Advertisement

Onychophora

  • Georg Mayer
  • Franziska Anni Franke
  • Sandra Treffkorn
  • Vladimir Gross
  • Ivo de Sena Oliveira

Abstract

Onychophorans, or “velvet worms” (Fig. 4.1), are multi-legged, terrestrial invertebrates that inhabit decaying logs, soil, and leaf litter of tropical and temperate forests on landmasses that have resulted from the breakup of Gondwana (Fig. 4.2A). The approximately 200 described species are classified into two major subgroups, the Peripatidae and Peripatopsidae, which might have diverged over 350 million years ago (Fig. 4.2A, B). The anatomy of onychophorans has changed little since the Early Cambrian, as they resemble fossil lobopodians – putative stem-group representatives of Panarthropoda (Onychophora + Tardigrada + Arthropoda).

Keywords

Antennal Segment Coelomic Cavity Segment Polarity Gene Vitelline Envelope Viviparous Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahlrichs WH (1995) Ultrastruktur und Phylogenie von Seison nebaliae (Grube 1859) und Seison annulatus (Claus 1876). Cuvillier Verlag, GöttingenGoogle Scholar
  2. Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747PubMedGoogle Scholar
  3. Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357PubMedGoogle Scholar
  4. Allwood J, Gleeson D, Mayer G, Daniels S, Beggs JR, Buckley TR (2010) Support for vicariant origins of the New Zealand Onychophora. J Biogeogr 37:669–681Google Scholar
  5. Anderson DT (1966) The comparative early embryology of the Oligochaeta, Hirudinea and Onychophora. Proc Linnean Soc NSW 91:10–43Google Scholar
  6. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods, International Series of Monographs in Pure and Applied Biology. Division: Zoology. Pergamon Press, OxfordGoogle Scholar
  7. Anderson DT, Manton SM (1972) Studies on the Onychophora. VIII. The relationship between the embryos and the oviduct in the viviparous placental onychophorans Epiperipatus trinidadensis Bouvier and Macroperipatus torquatus (Kennel) from Trinidad. Philos Trans R Soc B Biol Sci 264:161–189Google Scholar
  8. Angelini DR, Kaufman TC (2005) Insect appendages and comparative ontogenetics. Dev Biol 286:57–77PubMedGoogle Scholar
  9. Baer A, Mayer G (2012) Comparative anatomy of slime glands in Onychophora (velvet worms). J Morphol 273:1079–1088PubMedGoogle Scholar
  10. Baer A, Oliveira IS, Steinhagen M, Beck-Sickinger A, Mayer G (2014) Slime protein profiling: a non-invasive tool for species identification in Onychophora (velvet worms). J Zool Syst Evol Res 52:265–272Google Scholar
  11. Barclay SD, Rowell DM, Ash JE (2000a) Pheromonally mediated colonization patterns in the velvet worm Euperipatoides rowelli (Onychophora). J Zool 250:437–446Google Scholar
  12. Barclay SD, Ash JE, Rowell DM (2000b) Environmental factors influencing the presence and abundance of a log-dwelling invertebrate, Euperipatoides rowelli (Onychophora: Peripatopsidae). J Zool 250:425–436Google Scholar
  13. Bartolomaeus T, Ruhberg H (1999) Ultrastructure of the body cavity lining in embryos of Epiperipatus biolleyi (Onychophora, Peripatidae)—a comparison with annelid larvae. Invertebr Biol 118:165–174Google Scholar
  14. Bartolomaeus T, Quast B, Koch M (2009) Nephridial development and body cavity formation in Artemia salina (Crustacea: Branchiopoda): no evidence for any transitory coelom. Zoomorphology 128:247–262Google Scholar
  15. Beckmann H, Hering L, Henze MJ, Kelber A, Stevenson PA, Mayer G (2015) Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression. J Exp Biol 218:915–922Google Scholar
  16. Bergström J, Hou XG (2001) Cambrian Onychophora or xenusians. Zool Anz 240:237–245Google Scholar
  17. Birket-Smith SJR (1974) The anatomy of the body wall of Onychophora. Zool Jahrb Abt Anat Ontog Tiere 93:123–154Google Scholar
  18. Blaxter M, Sunnucks P (2011) Velvet worms. Curr Biol 21:R1–R3Google Scholar
  19. Bouvier EL (1905) Monographie des Onychophores. Ann Sci Nat Zool Anim [9e Sér] 2:1–383Google Scholar
  20. Brinck P (1957) Onychophora, a review of South African species, with a discussion on the significance of the geographical distribution of the group. In: Hanström B, Brinck P, Rudebeck G (eds) South African animal life, vol 4. Almqvist & Wiksell, Stockholm, pp 7–32Google Scholar
  21. Brockmann C, Mesibov R, Ruhberg H (1997) Observations on Ooperipatellus decoratus, an oviparous onychophoran from Tasmania (Onychophora: Peripatopsidae). Entomol Scand Suppl 51:319–329Google Scholar
  22. Brockmann C, Mummert R, Ruhberg H, Storch V (1999) Ultrastructural investigations of the female genital system of Epiperipatus biolleyi (Bouvier, 1902) (Onychophora, Peripatidae). Acta Zool 80:339–349Google Scholar
  23. Brockmann C, Mummert R, Ruhberg H, Storch V (2001) The female genital system of Ooperipatus decoratus (Onychophora, Peripatopsidae): an ultrastructural study. J Morphol 249:77–88PubMedGoogle Scholar
  24. Bull JK, Sunnucks P (2014) Strong genetic structuring without assortative mating or reduced hybrid survival in an onychophoran in the Tallaganda State Forest region, Australia. Biol J Linn Soc 111:589–602Google Scholar
  25. Bull JK, Sands CJ, Garrick RC, Gardner MG, Tait NN, Briscoe DA, Rowell DM, Sunnucks P (2013) Environmental complexity and biodiversity: the multi-layered evolutionary history of a log-dwelling velvet worm in montane temperate Australia. PLoS One 8(12):e84559PubMedCentralPubMedGoogle Scholar
  26. Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of tardigrada and suggest that velvet worms are the sister group of arthropoda. Proc Natl Acad Sci USA 108:15920–15924Google Scholar
  27. Campiglia SS, Walker MH (1995) Developing embryo and cyclic changes in the uterus of Peripatus (Macroperipatus) acacioi (Onychophora, Peripatidae). J Morphol 224:179–198Google Scholar
  28. Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity. Molecular genetics and the evolution of animal design, 2nd edn. Blackwell Publishing, MaldenGoogle Scholar
  29. Clarke GM, Spier-Ashcroft F (2001) Euperipatoides rowelli. Tallaganda velvet worm. In: A review of the conservation status of selected Australian non-marine invertebrates. Australian biological resources study. Natural Heritage Trust, Australian Government, Department of the Environment, Canberra, Australia pp 52–57Google Scholar
  30. Curach N, Sunnucks P (1999) Molecular anatomy of an onychophoran: compartmentalized sperm storage and heterogeneous paternity. Mol Ecol 8:1375–1385PubMedGoogle Scholar
  31. Dakin WJ (1921) The eye of peripatus. Q J Microsc Sci 65:163–172Google Scholar
  32. Damen WGM (2002) Fushi tarazu: a Hox gene changes its role. Bioessays 24:992–995PubMedGoogle Scholar
  33. Damen WGM, Tautz D (1999) Abdominal-B expression in a spider suggests a general role for Abdominal-B in specifying the genital structure. J Exp Zool 285:85–91PubMedGoogle Scholar
  34. Dearden PK, Akam M (2001) Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. Development 128:3435–3444PubMedGoogle Scholar
  35. Dendy A (1892) On the oviparity of Peripatus leuckartii. Proc Roy Soc Victoria 4:31–34Google Scholar
  36. Dendy A (1902) On the oviparous species of Onychophora. Q J Microsc Sci 179:363–415Google Scholar
  37. Eakin RM, Westfall JA (1965) Fine structure of the eye of peripatus (Onychophora). Z Zellforsch Mikrosk Anat 68:278–300PubMedGoogle Scholar
  38. Eriksson BJ, Budd GE (2000) Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev 29:197–209PubMedGoogle Scholar
  39. Eriksson BJ, Stollewerk A (2010a) The morphological and molecular processes of onychophoran brain development show unique features that are neither comparable to insects nor to chelicerates. Arthropod Struct Dev 39:478–490PubMedGoogle Scholar
  40. Eriksson BJ, Stollewerk A (2010b) Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci USA 107:22576–22581Google Scholar
  41. Eriksson BJ, Tait NN (2012) Early development in the velvet worm Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Arthropod Struct Dev 41:483–493PubMedCentralPubMedGoogle Scholar
  42. Eriksson BJ, Tait NN, Budd GE (2003) Head development in the onychophoran Euperipatoides kanangrensis. With particular reference to the central nervous system. J Morphol 255:1–23PubMedGoogle Scholar
  43. Eriksson BJ, Tait NN, Norman JM, Budd GE (2005) An ultrastructural investigation of the hypocerebral organ of the adult Euperipatoides kanangrensis (Onychophora, Peripatopsidae). Arthropod Struct Dev 34:407–418Google Scholar
  44. Eriksson BJ, Tait NN, Budd GE, Akam M (2009) The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol 219:249–264PubMedGoogle Scholar
  45. Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M (2010) Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol 220:117–122PubMedGoogle Scholar
  46. Eriksson BJ, Samadi L, Schmid A (2013) The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev Genes Evol 223:237–246PubMedCentralPubMedGoogle Scholar
  47. Evans R (1901) On the Malayan species of Onychophora. Part II. – the development of Eoperipatus weldoni. Q J Microsc Sci 45:41–88Google Scholar
  48. Farzana L, Brown SJ (2008) Hedgehog signaling pathway function conserved in Tribolium segmentation. Dev Genes Evol 218:181–192PubMedCentralPubMedGoogle Scholar
  49. Franke FA, Mayer G (2014) Controversies surrounding segments and parasegments in Onychophora: insights from the expression patterns of four “segment polarity genes” in the peripatopsid Euperipatoides rowelli. PLOS ONE 9(12):e114383Google Scholar
  50. Franke FA, Schumann I, Hering L, Mayer G (2015) Phylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamily. Evol Dev 17:3–20Google Scholar
  51. Frase T, Richter S (2013) The fate of the onychophoran antenna. Dev Genes Evol 223:247–251PubMedGoogle Scholar
  52. Gabe M (1957) Données histologiques sur les organes segmentaires des peripatopsidae (onychophores). Arch Anat Microsc Morphol Exp 46:283–305PubMedGoogle Scholar
  53. Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559PubMedGoogle Scholar
  54. Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377PubMedGoogle Scholar
  55. Ghiselin MT (1985) A movable feaster. Nat Hist 94:54–61Google Scholar
  56. Gilbert SF (2013) Developmental biology, 10th edn. Sinauer Associates, SunderlandGoogle Scholar
  57. Giribet G, Edgecombe G (2012) Reevaluating the arthropod tree of life. Annu Rev Entomol 57:167–186PubMedGoogle Scholar
  58. Gleeson DM, Rowell DM, Briscoe AV, Tait NN, Higgins AV (1998) Phylogenetic relationships among Onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene. Mol Phylogenet Evol 10:237–248PubMedGoogle Scholar
  59. Gonzalez-Crespo S, Morata G (1996) Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development 122:3921–3928PubMedGoogle Scholar
  60. Grenier JK, Garber TL, Warren R, Whitington PM, Carroll S (1997) Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol 7:547–553PubMedGoogle Scholar
  61. Hanström B (1928) Onychophora. In: Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, Berlin, pp 341–351Google Scholar
  62. Haritos VS, Niranjane A, Weisman S, Trueman HE, Sriskantha A, Sutherland TD (2010) Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture. Proc R Soc B Biol Sci 277:3255–3263Google Scholar
  63. Haug JT, Mayer G, Haug C, Briggs DEG (2012) A Carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype. Curr Biol 22:1673–1675PubMedGoogle Scholar
  64. Hejnol A, Schnabel R (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361PubMedGoogle Scholar
  65. Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G (2012) Opsins in Onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods. Mol Biol Evol 29:3451–3458PubMedGoogle Scholar
  66. Herzberg A, Ruhberg H, Storch V (1980) Zur Ultrastruktur des weiblichen Genitaltraktes der Peripatopsidae (Onychophora). Zool Jahrb Abt Anat Ontog Tiere 104:266–279Google Scholar
  67. Hewitt CG (1905) Note on the buccal pits of Peripatus. Mem Proc Manchester Lit Phil Soc 50:2–8Google Scholar
  68. Hidalgo A, Ingham P (1990) Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched. Development 110:291–301PubMedGoogle Scholar
  69. Hilken G (1998) Vergleich von Tracheensystemen unter phylogenetischem Aspekt. Verh Naturwiss Ver Hambg 37:5–94Google Scholar
  70. Ho K, Dunin-Borkowski OM, Akam M (1997) Cellularization in locust embryos occurs before blastoderm formation. Development 124:2761–2768PubMedGoogle Scholar
  71. Hoffmann KH (1997) Ecdysteroids in adult females of a “walking worm”: Euperipatoides leuckartii (Onychophora, Peripatopsidae). Invertebr Reprod Dev 32:27–30Google Scholar
  72. Hofmann K (1988) Observations on Peripatopsis clavigera (Onychophora, Peripatopsidae). S Afr J Zool 23:255–258Google Scholar
  73. Hogvall M, Schönauer A, Budd GE, McGregor AP, Posnien N, Janssen R (2014) Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation. EvoDevo 5:14PubMedCentralPubMedGoogle Scholar
  74. Holland LZ, Holland ND, Schubert M (2000) Developmental expression of AmphiWnt1, an amphioxus gene in the Wnt1/wingless subfamily. Dev Genes Evol 210:522–524PubMedGoogle Scholar
  75. Holliday RA (1942) Some observations on Natal Onychophora. Ann Natal Mus 10:237–244Google Scholar
  76. Holm A (1952) Experimentelle Untersuchungen über die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zool Bijdr 29:293–424Google Scholar
  77. Holmgren NF (1916) Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden, und Insekten. Vorstudien zu einer Phylogenie der Arthropoden. Kungl Svenska Vetenskapsakad Handlingar [Ser 2] 56:1–303Google Scholar
  78. Hoyle G, Williams M (1980) The musculature of Peripatus and its innervation. Philos Trans R Soc B-Biol Sci 288:481–510Google Scholar
  79. Huebner E, Lococo DJ (1994) Oogenesis in a placental viviparous onychophoran. Tissue Cell 26:867–889PubMedGoogle Scholar
  80. Hughes CL, Kaufman TC (2002a) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238PubMedGoogle Scholar
  81. Hughes CL, Kaufman TC (2002b) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499PubMedGoogle Scholar
  82. Janssen R, Budd GE (2013) Deciphering the onychophoran ‘segmentation gene cascade’: gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network. Dev Biol 382:224–234PubMedGoogle Scholar
  83. Janssen R, Damen WGM (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465PubMedGoogle Scholar
  84. Janssen R, Budd GE, Damen WGM, Prpic NM (2008) Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 218:361–370PubMedGoogle Scholar
  85. Janssen R, Eriksson BJ, Budd GE, Akam M, Prpic NM (2010) Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods. Evol Dev 12:363–372PubMedGoogle Scholar
  86. Janssen R, Damen WGM, Budd GE (2011) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50PubMedCentralPubMedGoogle Scholar
  87. Janssen R, Eriksson BJ, Tait NN, Budd GE (2014) Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool 11:22PubMedCentralPubMedGoogle Scholar
  88. Jeffery NW, Oliveira IS, Gregory TR, Rowell DM, Mayer G (2012) Genome size and chromosome number in velvet worms (Onychophora). Genetica 140:497–504PubMedGoogle Scholar
  89. Jockusch EL, Nulsen C, Newfeld SJ, Nagy LM (2000) Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127:1617–1626PubMedGoogle Scholar
  90. Kemp S (1914) Onychophora. Rec Indian Mus 8:471–492Google Scholar
  91. Kennel J (1885) Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n.sp. I. Theil. Arb Zool Zootom Inst Wrzburg 7:95–229Google Scholar
  92. Kennel J (1888) Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n. sp. II. Theil. Arb Zool Zootom Inst Wrzburg 8:1–93Google Scholar
  93. Koch M, Quast B, Bartolomaeus T (2014) Coeloms and nephridia in annelids and arthropods. In: Wägele W, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. New insights from analyses of molecules, morphology, and theory of data analysis. De Gruyter, Berlin, pp 173–284Google Scholar
  94. Korschelt E, Heider K (1899) Onychophora (Peripatus). In: Text-book of the embryology of invertebrates, volume III. Arachnida, Pentastomidae, Pantopoda, Tardigrada, Onychophora, Myriapoda, Insecta. Macmillan, New York, pp 164–217Google Scholar
  95. Kozmik Z (2008) The role of Pax genes in eye evolution. Brain Res Bull 75:335–339PubMedGoogle Scholar
  96. Lavallard R, Campiglia S (1988) Le tubule distal des 4e et 5e paires d’organes rénaux chez Peripatus acacioi Marcus et Marcus (Onychophora: Peripatidae): étude infrastructurale. C R Acad Sci III Sci Vie 307:415–421Google Scholar
  97. Maas A, Mayer G, Kristensen RM, Waloszek D (2007) A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction. Chin Sci Bull 52:3385–3392Google Scholar
  98. Manton SM (1938a) Studies on the Onychophora—VI. The life-history of Peripatopsis. Ann Mag Nat Hist [Ser 11] 1:515–529Google Scholar
  99. Manton SM (1938b) Studies on the Onychophora, IV. The passage of spermatozoa into the ovary in peripatopsis and the early development of the ova. Philos Trans R Soc B-Biol Sci 228:421–444Google Scholar
  100. Manton SM (1949) Studies on the Onychophora VII. The early embryonic stages of Peripatopsis, and some general considerations concerning the morphology and phylogeny of the arthropoda. Philos Trans R Soc B-Biol Sci 233:483–580Google Scholar
  101. Manton SM, Heatley NG (1937) Studies on the Onychophora. II. The feeding, digestion, excretion, and food storage of Peripatopsis, with biochemical estimations and analyses. Philos Trans R Soc B-Biol Sci 227:411–464Google Scholar
  102. Martin C, Mayer G (2014) Neuronal tracing of oral nerves in a velvet worm – Implications for the evolution of the ecdysozoan brain. Front Neuroanat 8(7):1–13Google Scholar
  103. Mayer G (2006a) Origin and differentiation of nephridia in the Onychophora provide no support for the Articulata. Zoomorphology 125:1–12Google Scholar
  104. Mayer G (2006b) Structure and development of onychophoran eyes—what is the ancestral visual organ in arthropods? Arthropod Struct Dev 35:231–245PubMedGoogle Scholar
  105. Mayer G (2007) Metaperipatus inae sp. nov. (Onychophora: Peripatopsidae) from Chile with a novel ovarian type and dermal insemination. Zootaxa 1440:21–37Google Scholar
  106. Mayer G (2015) Onychophora. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, OxfordGoogle Scholar
  107. Mayer G, Harzsch S (2007) Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol 7:118PubMedCentralPubMedGoogle Scholar
  108. Mayer G, Harzsch S (2008) Distribution of serotonin in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): implications for the evolution of the nervous system in Arthropoda. J Comp Neurol 507:1196–1208PubMedGoogle Scholar
  109. Mayer G, Koch M (2005) Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs. Arthropod Struct Dev 34:471–480Google Scholar
  110. Mayer G, Oliveira IS (2011) Phylum Onychophora Grube, 1853. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:98Google Scholar
  111. Mayer G, Oliveira IS (2013) Phylum Onychophora Grube, 1853. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa, 3703: 1–82Google Scholar
  112. Mayer G, Tait NN (2009) Position and development of oocytes in velvet worms shed light on the evolution of the ovary in Onychophora and Arthropoda. Zool J Linnean Soc 157:17–33Google Scholar
  113. Mayer G, Whitington PM (2009a) Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol 335:263–275PubMedGoogle Scholar
  114. Mayer G, Whitington PM (2009b) Velvet worm development links myriapods with chelicerates. Proc R Soc B Biol Sci 276:3571–3579Google Scholar
  115. Mayer G, Ruhberg H, Bartolomaeus T (2004) When an epithelium ceases to exist—an ultrastructural study on the fate of the embryonic coelom in Epiperipatus biolleyi (Onychophora, Peripatidae). Acta Zool 85:163–170Google Scholar
  116. Mayer G, Bartolomaeus T, Ruhberg H (2005) Ultrastructure of mesoderm in embryos of Opisthopatus roseus (Onychophora, Peripatopsidae): revision of the “long germ band” hypothesis for Opisthopatus. J Morphol 263:60–70PubMedGoogle Scholar
  117. Mayer G, Whitington PM, Sunnucks P, Pflüger H-J (2010a) A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol Biol 10:255PubMedCentralPubMedGoogle Scholar
  118. Mayer G, Kato C, Quast B, Chisholm RH, Landman KA, Quinn LM (2010b) Growth patterns in Onychophora (velvet worms): lack of a localised posterior proliferation zone. BMC Evol Biol 10:339PubMedCentralPubMedGoogle Scholar
  119. Mayer G, Kauschke S, Rüdiger J, Stevenson PA (2013a) Neural markers reveal a one-segmented head in tardigrades (water bears). PLoS One 8(3):e59090PubMedCentralPubMedGoogle Scholar
  120. Mayer G, Martin C, Rüdiger J, Kauschke S, Stevenson PA, Poprawa I, Hohberg K, Schill RO, Pflüger H-J, Schlegel M (2013b) Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol Biol 13:230PubMedCentralPubMedGoogle Scholar
  121. Mayer G, Martin C, Oliveira IS, Franke FA, Gross V (2014) Latest anomalocaridid affinities challenged. Nature 516:E1–E2Google Scholar
  122. Mayer G, Oliveira IS, Baer A, Hammel JU, Gallant J, Hochberg R (2015a) Capture of prey, feeding, and functional anatomy of the jaws in velvet worms (Onychophora). Integr Comp Biol [doi:10.1093/icb/icv004]Google Scholar
  123. Mayer G, Hering L, Stosch JM, Stevenson PA, Dircksen H (2015b) Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: insights from Onychophora (velvet worms) and Tardigrada (water bears). J Comp Neurol [doi:10.1002/cne.23767]Google Scholar
  124. McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WGM (2008) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498PubMedGoogle Scholar
  125. Meyer NP, Seaver EC (2009) Neurogenesis in an annelid: characterization of brain neural precursors in the polychaete Capitella sp. I. Dev Biol 335:237–252PubMedGoogle Scholar
  126. Mouchel-Vielh E, Blin M, Rigolot C, Deutsch JS (2002) Expression of a homologue of the fushi tarazu (ftz) gene in a cirripede crustacean. Evol Dev 4:76–85PubMedGoogle Scholar
  127. Murdock DJE, Gabbott SE, Mayer G, Purnell MA (2014) Decay of velvet worms (Onychophora), and bias in the fossil record of lobopodians. BMC Evol Biol 14:222Google Scholar
  128. Murienne J, Daniels SR, Buckley TR, Mayer G, Giribet G (2014) A living fossil tale of Pangean biogeography. Proc R Soc B Biol Sci 281:20132648. In pressGoogle Scholar
  129. Nielsen C (2012) Animal evolution: interrelationships of the living phyla, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  130. Nielsen C (2013) The triradiate sucking pharynx in animal phylogeny. Invertebr Biol 132:1–13Google Scholar
  131. Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381PubMedGoogle Scholar
  132. Norman JM, Tait NN (2004) Light and electron microscopy of the egg membranes and oviduct of the oviparous peripatus Planipapillus mundus (Onychophora: Peripatopsidae). Microsc Microanal 10:244–245Google Scholar
  133. Norman JM, Tait NN (2008) Ultrastructure of the eggshell and its formation in Planipapillus mundus (Onychophora: Peripatopsidae). J Morphol 269:1263–1275PubMedGoogle Scholar
  134. Nulsen C, Nagy LM (1999) The role of wingless in the development of multibranched crustacean limbs. Dev Genes Evol 209:340–348PubMedGoogle Scholar
  135. Nylund A, Ruhberg H, Tjonneland A, Meidell B (1988) Heart ultrastructure in four species of Onychophora (Peripatopsidae and Peripatidae) and phylogenetic implications. Zool Beitr 32:17–30Google Scholar
  136. Oliveira IS, Mayer G (2013) Apodemes associated with limbs support serial homology of claws and jaws in Onychophora (velvet worms). J Morphol 274:1180–1190Google Scholar
  137. Oliveira IS, Read VMSJ, Mayer G (2012a) A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. ZooKeys 211:1–70Google Scholar
  138. Oliveira IS, Franke FA, Hering L, Schaffer S, Rowell DM, Weck-Heimann A, Monge-Nájera J, Morera-Brenes B, Mayer G (2012b) Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species. PLoS One 7(12):e51220PubMedCentralGoogle Scholar
  139. Oliveira IS, Schaffer S, Kvartalnov PV, Galoyan EA, Palko IV, Weck-Heimann A, Geissler P, Ruhberg H, Mayer G (2013a) A new species of Eoperipatus (Onychophora) from Vietnam reveals novel morphological characters for the South-East Asian Peripatidae. Zool Anz 252:495–510Google Scholar
  140. Oliveira IS, Tait NN, Strübing I, Mayer G (2013b) The role of ventral and preventral organs as attachment sites for segmental limb muscles in Onychophora. Front Zool 10:73Google Scholar
  141. Oliveira IS, Lüter C, Wolf KW, Mayer G (2014a) Evolutionary changes in the integument of the onychophoran Plicatoperipatus jamaicensis (Peripatidae). Invertebr Biol 133:274–280Google Scholar
  142. Oliveira MB, Liedholm SE, Lopez JE, Lochte AA, Pazio M, Martin JP, Mörch PR, Salakka S, York J, Yoshimoto A, Janssen R (2014b) Expression of arthropod distal limb-patterning genes in the onychophoran Euperipatoides kanangrensis. Dev Genes Evol 224:87–96PubMedGoogle Scholar
  143. Ou Q, Shu D, Mayer G (2012) Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun 3:1261PubMedCentralPubMedGoogle Scholar
  144. Pflugfelder O (1948) Entwicklung von Paraperipatus amboinensis n. sp. Zool Jahrb Abt Anat Ontog Tiere 69:443–492Google Scholar
  145. Pflugfelder O (1955) Die Tracheen der Onychophoren und der Insekten. Mikrokosmos 44:169–171Google Scholar
  146. Pflugfelder O (1962) Onychophora. In: Pflugfelder O (ed) Lehrbuch der Entwicklungsgeschichte und Entwicklungsphysiologie der Tiere. Gustav Fischer, Jena, pp 139–144Google Scholar
  147. Pflugfelder O (1968) Onychophora. In: Czihak G (ed) Grosses Zoologisches Praktikum, vol 13a. Gustav Fischer, Stuttgart, pp 1–42Google Scholar
  148. Prpic NM (2004) Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda). Front Zool 1:1–12Google Scholar
  149. Prpic NM, Tautz D (2003) The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 260:97–112PubMedGoogle Scholar
  150. Prpic NM, Telford MJ (2008) Expression of homothorax and extradenticle mRNA in the legs of the crustacean Parhyale hawaiensis: evidence for a reversal of gene expression regulation in the pancrustacean lineage. Dev Genes Evol 218:333–339PubMedCentralPubMedGoogle Scholar
  151. Prpic NM, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140PubMedGoogle Scholar
  152. Read VMSJ, Hughes RN (1987) Feeding behaviour and prey choice in Macroperipatus torquatus (Onychophora). Proc R Soc Lond B Biol Sci 230:483–506Google Scholar
  153. Reid AL (1996) Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebr Taxon 10:663–936Google Scholar
  154. Reinhard J, Rowell DM (2005) Social behaviour in an Australian velvet worm, Euperipatoides rowelli (Onychophora: Peripatopsidae). J Zool 267:1–7Google Scholar
  155. Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore J, Telford M, Pisani D, Blaxter M, Lavrov D (2010) Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the panarthropoda. Genome Biol Evol 2:425–440PubMedCentralPubMedGoogle Scholar
  156. Rowell DM, Higgins AV, Briscoe AV, Tait NN (1995) The use of chromosomal data in the systematics of viviparous onychophorans from Australia (Onychophora: Peripatopsidae). Zool J Linnean Soc 114:139–153Google Scholar
  157. Ruhberg H (1985) Die Peripatopsidae (Onychophora). Systematik, Ökologie, Chorologie und phylogenetische Aspekte. In: Schaller F (ed) Zoologica, Heft 137. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 1–183Google Scholar
  158. Ruhberg H, Mayer G (2013) Onychophora, Stummelfüßer. In: Westheide W, Rieger G (eds) Spezielle Zoologie. Teil 1. Einzeller und Wirbellose Tiere. Springer, Berlin, pp 457–464Google Scholar
  159. Ruhberg H, Storch V (1976) Zur Ultrastruktur von männlichem Genitaltrakt, Spermiocytogenese und Spermien von Peripatopsis moseleyi (Onychophora). Zoomorphologie 85:1–15Google Scholar
  160. Ruhberg H, Storch V (1977) Über Wehrdrüsen und Wehrsekret von Peripatopsis moseleyi (Onychophora). Zool Anz 198:9–19Google Scholar
  161. Ruhberg H, Storch V (1978) Zur Ultrastruktur der accessorischen Genitaldrüsen von Opisthopatus cinctipes (Onychophora, Peripatopsidae). Zool Anz 200:289–299Google Scholar
  162. Sakuma M, Machida R (2002) Germ band formation of a centipede Scolopocryptops rubiginosus L. Koch (Chilopda: Scolopendromorpha). Proc Arthropodan Embryol Soc Jpn 37:19–23Google Scholar
  163. Sakuma M, Machida R (2004) Germ band formation of a centipede Scolopendra subspinipes L. Koch (Chilopoda: Scolopendromorpha). Proc Arthropodan Embryol Soc Jpn 39:41–43Google Scholar
  164. Sanchez S (1958) Cellules neurosécrétrices et organes infracérébraux de Peripatopsis moseleyi wood (Onychophores) et neurosécrétion chez Nymphon gracile leach (Pycnogonides). Arch Zool Exp Gen [Notes Rev] 96:57–62Google Scholar
  165. Sanchez-Salazar J, Pletcher MT, Bennett RL, Brown SJ, Dandamudi TJ, Denell RE, Doctor JS (1996) The Tribolium decapentaplegic gene is similar in sequence, structure, and expression to the Drosophila dpp gene. Dev Genes Evol 206:237–246PubMedGoogle Scholar
  166. Sanson B (2001) Generating patterns from fields of cells. Examples from Drosophila segmentation. EMBO Rep 2:1083–1088PubMedCentralPubMedGoogle Scholar
  167. Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415PubMedGoogle Scholar
  168. Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Heidelberg, pp 63–89Google Scholar
  169. Schwager EE, Schoppmeier M, Pechmann M, Damen WGM (2007) Duplicated Hox genes in the spider Cupiennius salei. Front Zool 4:10PubMedCentralPubMedGoogle Scholar
  170. Sclater WL (1887) Notes on the Peripatus of British Guiana. Proc Zool Soc Lond 1887:130–137Google Scholar
  171. Sclater WL (1888) On the early stages of the development of South American species of Peripatus. Q J Microsc Sci 28:343–363Google Scholar
  172. Sclater WL (1889) On the early stages of the development of a South African species of Peripatus. Stud Morphol Lab Univ Camb 4:213–229Google Scholar
  173. Scott IAW, Rowell DM (1991) Population biology of Euperipatoides leuckartii (Onychophora: Peripatopsidae). Aust J Zool 39:499–508Google Scholar
  174. Seaver EC, Kaneshige LM (2006) Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol 289:179–194PubMedGoogle Scholar
  175. Sedgwick A (1885) The development of Peripatus capensis. Part I. Q J Microsc Sci 25:449–468Google Scholar
  176. Sedgwick A (1886) The development of the Cape species of Peripatus. Part II. Q J Microsc Sci 26:175–212Google Scholar
  177. Sedgwick A (1887) The development of the Cape species of Peripatus. Part III. On the changes from stage A to stage F. Q J Microsc Sci 27:467–550Google Scholar
  178. Sedgwick A (1888a) A monograph of the development of Peripatus capensis. Stud Morphol Lab Univ Camb 4:1–146Google Scholar
  179. Sedgwick A (1888b) The development of the Cape species of Peripatus. Part IV. The changes from stage G to birth. Q J Microsc Sci 28:373–396Google Scholar
  180. Sheldon L (1887) On the development of Peripatus novae-zealandiae. Q J Microsc Sci 28:205–237Google Scholar
  181. Sheldon L (1888) On the development of Peripatus novae-zealandiae. Q J Microsc Sci 29:283–294Google Scholar
  182. Sheldon L (1889a) On the development of Peripatus novae-zealandiae. Part 1. Stud Morphol Lab Univ Camb 4:230–262Google Scholar
  183. Sheldon L (1889b) On the development of Peripatus novae-zealandiae. Stud Morphol Lab Univ Camb 4:263–274Google Scholar
  184. Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14PubMedCentralPubMedGoogle Scholar
  185. Storch V, Ruhberg H (1990) Electron microscopic observations on the male genital tract and sperm development in Peripatus sedgwicki (Peripatidae, Onychophora). Invertebr Reprod Dev 17:47–56Google Scholar
  186. Storch V, Ruhberg H (1993) Onychophora. In: Harrison FW, Rice ME (eds) Microscopic anatomy of invertebrates, vol 12, Onychophora, Chilopoda, and Lesser Protostomata. Wiley-Liss, New York, pp 11–56Google Scholar
  187. Storch V, Ruhberg H, Alberti G (1978) Zur Ultrastruktur der Segmentalorgane der Peripatopsidae (Onychophora). Zool Jahrb Abt Anat Ontog Tiere 100:47–63Google Scholar
  188. Storch V, Alberti G, Ruhberg H (1979) Light and electron microscopical investigations on the salivary glands of Opisthopatus cinctipes and Peripatopsis moseleyi (Onychophora: Peripatopsidae). Zool Anz 203:35–47Google Scholar
  189. Storch V, Holm P, Ruhberg H (1988) Zur Ultrastruktur und Histochemie des Darmkanals verschiedener Onychophora. Zool Anz 221:281–294Google Scholar
  190. Storch V, Mummert R, Ruhberg H (1995) Electron microscopic observations on the male genital tract, sperm development, spermatophore formation, and capacitation in Epiperipatus biolleyi (Bouvier) (Peripatidae, Onychophora). Mitt Hambg Zool Mus Inst 92:365–379Google Scholar
  191. Strausfeld NJ, Strausfeld C, Stowe S, Rowell D, Loesel R (2006a) The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Struct Dev 35:169–196PubMedGoogle Scholar
  192. Strausfeld NJ, Strausfeld CM, Loesel R, Rowell D, Stowe S (2006b) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc R Soc Biol Sci Ser B 273:1857–1866Google Scholar
  193. Sunnucks P, Tait N (2001) What’s so interesting about velvet-worm sex? Tales of the unexpected. Nat Aust 27:60–69Google Scholar
  194. Sunnucks P, Wilson ACC (1999) Microsatellite markers for the onychophoran Euperipatoides rowelli. Mol Ecol 8:899–900PubMedGoogle Scholar
  195. Sunnucks P, Curach NC, Young A, French J, Cameron R, Briscoe DA, Tait NN (2000) Reproductive biology of the onychophoran Euperipatoides rowelli. J Zool 250:447–460Google Scholar
  196. Tait NN, Norman JM (2001) Novel mating behaviour in Florelliceps stutchburyae gen. nov., sp. nov. (Onychophora: Peripatopsidae) from Australia. J Zool 253:301–308Google Scholar
  197. Tait NN, Briscoe DA, Rowell DM (1995) Onychophora – ancient and modern radiations. Mem Assoc Australas Paleontol 18:21–30Google Scholar
  198. Treffkorn S, Mayer G (2013) Expression of the decapentaplegic ortholog in embryos of the onychophoran Euperipatoides rowelli. Gene Expr Patterns 13:384–394PubMedGoogle Scholar
  199. Tutt K, Daugherty CH, Gibbs GW (2002) Differential life-history characteristics of male and female Peripatoides novaezealandiae (Onychophora: Peripatopsidae). J Zool 258:257–267Google Scholar
  200. Walker MH (1992) Scanning electron microscope observations of embryonic development in Opisthopatus cinctipes Purcell (Onychophora, Peripatopsidae). Ber Natwiss-Med Ver Innsbruck Suppl 10:459–464Google Scholar
  201. Walker MH (1995) Relatively recent evolution of an unusual pattern of early embryonic development (long germ band?) in a South African onychophoran, Opisthopatus cinctipes Purcell (Onychophora: Peripatopsidae). Zool J Linnean Soc 114:61–75Google Scholar
  202. Walker M, Campiglia S (1988) Some aspects of segment formation and post-placental development in Peripatus acacioi Marcus and Marcus (Onychophora). J Morphol 195:123–140Google Scholar
  203. Walker M, Campiglia S (1990) Some observations on the placenta and embryonic cuticle during development in Peripatus acacioi Marcus and Marcus (Onychophora, Peripatidae). In: Minelli A (ed) Proceedings of the 7th International congress myriapodology. E.J.Brill, Leiden, pp 449–459Google Scholar
  204. Walker MH, Tait NN (2004) Studies of embryonic development and the reproductive cycle in ovoviviparous Australian Onychophora (Peripatopsidae). J Zool 264:333–354Google Scholar
  205. Walker MH, Roberts EM, Roberts T, Spitteri G, Streubig MJ, Hartland JL, Tait NN (2006) Observations on the structure and function of the seminal receptacles and associated accessory pouches in ovoviviparous onychophorans from Australia (Peripatopsidae; Onychophora). J Zool 270:531–542Google Scholar
  206. Weygoldt P (1986) Arthropod interrelationships: the phylogenetic-systematic approach. Z Zool Syst Evolutionsforsch 24:19–35Google Scholar
  207. Whitington PM (2007) The evolution of arthropod nervous systems: insights from neural development in the Onychophora and Myriapoda. In: Striedter GF, Rubenstein JLR (eds) Theories, development, invertebrates, vol 1, Evolution of nervous systems. Academic, Oxford, pp 317–336Google Scholar
  208. Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev 40:193–209PubMedGoogle Scholar
  209. Willey A (1898) The anatomy and development of Peripatus novae-britanniae. The University Press, Cambridge, pp 1–52Google Scholar
  210. Woodman JD, Cooper PD, Haritos VS (2007) Effects of temperature and oxygen availability on water loss and carbon dioxide release in two sympatric saproxylic invertebrates. Comp Biochem Physiol A Mol Integr Physiol 147:514–520PubMedGoogle Scholar
  211. Zhang Z-Q (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:1–237Google Scholar
  212. Zhang Z-Q (2013) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Zootaxa 3703:1–82PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Georg Mayer
    • 1
    • 2
  • Franziska Anni Franke
    • 2
  • Sandra Treffkorn
    • 1
  • Vladimir Gross
    • 1
  • Ivo de Sena Oliveira
    • 1
  1. 1.Department of ZoologyUniversity of KasselKasselGermany
  2. 2.Animal Evolution and DevelopmentInstitute of Biology, University of LeipzigLeipzigGermany

Personalised recommendations