• Evelyn E. Schwager
  • Anna Schönauer
  • Daniel J. Leite
  • Prashant P. Sharma
  • Alistair P. McGregor


Chelicerata is a subphylum of arthropods that includes terrestrial as well as marine animals. Both the fossil record and molecular data place the origin of the chelicerates over 500 million years ago in the Cambrian (e.g., see Dunlop 2010; Rota-Stabelli et al. 2013). It has been shown that the chelicerates are a monophyletic group, and although they have previously been grouped together with the myriapods as Myriochelata, it is generally accepted that chelicerates represent the sister group of Mandibulata (pancrustaceans and myriapods; see Chaps. XX, YY, and ZZ) (Friedrich and Tautz 1995; Cook et al. 2001; Giribet et al. 2001; Hwang et al. 2001; Pisani et al. 2004; Dunn et al. 2008; Meusemann et al. 2010; Regier et al. 2010; Rota-Stabelli et al. 2011).


Horseshoe Crab Silk Gland Evolutionary Developmental Biology Book Lung Opisthosomal Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Niko Prpic-Schäper and Andreas Wanninger for helpful comments on the manuscript.


  1. Abzhanov A, Kaufman TC (1999) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283Google Scholar
  2. Aeschlimann A (1958) Développement embryonnaire d’Ornithodorus moubata (Murray) et transmission transovarienne de Borrelia duttoni. Acta Trop 15:15–64PubMedGoogle Scholar
  3. Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747PubMedGoogle Scholar
  4. Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357. doi: 10.1242/dev.02400 PubMedGoogle Scholar
  5. Akiyama-Oda Y, Oda H (2010) Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development 137:1263–1273. doi: 10.1242/dev.045625 PubMedGoogle Scholar
  6. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, OxfordGoogle Scholar
  7. Arango CP (2002) Morphological and molecular phylogenetic analysis of the sea spiders (Arthropoda, Pycnogonida) and taxonomic study of tropical Australian forms. PhD Thesis, James Cook UniversityGoogle Scholar
  8. Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:255–293. doi: 10.1111/j.1096-0031.2007.00143.x Google Scholar
  9. Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385:627–630PubMedGoogle Scholar
  10. Ax P (2000) Multicellular animals, vol II, The phylogenetic system of the metazoa. Springer, BerlinGoogle Scholar
  11. Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2:e514. doi: 10.1371/journal.pone.0000514 PubMedCentralPubMedGoogle Scholar
  12. Ayoub NA, Garb JE, Kuelbs A, Hayashi CY (2013) Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol Biol Evol 30:589–601. doi: 10.1093/molbev/mss254 PubMedCentralPubMedGoogle Scholar
  13. Barnett AA, Thomas RH (2012) The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evol Dev 14:383–392. doi: 10.1111/j.1525-142X.2012.00556.x PubMedGoogle Scholar
  14. Barnett AA, Thomas RH (2013a) Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus. Evodevo 4:23. doi: 10.1186/2041-9139-4-23 PubMedCentralPubMedGoogle Scholar
  15. Barnett AA, Thomas RH (2013b) The expression of limb gap genes in the mite Archegozetes longisetosus reveals differential patterning mechanisms in chelicerates. Evol Dev 15:280–292. doi: 10.1111/ede.12038 PubMedGoogle Scholar
  16. Barreto FS, Avise JC (2011) The genetic mating system of a sea spider with male-biased sexual size dimorphism: evidence for paternity skew despite random mating success. Behav Ecol Sociobiol 65:1595–1604. doi: 10.1007/s00265-011-1170-x PubMedCentralPubMedGoogle Scholar
  17. Beccaloni J (2009) Arachnids. Natural History Museum, LondonGoogle Scholar
  18. Bergström J, Stürmer W, Winter G (1980) Palaeoisopus, Palaeopantopus and Palaeothea, pycnogonid arthropods from the Lower Devonian Hunsrück Slate, West Germany. Paläontol Z 54:7–54. doi: 10.1007/BF02985882 Google Scholar
  19. Bitsch J, Bitsch C (2007) The segmental organization of the head region in Chelicerata: a critical review of recent studies and hypotheses. Acta Zool 88:317–335Google Scholar
  20. Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle B-A, Brown NL (2008) Isolation and expression of Pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn 237:2209–2219. doi: 10.1002/dvdy.21634 PubMedCentralPubMedGoogle Scholar
  21. Börner J, Rehm P, Schill RO, Ebersberger I, Burmester T (2014) A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol. doi: 10.1016/j.ympev.2014.08.001 Google Scholar
  22. Botero-Trujillo R (2014) A new Colombian species of Cryptocellus (Arachnida, Ricinulei), with notes on the taxonomy of the genus. Zootaxa 3814:121–132. doi: 10.11646/zootaxa.3814.1.7 PubMedGoogle Scholar
  23. Boxshall GA (2004) The evolution of arthropod limbs. Biol Rev Camb Philos Soc 79:253–300PubMedGoogle Scholar
  24. Brauer A (1894) Beiträge zur Kenntnis der Entwicklungsgeschichte des Skorpions. II. Z Wiss Zool 59:351–433Google Scholar
  25. Brenneis G, Scholtz G (2014) The “ventral organs” of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development. PLoS ONE 9:e95435. doi: 10.1371/journal.pone.0095435 PubMedCentralPubMedGoogle Scholar
  26. Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724. doi: 10.1111/j.1525-142X.2008.00285.x PubMedGoogle Scholar
  27. Brenneis G, Arango CP, Scholtz G (2011a) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) II: postembryonic development. Dev Genes Evol 221:329–350. doi: 10.1007/s00427-011-0381-5 PubMedGoogle Scholar
  28. Brenneis G, Arango CP, Scholtz G (2011b) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) I: embryonic development. Dev Genes Evol 221:309–328. doi: 10.1007/s00427-011-0382-4 PubMedGoogle Scholar
  29. Brenneis G, Stollewerk A, Scholtz G (2013) Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. Evodevo 4:32,  10.1186/2041-9139-4-32 PubMedCentralPubMedGoogle Scholar
  30. Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Garwood RJ, Legg D (2012) Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proc Natl Acad Sci U S A 109:15702–15705. doi: 10.1073/pnas.1205875109 PubMedCentralPubMedGoogle Scholar
  31. Bristowe WS (1932) The liphistiid spiders. Proc Zool Soc Lond 102:1015–1057Google Scholar
  32. Brownell PH, Farley RD (1974) The organization of the malleolar sensory system in the solpugid, Chanbria sp. Tissue Cell 6:471–485PubMedGoogle Scholar
  33. Brunetta L, Craig CL (2010) Spider silk: evolution and 400 million years of spinning, waiting, snagging, and mating. Yale University Press, New HavenGoogle Scholar
  34. Budd GE (2002) A palaeontological solution to the arthropod head problem. Nature 417:271–275. doi: 10.1038/417271a PubMedGoogle Scholar
  35. Butt AG, Taylor HH (1991) The function of spider coxal organs: effects of feeding and salt-loading on Porrhothele antipodiana (Mygalomorpha: Dipluridae). J Exp Biol 158:439–461Google Scholar
  36. Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, Chen Z, Yang W, Shen Z, He X, Sheng J, Xu X, Pan B, Feng J, Yang X, Hong W, Zhao W, Li Z, Huang K, Li T, Kong Y, Liu H, Jiang D, Zhang B, Hu J, Hu Y, Wang B, Dai J, Yuan B, Feng Y, Huang W, Xing X, Zhao G, Li X, Li Y, Li W (2013) The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun 4:2602. doi: 10.1038/ncomms3602 PubMedCentralPubMedGoogle Scholar
  37. Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity, molecular genetics and the evolution of animal design, 2nd edn. Blackwell Publishing, MaldenGoogle Scholar
  38. Challis RJ, Goodacre SL, Hewitt GM (2006) Evolution of spider silks: conservation and diversification of the C-terminus. Insect Mol Biol 15:45–56. doi: 10.1111/j.1365-2583.2005.00606.x PubMedGoogle Scholar
  39. Chen S-H (1999) Cytological studies on six species of spiders from Taiwan (Araneae: Theridiidae, Psechridae, Uloboridae, Oxyopidae, and Ctenidae). Zool Stud 38:423–434Google Scholar
  40. Chesebro JE, Pueyo JI, Couso JP (2013) Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open 2:227–237. doi: 10.1242/bio.20123699 PubMedCentralPubMedGoogle Scholar
  41. Chipman AD (2010) Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 32:60–70. doi: 10.1002/bies.200900130 PubMedGoogle Scholar
  42. Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, Corbett S, Ayoub NA (2014) Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15:365. doi: 10.1186/1471-2164-15-365 PubMedCentralPubMedGoogle Scholar
  43. Cobb M (2010) Pycnogonids. Curr Biol 20:R591–R593. doi: 10.1016/j.cub.2010.05.034 PubMedGoogle Scholar
  44. Condé B (1996) Les Palpigrades, 1885–1995: acquisitions et lacunes. Rev Suisse Zool 1:87–106, hors sérieGoogle Scholar
  45. Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763PubMedGoogle Scholar
  46. Couso JP (2009) Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 53:1305–1316. doi: 10.1387/ijdb.072425jc PubMedGoogle Scholar
  47. Craig CL (1997) Evolution of arthropod silks. Annu Rev Entomol 42:231–267. doi: 10.1146/annurev.ento.42.1.231 PubMedGoogle Scholar
  48. Croucher PJ, Brewer MS, Winchell CJ, Oxford GS, Gillespie RG (2013) De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics 14:862. doi: 10.1186/1471-2164-14-862 PubMedCentralPubMedGoogle Scholar
  49. Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250PubMedGoogle Scholar
  50. Damen WGM (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236:1379–1391. doi: 10.1002/dvdy.21157 PubMedGoogle Scholar
  51. Damen WGM (2010) Hox genes and the body plans of chelicerates and pycnogonids. Adv Exp Med Biol 689:125–132PubMedGoogle Scholar
  52. Damen WGM, Tautz D (1999) Abdominal-B expression in a spider suggests a general role for Abdominal-B in specifying the genital structure. J Exp Zool 285:85–91PubMedGoogle Scholar
  53. Damen WGM, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci U S A 95:10665–10670PubMedCentralPubMedGoogle Scholar
  54. Damen WG, Weller M, Tautz D (2000) Expression patterns of hairy, even-skipped, and runt in the spider Cupiennius salei imply that these genes were segmentation genes in a basal arthropod. Proc Natl Acad Sci U S A 97:4515–4519PubMedCentralPubMedGoogle Scholar
  55. Damen WGM, Saridaki T, Averof M (2002) Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Curr Biol 12:1711–1716PubMedGoogle Scholar
  56. Damen WGM, Janssen R, Prpic N-M (2005) Pair rule gene orthologs in spider segmentation. Evol Dev 7:618–628. doi: 10.1111/j.1525-142X.2005.05065.x PubMedGoogle Scholar
  57. Davis GK, D’Alessio JA, Patel NH (2005) Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy. Dev Biol 285(1):169–184PubMedGoogle Scholar
  58. de la Fuente J, Kocan KM, Almazán C, Blouin EF (2007) RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 23:427–433Google Scholar
  59. Dearden P, Grbic M, Falciani F, Akam M (2000) Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria. Evol Dev 2:261–270PubMedGoogle Scholar
  60. Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472PubMedGoogle Scholar
  61. Dearden P, Grbic M, Donly C (2003) Vasa expression and germ-cell specification in the spider mite Tetranychus urticae. Dev Genes Evol 212:599–603. doi: 10.1007/s00427-002-0280-x PubMedGoogle Scholar
  62. Doeffinger C, Hartenstein V, Stollewerk A (2010) Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body. J Comp Neurol 518:2612–2632. doi: 10.1002/cne.22355 PubMedGoogle Scholar
  63. Dunlop JA (1997) The origins of tetrapulmonate book lungs and their significance for chelicerate phylogeny. In: Selden PA (ed) Presented at the proceedings of the 17th European Colloquium of Arachnology, Edinburgh, pp 9–16Google Scholar
  64. Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthropod Struct Dev 39:124–142. doi: 10.1016/j.asd.2010.01.003 PubMedGoogle Scholar
  65. Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst 43:8–21Google Scholar
  66. Dunlop JA, Braddy SJ (2001) Scorpions and their sister-group relationships. In: Fet V, Selden PA (eds) Scorpions 2001: in Memoriam Gary a. Polis. British Arachnological Society, London, pp 1–24Google Scholar
  67. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi: 10.1038/nature06614 PubMedGoogle Scholar
  68. Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87. doi: 10.1016/j.asd.2009.10.002 PubMedGoogle Scholar
  69. Eisner T, Meinwald J, Monro A, Ghent R (1961) Defence mechanisms of arthropods—I the composition and function of the spray of the whipscorpion, Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida). J Insect Physiol 6:272–298. doi: 10.1016/0022-1910(61)90054-3 Google Scholar
  70. Fagotto F, Hess E, Aeschlimann A (1988) The early embryonic development of the argasid tick Ornithodorus moubata (Acarina: Ixodoidea: Argasidae). Entomologia Generalis 13:1–8. doi: 10.1127/entom.gen/13/1988/1 Google Scholar
  71. Farley RD (2001) Development of segments and appendages in embryos of the desert scorpion Paruroctonus mesaensis (Scorpiones: Vaejovidae). J Morphol 250:70–88. doi: 10.1002/jmor.1060 PubMedGoogle Scholar
  72. Farley RD (2008) Development of respiratory structures in embryos and first and second instars of the bark scorpion, Centruroides gracilis (Scorpiones: Buthidae). J Morphol 269:1134–1156. doi: 10.1002/jmor.10653 PubMedGoogle Scholar
  73. Farley RD (2010) Book gill development in embryos and first and second instars of the horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura). Arthropod Struct Dev 39:369–381. doi: 10.1016/j.asd.2010.04.001 PubMedGoogle Scholar
  74. Farley RD (2011) The ultrastructure of book lung development in the bark scorpion Centruroides gracilis (Scorpiones: Buthidae). Front Zool 8:18. doi: 10.1186/1742-9994-8-18 PubMedCentralPubMedGoogle Scholar
  75. Faussek V (1889) Über die embryonale Entwicklung der Geschlechtsorgane bei der Afterspinne (Phalangium). Biol Zentralbl 8:359–363Google Scholar
  76. Faussek V (1891) Zur Anatomie und Embryologie der Phalangiden. Trav Soc Nat St. Petersbourg Zool Physiol. p 22Google Scholar
  77. Foelix RF (2010) Biology of spiders, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  78. Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167. doi: 10.1038/376165a0 PubMedGoogle Scholar
  79. Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243. doi: 10.1186/1471-2148-10-243 PubMedCentralPubMedGoogle Scholar
  80. Garwood RJ, Sharma PP, Dunlop JA, Giribet G (2014) A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Curr Biol 24:1017–1023. doi: 10.1016/j.cub.2014.03.039 PubMedGoogle Scholar
  81. Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291:2603–2605. doi: 10.1126/science.1057561 PubMedGoogle Scholar
  82. Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161. doi: 10.1038/35093097 PubMedGoogle Scholar
  83. Giribet G, Edgecombe GD, Wheeler WC, Babbitt C (2002) Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18:5–70PubMedGoogle Scholar
  84. Gnaspini P, Lerche CF (2010) Embryonic development of Ampheres leucopheus and Iporangaia pustulosa (Arachnida: Opiliones: Gonyleptidae). J Exp Zool B Mol Dev Evol 314:489–502. doi: 10.1002/jez.b.21355 PubMedGoogle Scholar
  85. Grbic M, Khila A, Lee K-Z, Bjelica A, Grbic V, Whistlecraft J, Verdon L, Navajas M, Nagy L (2007) Mity model: Tetranychus urticae, a candidate for chelicerate model organism. Bioessays 29:489–496. doi: 10.1002/bies.20564 PubMedGoogle Scholar
  86. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbic V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena É, Magalhães S, Nagy L, Pace RM, Djuranović S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492. doi: 10.1038/nature10640 PubMedGoogle Scholar
  87. Gregory TR, Shorthouse DP (2003) Genome sizes of spiders. J Hered 94:285–290PubMedGoogle Scholar
  88. Gromov AV (1998) New family, genus and species of scorpions (Arachnida, Scorpiones) from southern central Asia. Zool Zh 77:1003–1008Google Scholar
  89. Harvey MS (1992) The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebr Syst 6:1373–1435. doi: 10.1071/IT9921373 Google Scholar
  90. Harvey MS (2002) The neglected cousins: what do we know about the smaller arachnid orders? J Arachnol 30:357–372Google Scholar
  91. Harvey MS (2003) Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing, CollingwoodGoogle Scholar
  92. Harvey MS (2011) Pseudoscorpions of the world [WWW Document]. Western Australian Museum, Perth. URL Accessed 18 Aug 2014
  93. Haupt J, Müller F (2004) New products of defense secretion in south east Asian whip scorpions (Arachnida: Uropygi: Thelyphonida). Z Naturforsch C 59:579–581, Journal of BiosciencesPubMedGoogle Scholar
  94. Hayashi CY, Lewis RV (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 275:773–784. doi: 10.1006/jmbi.1997.1478 PubMedGoogle Scholar
  95. Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–1479PubMedGoogle Scholar
  96. Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275PubMedGoogle Scholar
  97. Herold M (1824) Von der Erzeugung der Spinnen im Eie. Joh. Christ. Kriegern und Comp. academischen Buchhändlern, MarbrugGoogle Scholar
  98. Heymons R (1904) Sur les premières phases du développement de Galeodes caspius. In: Bedot M (ed) Presented at the Sixième Congrès International de Zoologie, Geneva, pp 713–719Google Scholar
  99. Hilbrant M, Damen WGM, McGregor AP (2012) Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development 139:2655–2662. doi: 10.1242/dev.078204 PubMedGoogle Scholar
  100. Hjelle JT (1990) Anatomy and morphology. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford, pp 5–30Google Scholar
  101. Höfer AM, Perry SF, Schmitz A (2000) Respiratory system of arachnids II: morphology of the tracheal system of Leiobunum rotundum and Nemastoma lugubre (Arachnida, Opiliones). Arthropod Struct Dev 29:13–21PubMedGoogle Scholar
  102. Holm A (1947) On the development of Opilio parietinus Deg. Zool Bidr Upps 29:409–422Google Scholar
  103. Holm A (1952) Experimentelle Untersuchungen über die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zool Bidrag 29:293–422Google Scholar
  104. Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157. doi: 10.1038/35093090 PubMedGoogle Scholar
  105. Itow T (1990) An experimental study on the formation of body axes in embryos of the horseshoe crab, Tachypleus tridentatus. Bulletin of the Education Faculty, Shizuoka University. Nat Sci Ser 40:1–11Google Scholar
  106. Itow T (2005) Invitation to experimental evolution: changes of morphogenesis of horseshoe crabs. Bulletin of the Education Faculty, Shizuoka University. Nat Sci Ser 55:13–28Google Scholar
  107. Itow T, Sekiguchi K (1979) Induction of multiple embryos with NaHCO3 or calcium free sea water in the horseshoe crab. Wilhelm Roux’s Arch Dev Biol 187:245–254. doi: 10.1007/BF00848620 Google Scholar
  108. Itow T, Sekiguchi K (1980) Morphogenic movement and experimentally induced decrease in number of embryonic segments in the Japanese horseshoe crab, Tachypleus tridentatus. Biol Bull 158:324–338Google Scholar
  109. Itow T, Kenmochi S, Mochizuki T (1991) Induction of secondary embryos by intra- and interspecific grafts of center cells under the blastopore in horseshoe crabs. Dev Growth Differ 33:251–258Google Scholar
  110. Iwanoff PP (1933) Die embryonale Entwicklung von Limulus molluccanus. Zool Jahrb Abt Anat Ontog Tiere 56:163–348Google Scholar
  111. Jager M, Murienne J, Clabaut C, Deutsch J, Le Guyader H, Manuel M (2006) Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. Nature 441:506–508. doi: 10.1038/nature04591 PubMedGoogle Scholar
  112. Janssen R, Damen WGM (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465. doi: 10.1007/s00427-006-0092-5 PubMedGoogle Scholar
  113. Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic N-M, Kosiol C, Vervoort M, Damen WGM, Balavoine G, McGregor AP (2010) Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol 10:374. doi: 10.1186/1471-2148-10-374 PubMedCentralPubMedGoogle Scholar
  114. Janssen R, Damen WG, Budd GE (2011) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50. doi: 10.1186/1471-2148-11-50 PubMedCentralPubMedGoogle Scholar
  115. Janssen R, Eriksson BJ, Tait NN, Budd GE (2014) Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool 11:22. doi: 10.1186/1742-9994-11-22 PubMedCentralPubMedGoogle Scholar
  116. Jarvis E, Bruce HS, Patel NH (2012) Evolving specialization of the arthropod nervous system. Proc Natl Acad Sci U S A 109(Suppl 1):10634–10639. doi: 10.1073/pnas.1201876109 PubMedCentralPubMedGoogle Scholar
  117. Jędrzejowska I, Mazurkiewicz-Kania M, Garbiec A, Kubrakiewicz J (2013) Differentiation and function of the ovarian somatic cells in the pseudoscorpion, Chelifer cancroides (Linnaeus, 1761) (Chelicerata: Arachnida: Pseudoscorpionida). Arthropod Struct Dev 42:27–36. doi: 10.1016/j.asd.2012.09.004 PubMedGoogle Scholar
  118. Jeram AJ (1997) Phylogeny, classification and evolution of Silurian and Devonian scorpions. In: Proceedings of the 17th European Colloquium of Arachnology 1998, Edinburgh. pp 17–31Google Scholar
  119. Juberthie C (1964) Recherches sur la biologie des opilions. Ann Spéliol 19:1–238Google Scholar
  120. Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026. doi: 10.1242/dev.073395 PubMedGoogle Scholar
  121. Kamenz C, Dunlop JA, Scholtz G (2005) Characters in the book lungs of Scorpiones (Chelicerata, Arachnida) revealed by scanning electron microscopy. Zoomorphology 124:101–109. doi: 10.1007/s00435-005-0115-1 Google Scholar
  122. Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev 39:436–445. doi: 10.1016/j.asd.2010.05.009 PubMedGoogle Scholar
  123. Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H (2011) Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun 2:500. doi: 10.1038/ncomms1510 PubMedCentralPubMedGoogle Scholar
  124. Karaman IM (2005) Evidence of spermatophores in Cyphophthalmi (Arachnida, Opiliones). Rev Suisse Zool 112:3–11Google Scholar
  125. Kästner A (1929) Bau und Funktion der Fächertracheen einiger Spinnen. Z Morphol Okol Tiere 13:463–557Google Scholar
  126. Kautzsch G (1909) Über die Entwicklung von Agelena labyrinthica Clerck. I Teil. Zool Jahrb Abt Anat Ontog Tiere 30:535–602Google Scholar
  127. Khadjeh SS, Turetzek NN, Pechmann MM, Schwager EEE, Wimmer EAE, Damen WGMW, Prpic N-MN (2012) Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc Natl Acad Sci U S A 109:4921–4926. doi: 10.1073/pnas.1116421109 PubMedCentralPubMedGoogle Scholar
  128. Khila A, Grbic M (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol 217:241–251. doi: 10.1007/s00427-007-0132-9 PubMedGoogle Scholar
  129. Kimble M, Coursey Y, Ahmad N, Hinsch GW (2002) Behavior of the yolk nuclei during embryogenesis, and development of the midgut diverticulum in the horseshoe crab Limulus polyphemus. Invertebr Biol 121:365–377. doi: 10.1111/j.1744-7410.2002.tb00137.x Google Scholar
  130. Kingsley JS (1892) The embryology of Limulus. J Morphol 7:36–66Google Scholar
  131. Kishinouye K (1893) On the development of Limulus longispina. J Coll Sci Imp Univ Jpn 5:53–100Google Scholar
  132. Kondo A (1969) The fine structures of the early spider embryo. Sci Rep Tokyo Kyoiku Daigaku Sec B 207:47–67Google Scholar
  133. Lankester ER (1881) Limulus an arachnid. Q J Microsc Sci 21(504–548):609–649Google Scholar
  134. Laumann M, Bergmann P, Norton RA, Heethoff M (2010a) First cleavages, preblastula and blastula in the parthenogenetic mite Archegozetes longisetosus (Acari, Oribatida) indicate holoblastic rather than superficial cleavage. Arthropod Struct Dev 39:276–286. doi: 10.1016/j.asd.2010.02.003 PubMedGoogle Scholar
  135. Laumann M, Norton RA, Heethoff M (2010b) Acarine embryology: inconsistencies, artificial results and misinterpretations. Soil Org 82:217–235Google Scholar
  136. Laurie M (1890) The embryology of a scorpion (Euscorpius italicus). J Cell Sci 2:105–142Google Scholar
  137. Legg G (1977) Sperm transfer and mating in Ricinoides hanseni (Ricinulei: Arachnida). J Zool 182:51–61. doi: 10.1111/j.1469-7998.1977.tb04140.x Google Scholar
  138. Levi HW (1967) Adaptations of respiratory systems of spiders. Evolution 21:571–583Google Scholar
  139. Lighton JRB, Fielden LJ (1996) Gas exchange in wind spiders (Arachnida, Solphugidae): independent evolution of convergent control strategies in solphugids and insects. J Insect Physiol 42:347–357. doi: 10.1016/0022-1910(95)00112-3 Google Scholar
  140. Lighton JR, Joos B (2002) Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: occurrence, characteristics and temperature dependence. J Insect Sci 2:23 (Online)PubMedCentralPubMedGoogle Scholar
  141. Linne V, Stollewerk A (2011) Conserved and novel functions for Netrin in the formation of the axonal scaffold and glial sheath cells in spiders. Dev Biol 353:134–146. doi: 10.1016/j.ydbio.2011.02.006 PubMedGoogle Scholar
  142. Linne V, Eriksson BJ, Stollewerk A (2012) Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 364:66–76. doi: 10.1016/j.ydbio.2012.01.019 PubMedGoogle Scholar
  143. Little C (2009) The colonisation of land: origins and adaptations of terrestrial animals. Cambridge University Press, CambridgeGoogle Scholar
  144. Lourenço WR (2000) Reproduction in scorpions, with special reference to parthenogenesis. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 71–85Google Scholar
  145. Machado G, Pinto-da-Rocha R, Giribet G (2007) What are harvestmen? In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, MA, pp 1–13Google Scholar
  146. Machner J, Scholtz G (2010) A scanning electron microscopy study of the embryonic development of Pycnogonum litorale (Arthropoda, Pycnogonida). J Morphol 271:1306–1318. doi: 10.1002/jmor.10871 PubMedGoogle Scholar
  147. Manuel M, Jager M, Murienne J, Clabaut C, Le Guyader H (2006) Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 216:481–491. doi: 10.1007/s00427-006-0095-2 PubMedGoogle Scholar
  148. Marples BJ (1967) The spinnerets and epiandrous glands of spiders. Zool J Linn Soc 46:209–222Google Scholar
  149. Maxmen A, Browne WE, Martindale MQ, Giribet G (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437:1144–1148. doi: 10.1038/nature03984 PubMedGoogle Scholar
  150. McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic N-M, Damen WGM (2008a) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498. doi: 10.1002/bies.20744 PubMedGoogle Scholar
  151. McGregor AP, Pechmann M, Schwager EE, Feitosa NM, Kruck S, Aranda M, Damen WGM (2008b) Wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr Biol 18:1619–1623. doi: 10.1016/j.cub.2008.08.045 PubMedGoogle Scholar
  152. McGregor AP, Pechmann M, Schwager EE, Damen WG (2009) An ancestral regulatory network for posterior development in arthropods. Commun Integr Biol 2:174–176PubMedCentralPubMedGoogle Scholar
  153. Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B (2010) A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 27:2451–2464. doi: 10.1093/molbev/msq130 PubMedGoogle Scholar
  154. Mittmann B (2002) Early neurogenesis in the horseshoe crab Limulus polyphemus and its implication for arthropod relationships. Biol Bull 203:221–222PubMedGoogle Scholar
  155. Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222:189–216. doi: 10.1007/s00427-012-0401-0 PubMedGoogle Scholar
  156. Montgomery T (1909) The development of theridium, an aranead, up to the stage of reversion. J Morphol 20:297–352. doi: 10.1002/jmor.1050200205 Google Scholar
  157. Moritz M (1957) Zur Embryonalentwicklung der Phalangiiden (Opiliones, Palpatores) unter besonderer Berücksichtigung der äusseren Morphologie, der Bildung des Mitteldarmes und der Genitalanlage. Zool Jb Anat Ont 76:331–370Google Scholar
  158. Mullen GR (1969) Morphology and histology of the silk glands in Araneus sericatus Cl. Trans Am Microsc Soc 88:232–240Google Scholar
  159. Muñoz-Cuevas A (1971) Étude du développment embryonnaire de Pachylus quinamavidensis. Bull Mus Natl Hist Nat 2:1238–1250Google Scholar
  160. Murienne J, Harvey MS, Giribet G (2008) First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Mol Phylogenet Evol 49:170–184. doi: 10.1016/j.ympev.2008.06.002 PubMedGoogle Scholar
  161. Nambu JR, Franks RG, Hu S, Crews ST (1990) The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63:63–75Google Scholar
  162. Nambu JR, Lewis JO, Wharton KA, Crews ST (1991) The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67:1157–1167PubMedGoogle Scholar
  163. Nentwig W (2013) Spider ecophysiology. Springer, HeidelbergGoogle Scholar
  164. Ng M, Diaz-Benjumea FJ, Cohen SM (1995) Nubbin encodes a POU-domain protein required for proximal-distal patterning in the Drosophila wing. Development 121:589–599PubMedGoogle Scholar
  165. Nossa CW, Havlak P, Yue J-X, Lv J, Vincent KY, Brockmann HJ, Putnam NH (2014) Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. GigaScience 3:9. doi: 10.1186/2047-217X-3-9 PubMedCentralPubMedGoogle Scholar
  166. Obst M, Faurby S, Bussarawit S, Funch P (2012) Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Mol Phylogenet Evol 62:21–26. doi: 10.1016/j.ympev.2011.08.025 PubMedGoogle Scholar
  167. Oda H, Akiyama-Oda Y (2008) Differing strategies for forming the arthropod body plan: lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea. Dev Growth Differ 50:203–214. doi: 10.1111/j.1440-169X.2008.00998.x PubMedGoogle Scholar
  168. Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y (2007) Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development 134:2195–2205. doi: 10.1242/dev.004598 PubMedGoogle Scholar
  169. Palmer JM (1991) Comparative morphology of the external silk production apparatus of “primitive” spiders. PhD Thesis, Harvard University, Cambridge, MAGoogle Scholar
  170. Palmer JM, Coyle FA, Harrison FW (1982) Structure and cytochemistry of the silk glands of the mygalomorph spider Antrodiaetus unicolor (Araneae, Antrodiaetidae). J Morphol 174:269–274Google Scholar
  171. Pechmann M, Prpic N-M (2009) Appendage patterning in the south American bird spider Acanthoscurria geniculata (Araneae: Mygalomorphae). Dev Genes Evol 219:189–198. doi: 10.1007/s00427-009-0279-7 PubMedGoogle Scholar
  172. Pechmann M, McGregor AP, Schwager EE, Feitosa NM, Damen WGM (2009) Dynamic gene expression is required for anterior regionalization in a spider. Proc Natl Acad Sci U S A 106:1468–1472. doi: 10.1073/pnas.0811150106 PubMedCentralPubMedGoogle Scholar
  173. Pechmann M, Khadjeh S, Turetzek N, McGregor AP, Damen WGM, Prpic N-M (2011) Novel function of Distal-less as a gap gene during spider segmentation. PLoS Genet 7:e1002342. doi: 10.1371/journal.pgen.1002342 PubMedCentralPubMedGoogle Scholar
  174. Pepato AR, da Rocha CEF, Dunlop JA (2010) Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol 10:235. doi: 10.1186/1471-2148-10-235 PubMedCentralPubMedGoogle Scholar
  175. Peters HM (1955) Über den Spinnapparat von Nephila madagascariensis. Z Naturforsch 10b:395–404Google Scholar
  176. Petrunkevitch A (1955) Arachnida. In: Moore AC (ed) Treatise on invertebrate paleontology, part 2. University of Kansas Press, Lawrence, pp 42–162Google Scholar
  177. Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1. doi: 10.1186/1741-7007-2-1 PubMedCentralPubMedGoogle Scholar
  178. Popadic A, Nagy L (2001) Conservation and variation in Ubx expression among chelicerates. Evol Dev 3:391–396PubMedGoogle Scholar
  179. Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, Damen WGM, Prpic N-M, McGregor AP, Extavour CG (2014) A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS ONE 9:e104885. doi: 10.1371/journal.pone.0104885 PubMedCentralPubMedGoogle Scholar
  180. Prpic N, Damen W (2004) Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 214:296–302. doi: 10.1007/s00427-004-0393-5 PubMedGoogle Scholar
  181. Prpic N-M, Wigand B, Damen WGM, Klingler M (2001) Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol 211:467–477. doi: 10.1007/s004270100178 PubMedGoogle Scholar
  182. Prpic N-M, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140PubMedGoogle Scholar
  183. Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105:16614–16619. doi: 10.1073/pnas.0804093105 PubMedCentralPubMedGoogle Scholar
  184. Punzo F (1998) The biology of camel-spiders (Arachnida, Solifugae). Kluwer Academic Publishers, BostonGoogle Scholar
  185. Purcell WF (1909) Development and origin of the respiratory organs in Araneæ. Q J Microsc Sci s2-54:1–110Google Scholar
  186. Raspotnig G, Schwab J, Karaman I (2012) High conservatism in the composition of scent gland secretions in cyphophthalmid harvestmen: evidence from Pettalidae. J Chem Ecol 38:437–440. doi: 10.1007/s10886-012-0108-8 PubMedCentralPubMedGoogle Scholar
  187. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083. doi: 10.1038/nature08742 PubMedGoogle Scholar
  188. Reisinger PWM, Tutter I, Welsch U (1991) Fine structure of the gills of the horseshoe crabs Limulus polyphemus and Tachypleus tridentatus and of the book lungs of the spider Eurypelma californicum. Zool Jahrb Abt Anat Ontog Tiere 121:331–357Google Scholar
  189. Roeding F, Börner J, Kube M, Klages S, Reinhardt R, Burmester T (2009) A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol 53:826–834. doi: 10.1016/j.ympev.2009.08.014 PubMedGoogle Scholar
  190. Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc Biol Sci 278:298–306. doi: 10.1098/rspb.2010.0590 PubMedCentralPubMedGoogle Scholar
  191. Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398. doi: 10.1016/j.cub.2013.01.026 PubMedGoogle Scholar
  192. Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. Brooks/Cole - Thompson Learning, BelmontGoogle Scholar
  193. Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, Jiang X, Cheng L, Fan D, Feng Y, Han L, Huang Z, Wu Z, Liao L, Settepani V, Thogersen IB, Vanthournout B, Wang T, Zhu Y, Funch P, Enghild JJ, Schauser L, Andersen SU, Villesen P, Schierup MH, Bilde T, Wang J (2014) Spider genomes provide insight into composition and evolution of venom and silk. Nat Commun 5:3765. doi: 10.1038/ncomms4765 PubMedCentralPubMedGoogle Scholar
  194. Santos AJ, Ferreira RL, Buzatto BA (2013a) Two new cave-dwelling species of the short-tailed Whipscorpion genus Rowlandius (Arachnida: Schizomida: Hubbardiidae) from northeastern Brazil, with comments on male dimorphism. PLoS ONE 8:e63616. doi: 10.1371/journal.pone.0063616 PubMedCentralPubMedGoogle Scholar
  195. Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, Fontenele MR, Araújo HM, Feitosa NM, Logullo C, da Fonseca RN (2013b) The embryogenesis of the tick Rhipicephalus (Boophilus) microplus: the establishment of a new chelicerate model system. Genesis 51:803–818. doi: 10.1002/dvg.22717 PubMedGoogle Scholar
  196. Schimkewitsch W (1887) Etude sur le développement des araignées. Arch Biol 6:515–584Google Scholar
  197. Schimkewitsch W (1898) Entwicklung des Darmcanals bei Arachniden. Trav Soc Nat St Petersbourg 29:16–18Google Scholar
  198. Schimkewitsch VM (1906) Über die Entwicklung von Thelyphonus caudatus L. verglichen mit derjenigen einiger andrer Arachniden. Z Wiss Zool 81:1–95Google Scholar
  199. Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415. doi: 10.1007/s00427-006-0085-4 PubMedGoogle Scholar
  200. Scholtz G, Kamenz C (2006) The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology (Jena) 109:2–13. doi: 10.1016/j.zool.2005.06.003 Google Scholar
  201. Schoppmeier M, Damen WGM (2001) Double-stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionarily conserved in arthropod appendage formation. Dev Genes Evol 211:76–82PubMedGoogle Scholar
  202. Schoppmeier M, Damen WGM (2005) Expression of Pax group III genes suggests a single-segmental periodicity for opisthosomal segment patterning in the spider Cupiennius salei. Evol Dev 7:160–169. doi: 10.1111/j.1525-142X.2005.05018.x PubMedGoogle Scholar
  203. Schwager EE, Schoppmeier M, Pechmann M, Damen WGM (2007) Duplicated Hox genes in the spider Cupiennius salei. Front Zool 4:10. doi: 10.1186/1742-9994-4-10 PubMedCentralPubMedGoogle Scholar
  204. Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WGM (2009) Hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr Biol 19:1333–1340. doi: 10.1016/j.cub.2009.06.061 PubMedGoogle Scholar
  205. Schwager EE, Meng Y, Extavour CG (2015) Vasa and piwi are required for mitotic integrity in early embryo- genesis in the spider Parasteatoda tepidariorum. Dev Biol 402:276–290Google Scholar
  206. Sekiguchi K, Yamamichi Y, Costlow JD (1982) Horseshoe crab developmental studies I. Normal embryonic development of Limulus polyphemus compared with Tachypleus tridentatus. Prog Clin Biol Res 81:53–73PubMedGoogle Scholar
  207. Selden PA, Shear WA, Bonamo PM (1991) A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34:241–281Google Scholar
  208. Sharma PP, Schwager EE, Extavour CG, Giribet G (2012a) Evolution of the chelicera: a dachshund domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev 14:522–533. doi: 10.1111/ede.12005 PubMedGoogle Scholar
  209. Sharma PP, Schwager EE, Extavour CG, Giribet G (2012b) Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev 14:450–463. doi: 10.1111/j.1525-142X.2012.00565.x PubMedGoogle Scholar
  210. Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG (2013) Distal-less and dachshund pattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestman Phalangium opilio (Opiliones). Evol Dev 15:228–242. doi: 10.1111/ede.12029 PubMedGoogle Scholar
  211. Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G (2014a) Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol. doi: 10.1093/molbev/msu235 Google Scholar
  212. Sharma PP, Schwager EE, Extavour CG, Wheeler WC (2014b) Hox gene duplications correlate with posterior heteronomy in scorpions. Proc Biol Sci 281. doi: 10.1098/rspb.2014.0661
  213. Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG (2014c) Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. Evodevo 5:3. doi: 10.1186/2041-9139-5-3 PubMedCentralPubMedGoogle Scholar
  214. Shultz JW (1987) The origin of the spinning apparatus in spiders. Biol Rev Camb Philos Soc 62:89–113. doi: 10.1111/j.1469-185X.1987.tb01263.x Google Scholar
  215. Shultz JW (1990) Evolutionary morphology and phylogeny of Arachnida. Cladistics 6:1–38. doi: 10.1111/j.1096-0031.1990.tb00523.x Google Scholar
  216. Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265. doi: 10.1111/j.1096-3642.2007.00284.x Google Scholar
  217. Shultz JW, Pinto-da-Rocha R (2007) Morphology and functional anatomy. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, MA, pp 14–61Google Scholar
  218. Simonnet F, Deutsch J, Quéinnec E (2004) Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 214:537–545. doi: 10.1007/s00427-004-0435-z PubMedGoogle Scholar
  219. Simonnet F, Célérier M-L, Quéinnec E (2006) Orthodenticle and empty spiracles genes are expressed in a segmental pattern in chelicerates. Dev Genes Evol 216:467–480. doi: 10.1007/s00427-006-0093-4 PubMedGoogle Scholar
  220. Smrz J, Kovac L, Mikes J, Lukesova A (2013) Microwhip scorpions (Palpigradi) feed on heterotrophic cyanobacteria in Slovak caves – a curiosity among Arachnida. PLoS ONE 8:e75989. doi: 10.1371/journal.pone.0075989 PubMedCentralPubMedGoogle Scholar
  221. Snodgrass RE (1938) Evolution of the Annelida, Onychophora and Arthropoda. Smithson Misc Collect 97:1–159Google Scholar
  222. Stollewerk A (2002) Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis. Development 129:5339–5348PubMedGoogle Scholar
  223. Stollewerk A, Chipman AD (2006) Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integr Comp Biol 46:195–206. doi: 10.1093/icb/icj020 PubMedGoogle Scholar
  224. Stollewerk A, Weller M, Tautz D (2001) Neurogenesis in the spider Cupiennius salei. Development 128:2673–2688PubMedGoogle Scholar
  225. Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865. doi: 10.1038/nature01682 PubMedGoogle Scholar
  226. Strand E (1906) Studien über Bau und Entwicklung der Spinnen. Z Wiss Zool 80:515–543Google Scholar
  227. Suzuki H, Kondo A (1994) Changes at the egg surface during the first maturation division in the spider Achaearanea japonica (Bös. et Str.). Zool Sci 11:693–700Google Scholar
  228. Suzuki H, Kondo A (1995) Early embryonic development, including germ-disk stage, in the theridiid spider Achaearanea japonica (Bös. et Str.). J Morphol 224:147–157. doi: 10.1002/jmor.1052240204 Google Scholar
  229. Talarico G, Palacios-Vargas JG, Fuentes Silva M, Alberti G (2006) Ultrastructure of tarsal sensilla and other integument structures of two Pseudocellus species (Ricinulei, Arachnida). J Morphol 267:441–463. doi: 10.1002/jmor.10415 PubMedGoogle Scholar
  230. Talarico G, Garcia Hernandez LF, Michalik P (2008a) The male genital system of the New World Ricinulei (Arachnida): ultrastructure of spermatozoa and spermiogenesis with special emphasis on its phylogenetic implications. Arthropod Struct Dev 37:396–409. doi: 10.1016/j.asd.2008.01.006 PubMedGoogle Scholar
  231. Talarico G, Palacios-Vargas JG, Alberti G (2008b) The pedipalp of Pseudocellus pearsei (Ricinulei, Arachnida) – ultrastructure of a multifunctional organ. Arthropod Struct Dev 37:511–521. doi: 10.1016/j.asd.2008.02.001 PubMedGoogle Scholar
  232. Talarico G, Lipke E, Alberti G (2011) Gross morphology, histology, and ultrastructure of the alimentary system of Ricinulei (Arachnida) with emphasis on functional and phylogenetic implications. J Morphol 272:89–117. doi: 10.1002/jmor.10897 PubMedGoogle Scholar
  233. Telford MJ, Thomas RH (1998a) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci U S A 95:10671–10675PubMedCentralPubMedGoogle Scholar
  234. Telford MJ, Thomas RH (1998b) Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 208:591–594PubMedGoogle Scholar
  235. Tsurusaki N, Cokendolpher JC (1990) Chromosomes of sixteen species of harvestmen (Arachnida, Opiliones, Caddidae and Phalangiidae). J Arachnol 18:151–166Google Scholar
  236. Ungerer P, Scholtz G (2009) Cleavage and gastrulation in Pycnogonum litorale (Arthropoda, Pycnogonida): morphological support for the Ecdysozoa? Zoomorphology 128:263–274. doi: 10.1007/s00435-009-0091-y Google Scholar
  237. van der Meijden A, Langer F, Boistel R, Vagovic P, Heethoff M (2012) Functional morphology and bite performance of raptorial chelicerae of camel spiders (Solifugae). J Exp Biol 215:3411–3418. doi: 10.1242/jeb.072926 PubMedGoogle Scholar
  238. Vargas-Vila MA, Hannibal RL, Parchem RJ, Liu PZ, Patel NH (2010) A prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensis. Development 137:3469–3476. doi: 10.1242/dev.055160
  239. Vilpoux K, Waloszek D (2003) Larval development and morphogenesis of the sea spider Pycnogonum litorale (Ström, 1762) and the tagmosis of the body of Pantopoda. Arthropod Struct Dev 32:349–383. doi: 10.1016/j.asd.2003.09.004 PubMedGoogle Scholar
  240. Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian “Orsten” of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446. doi: 10.1111/1475-4983.00244 Google Scholar
  241. Walzl MG, Gutweniger A, Wernsdorf P (2004) Embryology of mites: new techniques yield new findings. Phytophaga 14:163–181Google Scholar
  242. Weygoldt P (1970) The biology of pseudoscorpions. Harvard University Press, CambridgeGoogle Scholar
  243. Weygoldt P (1975) Untersuchungen zur Embryologie und Morphologie der Geißelspinne Tarantula marginemaculata CL Koch (Arachnida, Amblypygi, Tarantulidae). Zoomorphologie 82:137–199Google Scholar
  244. Weygoldt P (1985) Ontogeny of the arachnid central nervous system. In: neurobiology of arachnids. Springer, Berlin/Heidelberg, p 20–37. doi: 10.1007/978-3-642-70348-5_2
  245. Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics, Whip spiders. Apollo Books {a}, Kirkeby Sand 19, DK-5771, StenstrupGoogle Scholar
  246. Weygoldt P, Paulus HF (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. Z Zool Syst Evolution 17:177–200Google Scholar
  247. Wheeler WC, Hayashi CY (1998) The phylogeny of the extant chelicerate orders. Cladistics 14:173–192Google Scholar
  248. Willemart RH, Farine J-P, Gnaspini P (2009) Sensory biology of Phalangida harvestmen (Arachnida, Opiliones): a review, with new morphological data on 18 species. Acta Zool 90:209–227. doi: 10.1111/j.1463-6395.2008.00341.x Google Scholar
  249. Wilson MJ, Mckelvey BH, Heide S, Dearden PK (2010) Notch signaling does not regulate segmentation in the honeybee, Apis mellifera. Dev Genes Evol 220(1–12):179–190. doi: 10.1007/s00427-010-0340-6
  250. Wolff C, Hilbrant M (2011) The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 8(1):15. doi: 10.1186/1742-9994-8-15
  251. Wolff C, Scholtz G (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin/Heidelberg, pp 63–90Google Scholar
  252. Yamasaki T, Makioka T, Saito J (1988) Morphology. In: Sekiguchi L (ed) Biology of horseshoe crabs. Science House Co, Tokyo, pp 69–132Google Scholar
  253. Yang XF, Yang X, Norma-Rashid Y, Lourenço WR, Zhu MS, Zhu M (2013) True lateral eye numbers for extant buthids: a new discovery on an old character. PLoS ONE 8:e55125. doi: 10.1371/journal.pone.0055125 PubMedCentralPubMedGoogle Scholar
  254. Yoshikura M (1969) Effects of ultraviolet irradiation on the embryonic development of a liphistiid spider, Heptathela kimurai. Kumamoto J Sci Ser B (Biol Geol) 9:57–108Google Scholar
  255. Yoshikura M (1975) Comparative embryology and phylogeny of Arachnida. Kumamoto J Sci Ser B Sect 2 Biol 12:71–142Google Scholar
  256. Zhang ZQ (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, WallingfordGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Evelyn E. Schwager
    • 1
  • Anna Schönauer
    • 1
  • Daniel J. Leite
    • 1
  • Prashant P. Sharma
    • 2
  • Alistair P. McGregor
    • 1
  1. 1.Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
  2. 2.Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations