Nematoda (roundworms) are mostly small animals in the range of only millimeters. While they are hard to see without a microscope, nematodes represent the largest animal phylum with an estimated number in the range of one to ten million species (Lambshead 1993). Nematodes are characterized by three general features. Besides species richness, these are numerical abundance and ecological omnipresence because they usually occur in high numbers and they are found in most ecosystems. For example, in some soil samples, nematodes can occur in excess of one million individuals per square meter (Floyd et al. 2002). The highest diversity of nematodes is found in marine environments and in terrestrial settings, often in association with arthropods or other invertebrates. Some nematodes are important parasites of plants, livestock, and humans. In the last 15 years, molecular phylogenetics has resulted in a comprehensive understanding of the relationships among nematodes that can serve as the basis for evolutionary considerations (van Megen et al. 2009). For example, molecular phylogenetics convincingly showed that parasitism has evolved at least seven times independently in nematodes, involving both plant and animal parasitism (Fig. 2.1; Blaxter et al. 1998). By now, many parasitic nematodes have their genome sequenced (Fig. 2.1), representing a promising starting point to understand associated biological processes (for a review see Sommer and Streit 2011).


Anchor Cell Caenorhabditis Species Vulva Development Panagrellus Redivivus Reverse Genetic Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboobaker A, Blaxter M (2003) Hox gene evolution in nematodes: novelty conserved. Curr Opin Genet Dev 13:593–598PubMedCrossRefGoogle Scholar
  2. Baldi C, Cho S, Ellis RE (2009) Mutations in two independent pathways are sufficient to create hermaphroditic nematodes. Science 326:1002–1005PubMedCrossRefGoogle Scholar
  3. Bento G, Ogawa A, Sommer RJ (2010) Co-option of the endocrine signaling module dafachronic acid-DAF-12 in nematode evolution. Nature 466:494–497PubMedCrossRefGoogle Scholar
  4. Blaxter ML, de Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas K (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75PubMedCrossRefGoogle Scholar
  5. Bose N, Ogawa A, von Reuss SH, Yim JJ, Ragsdale EJ, Sommer RJ, Schroeder FC (2012) Complex small molecular architectures regulate phenotypic plasticity in a nematode. Angew Chem 51:12438–12443CrossRefGoogle Scholar
  6. Bose N, Meyer JM, Yim JJ, Mayer MG, Markov GV, Ogawa A, Schroeder FC, Sommer RJ (2014) Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes. Curr Biol 24:1536–1541PubMedCentralPubMedCrossRefGoogle Scholar
  7. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:1–94Google Scholar
  8. Chitwood BG, Chitwood MB (1977) Introduction into nematodes. University Park Press, BaltimoreGoogle Scholar
  9. Denver D, Clark KA, Raboin MJ (2011) Reproductive mode evolution in nematodes: insight from molecular phylogenies and recently discovered species. Mol Phylogenet Evol 61:584–592PubMedCrossRefGoogle Scholar
  10. Felix MA, Duveau F (2012) Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol 10:59PubMedCentralPubMedCrossRefGoogle Scholar
  11. Felix MA, Sternberg PW (1996) Symmetry breakage in the development of one-armed gonads in nematodes. Development 112:2129–2142Google Scholar
  12. Fitch DHA, Thomas WK (1997) Evolution. In C. elegans II (Riddle DL, Blumenthal T, Meyer BJ, Priess JR. (eds.)). Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  13. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850PubMedCrossRefGoogle Scholar
  14. Gaugler R (ed) (2002) Entomopathogenic nematodes. CABI Publishing, New YorkGoogle Scholar
  15. Gerhard J, Kirschner M (1997) Cells, embryos and evolution. Blackwell Science, OxfordGoogle Scholar
  16. Gilbert SF, Epel D (2009) Ecological developmental biology. Sinauer Associates, SunderlandGoogle Scholar
  17. Haag E, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determination genes fem-3 and tra-2. Curr Biol 12:2035–2041PubMedCrossRefGoogle Scholar
  18. Hall B (1999) The neural crest in development and evolution. Springer, HeidelbergCrossRefGoogle Scholar
  19. Herrmann M, Mayer EW, Sommer RJ (2006) Nematodes of the genus Pristionchus are closely associated with scarab beetles and the Colorado potato beetle in western Europe. Zoology 109:96–108PubMedCrossRefGoogle Scholar
  20. Herrmann M, Kienle S, Rochat J, Mayer WE, Sommer RJ (2010) Haplotype diversity of the nematode Pristionchus pacificus on Réunion in the Indian Ocean suggests multiple independent invasions. Biol J Linn Soc 100:170–179CrossRefGoogle Scholar
  21. Hill RC, de Carvalho CE, Salogiannis J, Schlager B, Pilgrim D, Haag ES (2006) Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. Dev Cell 10:531–538PubMedCrossRefGoogle Scholar
  22. Hu PJ (2005) Dauer. In: the C. elegans research community (ed) WormBook,
  23. Kanzaki N, Ragsdale E, Herrmann M, Mayer WE, Tanaka R, Sommer RJ (2012) Parapristionchus giblindavisi n. gen, n. sp. (Rhabditida: Diplogastridae) isolated from stag beetles (Coleoptera: Lucanidae) in Japan. Nematology 14:933–947CrossRefGoogle Scholar
  24. Kenyon C (2010) The genetics of aging. Nature 464:504–512PubMedCrossRefGoogle Scholar
  25. Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70:396–417PubMedCrossRefGoogle Scholar
  26. Kiontke K, Barrière A, Kolotuev I, Podbilewicz B, Sommer RJ, Fitch DH, Felix MA (2007) Trends, stasis and drift in the evolution of nematode vulva development. Curr Biol 17:1925–1937PubMedCrossRefGoogle Scholar
  27. Lambshead PJD (1993) Recent developments in marine benthic biodiversity research. Oceanis 19:5–24Google Scholar
  28. Levin M, Hashimshony T, Wagner F, Yanai I (2012) Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev Cell 22:1101–1108PubMedCrossRefGoogle Scholar
  29. Ludewig AH, Schroeder FC (2013) Ascaroside signaling in C. elegans. In: the C. elegans research community (ed) WormBook,
  30. Lynch M (2007) The origins of genome architecture. Sinauer Associates, SunderlandGoogle Scholar
  31. Mayer MG, Sommer RJ (2011) Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones. Proc R Soc B 278:2784–2790PubMedCentralPubMedCrossRefGoogle Scholar
  32. Morgan K, McGaughran A, Witte H, Bartelmes G, Villate L, Herrmann M, Rochat J, Sommer RJ (2012) Multi-locus analysis of Pristionchus pacificus on La Réunion Island reveals an evolutionary history shaped by multiple introductions, constrained dispersal events, and rare out-crossing. Mol Ecol 21:250–266PubMedCrossRefGoogle Scholar
  33. Poulin R (2007) Evolutionary ecology of parasites. Princeton University Press, PrincetonGoogle Scholar
  34. Ragsdale EJ, Mueller MR, Roedelsperger C, Sommer RJ (2013) A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155:922–933PubMedCrossRefGoogle Scholar
  35. Rebeiz M, Stone T, Posakony JW (2005) An ancient transcriptional regulatory linkage. Dev Biol 281:299–308PubMedCrossRefGoogle Scholar
  36. Sawa H, Korswagen HC (2013) Wnt signaling in C. elegans. In: the C. elegans research community (ed) WormBook,
  37. Schierenberg E, Sommer RJ (2014) Development and reproduction in nematodes. In: Schmidt-Rhaesa (ed) Handbook of zoology. De Gruyter, Berlin/Boston, pp 61–108Google Scholar
  38. Schlager B, Röseler W, Zheng M, Gutierrez A, Sommer RJ (2006) HAIRY-like transcription factors and the evolution of the nematode vulva equivalence group. Curr Biol 16:1386–1394PubMedCrossRefGoogle Scholar
  39. Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, SunderlandGoogle Scholar
  40. Sigrist CB, Sommer RJ (1999) Vulva formation in Pristionchus pacificus relies on continuous gonadal induction. Dev Genes Evol 209:451–459PubMedCrossRefGoogle Scholar
  41. Sommer RJ (2008) Homology and the hierarchy of biological systems. Bioessays 30:653–658PubMedCrossRefGoogle Scholar
  42. Sommer RJ (2009) The future of evo-devo: model systems and evolutionary theory. Nat Rev Genet 10:416–422PubMedGoogle Scholar
  43. Sommer RJ (ed) (2015) Pristionchus pacificus. A nematode model for comparative and evolutionary biology. Brill, LeidenGoogle Scholar
  44. Sommer RJ, Bumbarger DJ (2012) Nematode models in evolution and development. WIRE Developmental Biology. WIRE, doi: 10.1002/wdev. 33Google Scholar
  45. Sommer RJ, Ogawa A (2011) Hormone signaling and phenotypic plasticity in nematode development and evolution. Curr Biol 21:R758–R766PubMedCrossRefGoogle Scholar
  46. Sommer RJ, Sternberg PW (1994) Changes of induction and competence during the evolution of vulva development in nematodes. Science 265:114–118PubMedCrossRefGoogle Scholar
  47. Sommer RJ, Streit A (2011) Comparative genetics and genomics in nematodes: genome structure, development and life style. Ann Rev Genet 45:1–20PubMedCrossRefGoogle Scholar
  48. Sommer RJ, Carta LK, Sternberg PW (1994) The evolution of cell lineage in nematodes. Dev Suppl 85–95Google Scholar
  49. Sommer RJ, Carta LK, Kim SY, Sternberg PW (1996) Morphological, genetic and molecular description of Pristionchus pacificus sp. n. (Nematoda, Diplogastridae). Fund Appl Nematol 19:511–521Google Scholar
  50. Sternberg PW (2005) Vulval development. In: the C. elegans research community (ed) WormBook,
  51. Sternberg PW, Horvitz HR (1981) Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by modification of cell lineage. Dev Biol 88:147–166PubMedCrossRefGoogle Scholar
  52. Sternberg PW, Horvitz HR (1982) Postembryonic non-gonadal cell lineages of the nematode Panagrellus redivivus: description and comparison with those of Caenorhabditis elegans. Dev Biol 93:181–205PubMedCrossRefGoogle Scholar
  53. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156PubMedCrossRefGoogle Scholar
  54. Tian H, Schlager B, Xiao H, Sommer RJ (2008) Wnt signaling by differentially expressed Wnt ligands induces vulva development in Pristionchus pacificus. Curr Biol 18:142–146PubMedCrossRefGoogle Scholar
  55. True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119PubMedCrossRefGoogle Scholar
  56. Van Megen H, Van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal sequences. Nematology 11:927–950CrossRefGoogle Scholar
  57. Wang X, Sommer RJ (2011) Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biol 9:e1001110PubMedCentralPubMedCrossRefGoogle Scholar
  58. Weller A, Mayer WE, Rae R, Sommer RJ (2010) Quantitative assessment of the nematode fauna present on Geotrupes dung beetles reveals species-rich communities with a heterogeneous distribution. J Parasitol 96:525–531PubMedCrossRefGoogle Scholar
  59. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  60. Wood W (ed) (1988) Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  61. Zarkover D (2006) Somatic sex determination. In: the C. elegans research community (ed) WormBook,

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department for Evolutionary BiologyMax-Planck Institute for Developmental BiologyTübingenGermany

Personalised recommendations