Burmester T (2009) A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol 53:826–834. doi:10.1016/j.ympev.2009.08.014

    CAS  PubMed  Google Scholar 

  • Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc Biol Sci 278:298–306. doi:10.1098/rspb.2010.0590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398. doi:10.1016/j.cub.2013.01.026

    CAS  PubMed  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. Brooks/Cole - Thompson Learning, Belmont

    Google Scholar 

  • Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, Jiang X, Cheng L, Fan D, Feng Y, Han L, Huang Z, Wu Z, Liao L, Settepani V, Thogersen IB, Vanthournout B, Wang T, Zhu Y, Funch P, Enghild JJ, Schauser L, Andersen SU, Villesen P, Schierup MH, Bilde T, Wang J (2014) Spider genomes provide insight into composition and evolution of venom and silk. Nat Commun 5:3765. doi:10.1038/ncomms4765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos AJ, Ferreira RL, Buzatto BA (2013a) Two new cave-dwelling species of the short-tailed Whipscorpion genus Rowlandius (Arachnida: Schizomida: Hubbardiidae) from northeastern Brazil, with comments on male dimorphism. PLoS ONE 8:e63616. doi:10.1371/journal.pone.0063616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, Fontenele MR, Araújo HM, Feitosa NM, Logullo C, da Fonseca RN (2013b) The embryogenesis of the tick Rhipicephalus (Boophilus) microplus: the establishment of a new chelicerate model system. Genesis 51:803–818. doi:10.1002/dvg.22717

    CAS  PubMed  Google Scholar 

  • Schimkewitsch W (1887) Etude sur le développement des araignées. Arch Biol 6:515–584

    Google Scholar 

  • Schimkewitsch W (1898) Entwicklung des Darmcanals bei Arachniden. Trav Soc Nat St Petersbourg 29:16–18

    Google Scholar 

  • Schimkewitsch VM (1906) Über die Entwicklung von Thelyphonus caudatus L. verglichen mit derjenigen einiger andrer Arachniden. Z Wiss Zool 81:1–95

    Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415. doi:10.1007/s00427-006-0085-4

    PubMed  Google Scholar 

  • Scholtz G, Kamenz C (2006) The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology (Jena) 109:2–13. doi:10.1016/j.zool.2005.06.003

    Google Scholar 

  • Schoppmeier M, Damen WGM (2001) Double-stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionarily conserved in arthropod appendage formation. Dev Genes Evol 211:76–82

    CAS  PubMed  Google Scholar 

  • Schoppmeier M, Damen WGM (2005) Expression of Pax group III genes suggests a single-segmental periodicity for opisthosomal segment patterning in the spider Cupiennius salei. Evol Dev 7:160–169. doi:10.1111/j.1525-142X.2005.05018.x

    CAS  PubMed  Google Scholar 

  • Schwager EE, Schoppmeier M, Pechmann M, Damen WGM (2007) Duplicated Hox genes in the spider Cupiennius salei. Front Zool 4:10. doi:10.1186/1742-9994-4-10

    PubMed Central  PubMed  Google Scholar 

  • Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WGM (2009) Hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr Biol 19:1333–1340. doi:10.1016/j.cub.2009.06.061

    CAS  PubMed  Google Scholar 

  • Schwager EE, Meng Y, Extavour CG (2015) Vasa and piwi are required for mitotic integrity in early embryo- genesis in the spider Parasteatoda tepidariorum. Dev Biol 402:276–290

    Google Scholar 

  • Sekiguchi K, Yamamichi Y, Costlow JD (1982) Horseshoe crab developmental studies I. Normal embryonic development of Limulus polyphemus compared with Tachypleus tridentatus. Prog Clin Biol Res 81:53–73

    CAS  PubMed  Google Scholar 

  • Selden PA, Shear WA, Bonamo PM (1991) A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34:241–281

    Google Scholar 

  • Sharma PP, Schwager EE, Extavour CG, Giribet G (2012a) Evolution of the chelicera: a dachshund domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev 14:522–533. doi:10.1111/ede.12005

    PubMed  Google Scholar 

  • Sharma PP, Schwager EE, Extavour CG, Giribet G (2012b) Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev 14:450–463. doi:10.1111/j.1525-142X.2012.00565.x

    CAS  PubMed  Google Scholar 

  • Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG (2013) Distal-less and dachshund pattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestman Phalangium opilio (Opiliones). Evol Dev 15:228–242. doi:10.1111/ede.12029

    CAS  PubMed  Google Scholar 

  • Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G (2014a) Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol. doi:10.1093/molbev/msu235

    Google Scholar 

  • Sharma PP, Schwager EE, Extavour CG, Wheeler WC (2014b) Hox gene duplications correlate with posterior heteronomy in scorpions. Proc Biol Sci 281. doi:10.1098/rspb.2014.0661

  • Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG (2014c) Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. Evodevo 5:3. doi:10.1186/2041-9139-5-3

    PubMed Central  PubMed  Google Scholar 

  • Shultz JW (1987) The origin of the spinning apparatus in spiders. Biol Rev Camb Philos Soc 62:89–113. doi:10.1111/j.1469-185X.1987.tb01263.x

    Google Scholar 

  • Shultz JW (1990) Evolutionary morphology and phylogeny of Arachnida. Cladistics 6:1–38. doi:10.1111/j.1096-0031.1990.tb00523.x

    Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265. doi:10.1111/j.1096-3642.2007.00284.x

    Google Scholar 

  • Shultz JW, Pinto-da-Rocha R (2007) Morphology and functional anatomy. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, MA, pp 14–61

    Google Scholar 

  • Simonnet F, Deutsch J, Quéinnec E (2004) Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 214:537–545. doi:10.1007/s00427-004-0435-z

    CAS  PubMed  Google Scholar 

  • Simonnet F, Célérier M-L, Quéinnec E (2006) Orthodenticle and empty spiracles genes are expressed in a segmental pattern in chelicerates. Dev Genes Evol 216:467–480. doi:10.1007/s00427-006-0093-4

    PubMed  Google Scholar 

  • Smrz J, Kovac L, Mikes J, Lukesova A (2013) Microwhip scorpions (Palpigradi) feed on heterotrophic cyanobacteria in Slovak caves – a curiosity among Arachnida. PLoS ONE 8:e75989. doi:10.1371/journal.pone.0075989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snodgrass RE (1938) Evolution of the Annelida, Onychophora and Arthropoda. Smithson Misc Collect 97:1–159

    Google Scholar 

  • Stollewerk A (2002) Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis. Development 129:5339–5348

    CAS  PubMed  Google Scholar 

  • Stollewerk A, Chipman AD (2006) Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integr Comp Biol 46:195–206. doi:10.1093/icb/icj020

    PubMed  Google Scholar 

  • Stollewerk A, Weller M, Tautz D (2001) Neurogenesis in the spider Cupiennius salei. Development 128:2673–2688

    CAS  PubMed  Google Scholar 

  • Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865. doi:10.1038/nature01682

    CAS  PubMed  Google Scholar 

  • Strand E (1906) Studien über Bau und Entwicklung der Spinnen. Z Wiss Zool 80:515–543

    Google Scholar 

  • Suzuki H, Kondo A (1994) Changes at the egg surface during the first maturation division in the spider Achaearanea japonica (Bös. et Str.). Zool Sci 11:693–700

    Google Scholar 

  • Suzuki H, Kondo A (1995) Early embryonic development, including germ-disk stage, in the theridiid spider Achaearanea japonica (Bös. et Str.). J Morphol 224:147–157. doi:10.1002/jmor.1052240204

    Google Scholar 

  • Talarico G, Palacios-Vargas JG, Fuentes Silva M, Alberti G (2006) Ultrastructure of tarsal sensilla and other integument structures of two Pseudocellus species (Ricinulei, Arachnida). J Morphol 267:441–463. doi:10.1002/jmor.10415

    PubMed  Google Scholar 

  • Talarico G, Garcia Hernandez LF, Michalik P (2008a) The male genital system of the New World Ricinulei (Arachnida): ultrastructure of spermatozoa and spermiogenesis with special emphasis on its phylogenetic implications. Arthropod Struct Dev 37:396–409. doi:10.1016/j.asd.2008.01.006

    CAS  PubMed  Google Scholar 

  • Talarico G, Palacios-Vargas JG, Alberti G (2008b) The pedipalp of Pseudocellus pearsei (Ricinulei, Arachnida) – ultrastructure of a multifunctional organ. Arthropod Struct Dev 37:511–521. doi:10.1016/j.asd.2008.02.001

    CAS  PubMed  Google Scholar 

  • Talarico G, Lipke E, Alberti G (2011) Gross morphology, histology, and ultrastructure of the alimentary system of Ricinulei (Arachnida) with emphasis on functional and phylogenetic implications. J Morphol 272:89–117. doi:10.1002/jmor.10897

    PubMed  Google Scholar 

  • Telford MJ, Thomas RH (1998a) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci U S A 95:10671–10675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Telford MJ, Thomas RH (1998b) Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 208:591–594

    CAS  PubMed  Google Scholar 

  • Tsurusaki N, Cokendolpher JC (1990) Chromosomes of sixteen species of harvestmen (Arachnida, Opiliones, Caddidae and Phalangiidae). J Arachnol 18:151–166

    Google Scholar 

  • Ungerer P, Scholtz G (2009) Cleavage and gastrulation in Pycnogonum litorale (Arthropoda, Pycnogonida): morphological support for the Ecdysozoa? Zoomorphology 128:263–274. doi:10.1007/s00435-009-0091-y

    Google Scholar 

  • van der Meijden A, Langer F, Boistel R, Vagovic P, Heethoff M (2012) Functional morphology and bite performance of raptorial chelicerae of camel spiders (Solifugae). J Exp Biol 215:3411–3418. doi:10.1242/jeb.072926

    PubMed  Google Scholar 

  • Vargas-Vila MA, Hannibal RL, Parchem RJ, Liu PZ, Patel NH (2010) A prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensis. Development 137:3469–3476. doi:10.1242/dev.055160

  • Vilpoux K, Waloszek D (2003) Larval development and morphogenesis of the sea spider Pycnogonum litorale (Ström, 1762) and the tagmosis of the body of Pantopoda. Arthropod Struct Dev 32:349–383. doi:10.1016/j.asd.2003.09.004

    PubMed  Google Scholar 

  • Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian “Orsten” of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446. doi:10.1111/1475-4983.00244

    Google Scholar 

  • Walzl MG, Gutweniger A, Wernsdorf P (2004) Embryology of mites: new techniques yield new findings. Phytophaga 14:163–181

    Google Scholar 

  • Weygoldt P (1970) The biology of pseudoscorpions. Harvard University Press, Cambridge

    Google Scholar 

  • Weygoldt P (1975) Untersuchungen zur Embryologie und Morphologie der Geißelspinne Tarantula marginemaculata CL Koch (Arachnida, Amblypygi, Tarantulidae). Zoomorphologie 82:137–199

    Google Scholar 

  • Weygoldt P (1985) Ontogeny of the arachnid central nervous system. In: neurobiology of arachnids. Springer, Berlin/Heidelberg, p 20–37. doi:10.1007/978-3-642-70348-5_2

  • Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics, Whip spiders. Apollo Books {a}, Kirkeby Sand 19, DK-5771, Stenstrup

    Google Scholar 

  • Weygoldt P, Paulus HF (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. Z Zool Syst Evolution 17:177–200

    Google Scholar 

  • Wheeler WC, Hayashi CY (1998) The phylogeny of the extant chelicerate orders. Cladistics 14:173–192

    Google Scholar 

  • Willemart RH, Farine J-P, Gnaspini P (2009) Sensory biology of Phalangida harvestmen (Arachnida, Opiliones): a review, with new morphological data on 18 species. Acta Zool 90:209–227. doi:10.1111/j.1463-6395.2008.00341.x

    Google Scholar 

  • Wilson MJ, Mckelvey BH, Heide S, Dearden PK (2010) Notch signaling does not regulate segmentation in the honeybee, Apis mellifera. Dev Genes Evol 220(1–12):179–190. doi:10.1007/s00427-010-0340-6

  • Wolff C, Hilbrant M (2011) The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 8(1):15. doi:10.1186/1742-9994-8-15

  • Wolff C, Scholtz G (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin/Heidelberg, pp 63–90

    Google Scholar 

  • Yamasaki T, Makioka T, Saito J (1988) Morphology. In: Sekiguchi L (ed) Biology of horseshoe crabs. Science House Co, Tokyo, pp 69–132

    Google Scholar 

  • Yang XF, Yang X, Norma-Rashid Y, Lourenço WR, Zhu MS, Zhu M (2013) True lateral eye numbers for extant buthids: a new discovery on an old character. PLoS ONE 8:e55125. doi:10.1371/journal.pone.0055125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikura M (1969) Effects of ultraviolet irradiation on the embryonic development of a liphistiid spider, Heptathela kimurai. Kumamoto J Sci Ser B (Biol Geol) 9:57–108

    Google Scholar 

  • Yoshikura M (1975) Comparative embryology and phylogeny of Arachnida. Kumamoto J Sci Ser B Sect 2 Biol 12:71–142

    Google Scholar 

  • Zhang ZQ (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, Wallingford

    Google Scholar 

Download references

Acknowledgments

We thank Niko Prpic-Schäper and Andreas Wanninger for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair P. McGregor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Schwager, E.E., Schönauer, A., Leite, D.J., Sharma, P.P., McGregor, A.P. (2015). Chelicerata. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 3. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1865-8_5

Download citation

Publish with us

Policies and ethics