Advertisement

Abstract

The current view is that Cycloneuralia together with the Arthropoda form the Ecdysozoa. Cycloneuralia comprises the sister taxa Nematoida (Nematomorpha + Nematoda; development of the latter is treated separately in Chap. XX) and Scalidophora (Priapulida, Kinorhyncha, Loricifera) (Fig. 1.1). The taxon Cycloneuralia has been erected based on morphological data by Ahlrichs (1995), and the main defining character is a circumpharyngeal brain that forms an equally thick ring around the foregut. The taxon Scalidophora is characterized by scalids on its introvert. The Cycloneuralia were proposed before the results of the seminal work of Aguinaldo et al. (1997) who found the first molecular evidence for the Ecdysozoa. Since then, molecular phylogenies have consistently supported the Ecdysozoa but largely fail to provide a solid support for the Cycloneuralia. One problem is that most studies do not include the Loricifera in their analyses – and those who do only receive low support for their placement at any branch within Ecdysozoa. Another issue is that in most phylogenomic studies, tardigrades group together with nematodes, which is likely an artifact that could only be eliminated in some approaches. However, studies with increased taxon sampling should help to resolve the ambiguous results in the molecular phylogenies in the near future.

Keywords

Larval Stage Cleavage Pattern Postembryonic Development Median Ring Phylogenomic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adrianov AV, Malakhov VV (1996) Priapulida: structure, development, phylogeny, and classification. KMK Ltd., MoscowGoogle Scholar
  2. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493. doi: 10.1038/387489a0 PubMedCrossRefGoogle Scholar
  3. Ahlrichs W (1995) Ultrastruktur und Phylogenie von Seison nebaliae (Grube 1859) und Seison annulatus (Claus 1876). Georg-August-Universität, GöttingenGoogle Scholar
  4. Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T (2014) A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol 80:79–87. doi: 10.1016/j.ympev.2014.08.001 PubMedCrossRefGoogle Scholar
  5. Boyle R, Dahl T, Dale A et al (2014) Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nat Geosci 7:671–676CrossRefGoogle Scholar
  6. Campbell LI, Rota-Stabelli O, Edgecombe GD et al (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci U S A 108:15920–15924. doi: 10.1073/pnas.1105499108 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30. doi: 10.1186/1741-7007-8-30 PubMedCentralPubMedCrossRefGoogle Scholar
  8. de Rosa R, Grenier JK, Andreeva T et al (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776. doi: 10.1038/21631 PubMedCrossRefGoogle Scholar
  9. Dunn CW, Hejnol A, Matus DQ et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi: 10.1038/nature06614 PubMedCrossRefGoogle Scholar
  10. Dunn CW, Giribet G, Edgecombe GD, Hejnol A (2014) Animal phylogeny and its evolutionary implications. Ann Rev Ecol Evol Syst 45:371–395. doi: 10.1146/annurev-ecolsys-120213-091627 CrossRefGoogle Scholar
  11. Fitch DH, Sudhaus W (2002) One small step for worms, one giant leap for “Bauplan”? Evol Dev 4:243–246PubMedCrossRefGoogle Scholar
  12. Hanelt B, Thomas F, Schmidt-Rhaesa A (2005) Biology of the phylum Nematomorpha. Adv Parasitol 59:243–305PubMedCrossRefGoogle Scholar
  13. Hanelt B, Bolek MG, Schmidt-Rhaesa A (2012) Going solo: discovery of the first parthenogenetic gordiid (Nematomorpha: Gordiida). PLoS One 7:e34472. doi: 10.1371/journal.pone.0034472 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Heiner Bang-Bertelsen I, Schmidt-Rhaesa A, Kristensen RM (2013) Loricifera. In: Schmidt-Rhaesa A (ed) Handbook of zoology – Nematomorpha, Priapulida, Kinorhyncha, Loricifera. Walter e Gruyter GmbH, Berlin, pp 349–371Google Scholar
  15. Heiner I, Kristensen RM (2009) Urnaloricus gadi nov. gen. et nov. sp. (Loricifera, Urnaloricidae nov. fam.), an aberrant Loricifera with a viviparous pedogenetic life cycle. J Morphol 270:129–153. doi: 10.1002/jmor.10671 PubMedCrossRefGoogle Scholar
  16. Hejnol A, Obst M, Stamatakis A et al (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Royal Soc Series B 276:4261–4270. doi: 10.1098/rspb.2009.0896 CrossRefGoogle Scholar
  17. Higgins R, Storch V, Shirley T (1993) Scanning and transmission electron microscopical observations on the larvae of Priapulus caudatus (Priapulida). Acta Zool 74:301–319CrossRefGoogle Scholar
  18. Inoue I (1958) Studies on the life history of Chordodes japonensis, a species of Gordiacea. I. The development and structure of the larva. Jpn J Zool 12:203–218Google Scholar
  19. Janssen R, Wennberg SA, Budd GE (2009) The hatching larva of the priapulid worm Halicryptus spinulosus. Front Zool 6:8. doi: 10.1186/1742-9994-6-8 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kozloff E (1972) Some aspects of development in Echinoderes (Kinorhyncha). Trans Am Microsc Soc 91:119–130CrossRefGoogle Scholar
  21. Kozloff E (2007) Stages of development, from first cleavage to hatching, of an Echinoderes (phylum Kinorhyncha: class Cyclorhagida). Cah Biol Mar 48:199–206Google Scholar
  22. Kristensen RM (1983) Loricifera, a new phylum with Aschelminthes characters from the meiobenthos. Z Zool Syst Evolforsch 21:163–180CrossRefGoogle Scholar
  23. Kristensen RM (1991) New higher taxa—presented by their discoverers. Loricifera—a general biological and phylogenetic overview. Verh Dtsch Ges 84:231–246.Google Scholar
  24. Lang K (1954) Die Entwicklung des Eies von Priapulus caudatus LAM. und die systematische Stellung der Priapuliden. Arkiv Zool 5:321–348Google Scholar
  25. Malakhov VV, Spiridonov S (1984) The embryogenesis of Gordius sp. from Turkmenia, with special reference to the position of the Nematomorpha in the animal kingdom. Zool Zh 63:1285–1296Google Scholar
  26. Martín-Durán JM, Hejnol A (2014) Priapulida (penis worms): implications of embryonic development. In: McGraw-Hill (ed) 2014 yearbook of science & technology. McGraw-Hill Education, New YorkGoogle Scholar
  27. Martín-Durán JM, Hejnol A (2015) The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa. BMC Biol 13:29. doi: 10.1186/s12915-015-0139-z
  28. Martín-Durán JM, Janssen R, Wennberg S, Budd GE, Hejnol A (2012) Deuterostomic development in the protostome Priapulus caudatus. Curr Biol 22:2161–2166. doi: 10.1016/j.cub.2012.09.037 PubMedCrossRefGoogle Scholar
  29. Meyer N (1913) Zur Entwicklung von Gordius aquaticus. Z Wiss Zool 105:125–136Google Scholar
  30. Montgomery T (1904) The development and structure of the larva of Paragordius. Proc Acad Nat Sci Phil 56:738–755Google Scholar
  31. Mühldorf A (1914) Beiträge zur Entwicklungsgeschichte und zu den phylogenetischen Beziehungen der Gordiuslarve. Z Wiss Zool 111:1–75Google Scholar
  32. Neuhaus B (1993) Postembryonic development of Pycnophyes kielensis and P. dentatus (Kinorhyncha) from the North Sea. Microfauna Mar 8:163–193Google Scholar
  33. Neuhaus B (1995) Postembryonic development of Paracentrophyes praedictus (Homalorhagida): neoteny questionable among the Kinorhyncha. Zool Scr 24:179–192CrossRefGoogle Scholar
  34. Neuhaus B (2013) Kinorhyncha (Echinodera). In: Schmidt-Rhaesa A (ed) Handbook of zoology – Nematomorpha, Priapulida, Kinorhyncha, Loricifera. Walter e Gruyter GmbH, Berlin, pp 181–348Google Scholar
  35. Neves RC, Bailly X, Leasi F, Reichert H, Sørensen MV, Kristensen RM (2013) A complete three-dimensional reconstruction of the myoanatomy of Loricifera: comparative morphology of an adult and a Higgins larva stage. Front Zool 10:19. doi: 10.1186/1742-9994-10-19 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Nyholm K (1947) Contributions to the knowledge of the postembryonic development in Echinoderida cyclorhagae. Zool Bidr Upps 25:423–428Google Scholar
  37. Park JK, Rho HS, Kristensen RM, Kim W, Giribet G (2006) First molecular data on the phylum Loricifera: an investigation into the phylogeny of Ecdysozoa with emphasis on the positions of Loricifera and Priapulida. Zool Sci 23:943–954PubMedCrossRefGoogle Scholar
  38. Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253. doi: 10.1093/molbev/msi111 PubMedCrossRefGoogle Scholar
  39. Schmidt-Rhaesa A (2013) Priapulida. In: Schmidt-Rhaesa A (ed) Handbook of zoology – Nematomorpha, Priapulida, Kinorhyncha, Loricifera. Walter e Gruyter GmbH, Berlin, pp 147–180Google Scholar
  40. Sørensen MV, Hebsgaard M, Heiner I, Glenner H, Willerslev E, Kristensen RM (2008) New data from an enigmatic phylum: evidence from molecular sequence data supports a sister-group relationship between Loricifera and Nematomorpha. J Zool Syst Evol Res 46:231–239CrossRefGoogle Scholar
  41. Sørensen MV, Accogli G, Hansen JG (2010) Postembryonic development of Antygomonas incomitata (Kinorhyncha: Cyclorhagida). J Morphol 271:863–882. doi: 10.1002/jmor.10844 PubMedGoogle Scholar
  42. Tratiakow D (1901) Die Entwicklungsgeschichte von Gordius aquaticus Vill. Trav Soc Imp Nat St Petersbourg 32:24Google Scholar
  43. Vannier J, Calandra I, Gaillard C, Żylińska A (2010) Priapulid worms: pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology 38:711–714CrossRefGoogle Scholar
  44. Webster BL, Copley RR, Jenner RA et al (2006) Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral ecdysozoan. Evol Dev 8:502–510. doi: 10.1111/j.1525-142X.2006.00123.x PubMedCrossRefGoogle Scholar
  45. Wennberg SA, Janssen R, Budd GE (2008) Early embryonic development of the priapulid worm Priapulus caudatus. Evol Dev 10:326–338. doi: 10.1111/j.1525-142X.2008.00241.x PubMedCrossRefGoogle Scholar
  46. Wennberg S, Janssen R, Budd GE (2009) Hatching and earliest larval stages of the priapulid worm Priapulus caudatus. Invertebr Biol 128:157–171CrossRefGoogle Scholar
  47. Zhinkin L (1949) Early stages in the development of Priapulus caudatus. Dokl Akad Nauk SSSR 65:409–412Google Scholar
  48. Zhinkin L, Korsakova G (1953) Early stages in the development of Halicryptus spinulosus. Dokl Akad Nauk SSSR 88:571–573PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Sars International Centre for Marine Molecular BiologyUniversity of BergenBergenNorway

Personalised recommendations