Acoelomorpha, comprising Acoela and Nemertodermatida, and Xenoturbellida (with one single hitherto described species, Xenoturbella bocki) are simple, aquatic, acoelomate worms that measure between 100 μm and 1 cm. Acoelomorpha and Xenoturbella are found to cluster together as the monophyletic Xenacoelomorpha in some recent molecular phylogenetic analyses. With only few exceptions, all species are marine, with most of them living in the interstitial environment. Xenoturbellids and acoelomorphs possess a simple nervous system that generally is a basiepidermal nerve net; however, in some cases this net is condensed into basiepidermal neurite bundles at different parts of the body or is submerged under the epidermis where condensed brains and submuscular cords are formed. Some Acoela possess eye spots, while most nemertodermatids, Xenoturbella, and Acoela lack eyes. Recent internal phylogenetic analyses suggest that eyes were absent from the ground pattern of Acoelomorpha. A prominent gravitational sensory organ, the statocyst, is present in all xenacoelomorph taxa, albeit with differing ultrastructure.


Mouth Opening Neurite Bundle ParaHox Gene Juvenile Worm Simple Nervous System 


  1. Achatz JG, Martinez P (2012) The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Front Zool 9:27. doi: 10.1186/1742-9994-9-27 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Apelt G (1969) Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien. Mar Biol 4:267–325Google Scholar
  3. Aronowicz J, Lowe CJ (2006) Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integr Comp Biol 46:890–901. doi: 10.1093/Icb/Icl045 PubMedCrossRefGoogle Scholar
  4. Ax P (1984) Das phylogenetische system. Gustav Fischer Verlag, StuttgartGoogle Scholar
  5. Baguñá J, Riutort M (2004) The dawn of bilaterian animals: the case of acoelomorph flatworms. Bioessays 26:1046–1057PubMedCrossRefGoogle Scholar
  6. Børve A, Hejnol A (2014) Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). Front Zool 11:50. doi: 10.1186/1742-9994-11-50 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Boyer BC (1971) Regulative development in a spiralian embryo as shown by cell deletion experiments on the acoel, Childia. J Exp Zool 176:97–105. doi: 10.1002/jez.1401760110 PubMedCrossRefGoogle Scholar
  8. Bresslau E (1909) Die Entwicklung der Acoelen. Verhandlungen der Deutschen Zoologischen Gesellschaft 314–323Google Scholar
  9. Carranza S, Baguñá J, Riutort M (1997) Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Mol Biol Evol 14:485–497PubMedCrossRefGoogle Scholar
  10. Chiodin M, Achatz JG, Wanninger A, Martinez P (2011) Molecular architecture of muscles in an acoel and its evolutionary implications. J Exp Zool B Mol Dev Evol 316:427–439. doi: 10.1002/jez.b.21416 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chiodin M, Børve A, Berezikov E, Ladurner P, Martinez P, Hejnol A (2013) Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS One 8:e55499. doi: 10.1371/journal.pone.0055499 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chourrout D, Delsuc F, Chourrout P, Edvardsen RB, Rentzsch F, Renfer E, Jensen MF, Zhu B, de Jong P, Steele RE, Technau U (2006) Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442:684–687. doi: 10.1038/nature04863 PubMedCrossRefGoogle Scholar
  13. Conklin EG (1897) The embryology of Crepidula. J Morphol 13:1–230CrossRefGoogle Scholar
  14. Cook CE, Jiménez E, Akam M, Saló E (2004) The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evol Dev 6:154–163. doi: 10.1111/j.1525-142X.2004.04020.x PubMedCrossRefGoogle Scholar
  15. De Mulder K, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, Thaler M, Gorny A-K, Hrouda M, Borgonie G, Ladurner P (2009) Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 9:69. doi: 10.1186/1471-213X-9-69 PubMedCentralPubMedCrossRefGoogle Scholar
  16. DuBuc TQ, Ryan JF, Shinzato C, Satoh N, Martindale MQ (2012) Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor. Integr Comp Biol 52:835–841. doi: 10.1093/icb/ics098 PubMedCrossRefGoogle Scholar
  17. Dunn CW, Giribet G, Edgecombe GD, Hejnol A (2014) Animal phylogeny and its evolutionary implications. Ann Rev Ecol Evol Syst 45:371–395. doi: 10.1146/annurev-ecolsys-120213-091627 CrossRefGoogle Scholar
  18. Egger B, Steinke D, Tarui H, De Mulder K, Arendt D, Borgonie G, Funayama N, Gschwentner R, Hartenstein V, Hobmayer B, Hooge M, Hrouda M, Ishida S, Kobayashi C, Kuales G, Nishimura O, Pfister D, Rieger R, Salvenmoser W, Smith J III, Technau U, Tyler S, Agata K, Salzburger W, Ladurner P (2009) To be or not to be a flatworm: the acoel controversy. PLoS One 4:e5502. doi: 10.1371/journal.pone.0005502 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ehlers U (1985) Das phylogenetische System der Plathelminthes. Gustav Fischer Verlag, StuttgartGoogle Scholar
  20. Ehlers U (1991) Comparative morphology of statocysts in the Plathelminthes and the Xenoturbellida. Hydrobiologia 227:263–271CrossRefGoogle Scholar
  21. Ferrero E (1973) A fine structural analysis of the statocyst in Turbellaria Acoela. Zool Scr 2:5–16CrossRefGoogle Scholar
  22. Fröbius AC, Matus DQ, Seaver EC (2008) Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PLoS One 3:e4004. doi: 10.1371/journal.pone.0004004 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gardiner EG (1895) Early development of Polychoerus caudatus, Mark. J Morph 11:155–176CrossRefGoogle Scholar
  24. Gardiner EG (1898) The growth of the ovum, formation of the polar bodies, and the fertilization in Polychoerus caudatus. J Morph 15:73–104CrossRefGoogle Scholar
  25. Georgévitch J (1899) Etude sur le développement de la Convoluta roscoffensis Graff. Arch Zool Expérim 3:343–361Google Scholar
  26. Hejnol A (2015) Acoelomorpha. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, OxfordGoogle Scholar
  27. Hejnol A, Martindale MQ (2008a) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382–386. doi: 10.1038/nature07309 PubMedCrossRefGoogle Scholar
  28. Hejnol A, Martindale MQ (2008b) Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc Lond B Biol Sci 363:1493–1501. doi: 10.1098/rstb.2007.2239 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hejnol A, Martindale MQ (2009) Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biol 7:65. doi: 10.1186/1741-7007-7-65 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Royal Soc Series B 276:4261–4270. doi: 10.1098/rspb.2009.0896 CrossRefGoogle Scholar
  31. Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildia fusca. Dev Biol 220:285–295. doi: 10.1006/dbio.2000.9628 PubMedCrossRefGoogle Scholar
  32. Hooge M (2001) Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249:171–194PubMedCrossRefGoogle Scholar
  33. Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M (2002) The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool Scr 31:201–215CrossRefGoogle Scholar
  34. Jondelius U, Larsson K, Raikova OI (2004) Cleavage in Nemertoderma westbladi (Nemertodermatida) and its phylogenetic significance. Zoomorphology 123:221–225CrossRefGoogle Scholar
  35. Jondelius U, Wallberg A, Hooge M, Raikova OI (2011) How the worm got its pharynx: phylogeny, classification, and Bayesian assessment of character evolution in acoela. Syst Biol 60:845–871PubMedCrossRefGoogle Scholar
  36. Ladurner P, Rieger R (2000) Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375. doi: 10.1006/dbio.2000.9715 PubMedCrossRefGoogle Scholar
  37. Meyer-Wachsmuth I, Raikova OI, Jondelius U (2013) The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertoderma, Acoelomorpha). Zoomorphology 132:239–252CrossRefGoogle Scholar
  38. Moreno E, Nadal M, Baguñà J, Martínez P (2009) Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis. Evol Dev 11:574–581. doi: 10.1111/j.1525-142X.2009.00363.x PubMedCrossRefGoogle Scholar
  39. Moreno E, De Mulder K, Salvenmoser W, Ladurner P, Martinez P (2010) Inferring the ancestral function of the posterior Hox gene within the bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evol Dev 12:258–266. doi: 10.1111/j.1525-142X.2010.00411.x PubMedCrossRefGoogle Scholar
  40. Moreno E, Permanyer J, Martinez P (2011) The origin of patterning systems in bilateria-insights from the Hox and ParaHox genes in Acoelomorpha. Genomics Proteomics Bioinforma 9:65–76. doi: 10.1016/S1672-0229(11)60010-7 CrossRefGoogle Scholar
  41. Nakano H, Lundin K, Bourlat SJ, Telford MJ, Funch P, Nyengaard JR, Obst M, Thorndyke MC (2013) Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha. Nat Commun 4:1537. doi: 10.1038/ncomms2556 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Paps J, Baguña J, Riutort M (2009) Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Mol Biol Evol 26:2397–2406. doi: 10.1093/molbev/msp150 PubMedCrossRefGoogle Scholar
  43. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258. doi: 10.1038/nature09676 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000) The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. Tissue Cell 32:358–365PubMedCrossRefGoogle Scholar
  45. Raikova OI, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004) Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology (Jena) 107:75–86. doi: 10.1016/j.zool.2003.12.002 CrossRefGoogle Scholar
  46. Ramachandra NB, Gates RD, Ladurner P, Jacobs DK, Hartenstein V (2002) Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Dev Genes Evol 212:55–69. doi: 10.1007/s00427-001-0207-y PubMedCrossRefGoogle Scholar
  47. Rieger R, Tyler S, Smith JPS, Rieger GE (1991) Platyhelminthes: turbellaria. In: Harrison FW, Bogitsch BJ (eds) Microscopic anatomy of invertebrates. Wiley, New York, pp 7–140Google Scholar
  48. Ruiz-Trillo I, Riutort M, Littlewood DTJ, Herniou EA, Baguña J (1999) Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919–1923PubMedCrossRefGoogle Scholar
  49. Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñá J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci U S A 99:11246–11251. doi: 10.1073/pnas.172390199 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2:e153. doi: 10.1371/journal.pone.0000153 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Semmler H, Bailly X, Wanninger A (2008) Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela). Front Zool 5:14. doi: 10.1186/1742-9994-5-14 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Semmler H, Chiodin M, Bailly X, Martinez P, Wanninger A (2010) Steps towards a centralized nervous system in basal bilaterians: insights from neurogenesis of the acoel Symsagittifera roscoffensis. Dev Growth Differ 52:701–713. doi: 10.1111/j.1440-169X.2010.01207.x PubMedCrossRefGoogle Scholar
  53. Sikes JM, Bely AE (2010) Making heads from tails: development of a reversed anterior-posterior axis during budding in an acoel. Dev Biol 338:86–97. doi: 10.1016/j.ydbio.2009.10.033 PubMedCrossRefGoogle Scholar
  54. Smith J, Tyler S (1985) The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot? In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Calderon Press, Oxford, pp 123–142Google Scholar
  55. Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol 24:1107–1113. doi: 10.1016/j.cub.2014.03.042 PubMedCrossRefGoogle Scholar
  56. Sterrer W (1998) New and known nemertodermatida (Platyhelminthes-Acoelomorpha) – a revision. Belg J Zool 128:55–92Google Scholar
  57. Tyler S (2001) The early worm: origins and relationships of the lower flatworms. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis Ltd., London, pp 3–12Google Scholar
  58. Wallberg A, Curini-Galletti M, Ahmadzadeh A, Jondelius U (2007) Dismissal of acoelomorpha: acoela and nemertodermatida are separate early bilaterian clades. Zool Scr 36:509–523CrossRefGoogle Scholar
  59. Westblad E (1937) Die Turbellarien-Gattung Nemertoderma Steinböck. Acta Soc pro Fauna et Flora Fenn 60:45–89Google Scholar
  60. Westblad E (1949) On Meara stichopi (Bock) Westblad, a new representative of Turbellaria archoophora. Arkiv Zoologi 1:43–57Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Sars International Centre for Marine Molecular BiologyUniversity of BergenBergenNorway

Personalised recommendations