Ctenophores produce exquisite embryological material for both descriptive and experimental manipulation (e.g., Martindale and Henry 1997). The fact that they are free-spawned and optically clear and undergo a rapid and highly stereotyped cleavage program has established them a highly studied preparation, particularly in the “golden era” of experimental embryology (circa the end of the nineteenth century).


Apical Organ Metachronal Wave Aboral Pole Adjacent Quadrant Asymmetric Segregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alié A, Leclère L, Jager M, Dayraud C, Chang P, Le Guyader H, Quéinnec E, Manuel M (2011) Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of “germline genes” with stemness. Dev Biol 350(1):183–197PubMedCrossRefGoogle Scholar
  2. Brusca RC, Brusca GJ (1990) The invertebrates. Sinauer Ass, SunderlandGoogle Scholar
  3. Carré D, Sardet C, Rouvière C (1990) Fertilization in ctenophores. In: Dale B (ed) Mechanism of fertilization, vol 45, NATO ASI series, Series H. Springer, Berlin, pp 626–636Google Scholar
  4. Carré D, Rouvière C, Sardet C (1991) In Vitro fertilization in ctenophores: sperm entry, mitosis, and the establishment of bilateral symmetry in Beroe ovata. Dev Biol 147:381–391PubMedCrossRefGoogle Scholar
  5. Chun C (1880) Die Ctenophoren des Golfes von Neapel. Fauna Flora Golfes von Neapel 1:1–311Google Scholar
  6. Chun C (1892) Die Dissogonie, eine neue Form der geschlechtlichen Zeugung. Festsch. Zum siebzigsten Geburtstage Rudorf Leuckarts 1:77–108Google Scholar
  7. Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15(3):418–432CrossRefGoogle Scholar
  8. Coonfield B (1936) Regeneration in Mnemiopsis leidyi Agassiz. Biol Bull 71:421–428CrossRefGoogle Scholar
  9. Coonfield B (1937) The regeneration of plate rows in Mnemiopsis leidyi Agassiz. Proc Natl Acad Sci 23:152–158PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dawydoff C (1938) Multiplication asexuëe, par lacération, chez les Ctenoplana. C R Acad Sci Paris 206:127–128Google Scholar
  11. Driesch H, Morgan TH (1895) Zur Analysis der ersten Entwickelungsstadien des Ctenophoreneies. Arch Entwicklungsmech Organ 2:204–224CrossRefGoogle Scholar
  12. Dunlap-Pinaka H (1974) Ctenophora. In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates, vol 1, Acoelomate and pseudocoelomate metazoans. Academic, New York, pp 201–265Google Scholar
  13. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Schmidt-Rhaesa A, Haddock SHDG, Okusu A, Kristensen R, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi: 10.1038/nature06614 PubMedCrossRefGoogle Scholar
  14. Farfaglio G (1963) Experiments on the formation of the ciliated plates in ctenophores. Acta Embryol Morphol Exp 6:191–203Google Scholar
  15. Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Deep origins for bilateral symmetry: hox and Dpp expression in a sea anemone. Science 304:1335–1337Google Scholar
  16. Fischer A, Pang K, Henry JQ, Martindale MQ (2014) A cleavage clock regulates features of lineage-specific differentiation in the development in a basal branching metazoan, the ctenophore Mnemiopsis leidyi. Evodevo 5:4. doi: 10.1186/2041-9139-5-4 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Freeman G (1967) Studies on regeneration in the creeping ctenophore, Vallicula multiformis. J Morphol 123:71–84PubMedCrossRefGoogle Scholar
  18. Freeman G (1976a) The role of cleavage in the localization of developmental potential in the ctenophore Mnemiopsis leidyi. Dev Biol 49:143–177PubMedCrossRefGoogle Scholar
  19. Freeman G (1976b) The effects of altering the position of cleavage planes on the process of localization of developmental potential in ctenophores. Dev Biol 51:332–337PubMedCrossRefGoogle Scholar
  20. Freeman G (1977) The establishment of the oral-aboral axis in the ctenophore embryo. J Embryol Exp Morphol 42:237–260Google Scholar
  21. Freeman G (2006) Oocyte and egg organization in the patellogastropod Lottia and its bearing on axial specification during early embryogenesis. Dev Biol 295:141–155PubMedCrossRefGoogle Scholar
  22. Freeman G, Reynolds GT (1973) The development of bioluminescence in the ctenophore Mnemiopsis leidyi. Dev Biol 31:61–100PubMedCrossRefGoogle Scholar
  23. French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193:969–981PubMedCrossRefGoogle Scholar
  24. Garbe A (1901) Untersuchungen über die Entstehung der Geschlechtsorgane bei den Ctenophoren. Z Wiss Zool 69:472–491Google Scholar
  25. Greve W (1970) Cultivation experiments on North Sea ctenophores. Helgoländer Meeresun 20:304–317CrossRefGoogle Scholar
  26. Harbison GR, Miller RL (1986) Not all ctenophores are hermaphrodites. Studies on the systematics, distribution, sexuality and development of two species of Ocyropsis. Mar Biol 90:413–424CrossRefGoogle Scholar
  27. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse G, Edgecombe G, Martínez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Muller WEG, Seaver E, Martindale MQ, Giribet G, Dunn CW (2009) Rooting the bilaterian tree with scalable phylogenomic and supercomputing tools. Proc R Soc B 276:4261–4270. doi: 10.1098/rspb.2009.0896 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Henry JQ, Martindale MQ (2000) Regulation and regeneration in the ctenophore Mnemiopsis. Dev Biol 227:720–733PubMedCrossRefGoogle Scholar
  29. Henry JQ, Martindale MQ (2001) Multiple inductive signals are involved in the development of the ctenophore Mnemiopsis leidyi. Dev Biol 238:40–46PubMedCrossRefGoogle Scholar
  30. Hernandez-Nicaise M-L (1973) The nervous system of ctenophores. III. Ultrastructure of synapses. J Neurocytol 2:249–263PubMedCrossRefGoogle Scholar
  31. Hernandez-Nicaise M-L (1991) Ctenophora. In: microscopic anatomy of invertebrates, vol 2, Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York, pp 359–418Google Scholar
  32. Hirota J (1972) Laboratory culture and metabolism of the planktonic ctenophore, Pleurobrachia bachei A. Agassiz. In: Takenouti AY (ed) Biological oceanography of the northern North Pacific Island. Idemitsu Shoten, Tokyo, pp 465–484Google Scholar
  33. Horridge GA (1974) Recent studies on the Ctenophora. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology. Academic, New York, pp 439–468Google Scholar
  34. Houliston E, Carré D, Johnston JA, Sardet C (1993) Axis establishment and microtubule-mediated waves prior to first cleavage in Beroe ovata. Development 117:75–87PubMedGoogle Scholar
  35. Hyman LH (1940) The invertebrates. Protozoa through Ctenophora. McGraw Hill, New York, pp 662–695Google Scholar
  36. Jager M, Quéinnec E, Chiori R, Le Guyader H, Manuel M (2008) Insights into the early evolution of SOX genes from expression analyses in a ctenophore. J Exp Zool B Mol Dev Evol 310(8):650–667PubMedCrossRefGoogle Scholar
  37. Jaspers C, Haraldsson M, Bolte S, Reusch TB, Thygesen UH, Kiørboe T (2012) Ctenophore population recruits entirely through larval reproduction in the central Baltic Sea. Biol Lett 8:809. doi: 10.1098/rsbl.2012.0163 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lang A (1884) Die Polycladen (Seeplanarien) des Golfes von Neapel und der angrenzenden Meerabschnitte. Fauna Flora Golf Neapel 11:1–688Google Scholar
  39. Martindale MQ (1986) The expression and maintenance of adult symmetry properties in the ctenophore, Mnemiopsis mccradyi. Dev Biol 118:556–576PubMedCrossRefGoogle Scholar
  40. Martindale MQ (1987) Larval reproduction in the ctenophore, Mnemiopsis mccradyi (order Lobata). Mar Biol 94:409–414CrossRefGoogle Scholar
  41. Martindale MQ (2001) Chapter 4. Phylum Ctenophora. In: Young CM, Sewell MA, Rice ME (eds) The atlas of marine invertebrate larvae. Academic, San Diego, pp 109–122Google Scholar
  42. Martindale MQ, Henry JQ (1995) Diagonal development: establishment of the anal axis in the ctenophore Mnemiopsis leidyi. Biol Bull 189:190–192Google Scholar
  43. Martindale MQ, Henry JQ (1995) Modifications of cell fate specification in equal-cleaving nemertean embryos: alternate patterns of spiralian development. Dev 121:3175–3185Google Scholar
  44. Martindale MQ, Henry JQ (1996) Development and regeneration of comb plates in the ctenophore Mnemiopsis leidyi. Biol Bull 191:290–292Google Scholar
  45. Martindale MQ, Henry JQ (1997a) The Ctenophora. In: Gilbert S, Raunio A (eds) Embryology, the construction of life. Sinauer Press, Sunderland, pp 87–111Google Scholar
  46. Martindale MQ, Henry JQ (1997b) Experimental analysis of tentacle formation in the ctenophore Mnemiopsis leidyi. Biol Bull 193:245–247Google Scholar
  47. Martindale MQ, Henry JQ (1997c) Reassessing embryogenesis in the Ctenophora: the inductive role of e1 micromeres in organizing ctene row formation in the “mosaic” embryo, Mnemiopsis leidyi. Dev 124:1999–2006Google Scholar
  48. Martindale MQ, Henry JQ (1999) Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev Biol 214:243–257PubMedCrossRefGoogle Scholar
  49. Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD (2012) MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics 13:714PubMedCentralPubMedCrossRefGoogle Scholar
  50. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS et al (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature 510:109–114PubMedCentralPubMedCrossRefGoogle Scholar
  51. Morris SC, Simonetta AM (eds) (1991) The early evolution of metazoa and the significance of problematic taxa. Cambridge University Press, New York, p 308Google Scholar
  52. Mortensen T (1912a) Ctenophora. Danish Ingolf-Exped, vol 5(2), H. Hagerup, CopenhagenGoogle Scholar
  53. Mortensen T (1912b) On regeneration in ctenophores. Dan Naturhist For Kobenhavn Vidensk Medd 66:45–51Google Scholar
  54. Nielsen C (1995) Animal evolution: interrelationships of the living phyla. Oxford University Press, OxfordGoogle Scholar
  55. Nielsen C, Scharff N, Eibye‐Jacobsen D (1996) Cladistic analyses of the animal kingdom. Biol J Linn Soc 57(4):385CrossRefGoogle Scholar
  56. Ortolani G (1963) Origine dell’organo apicale e dei derivati mesodermici nello sviluppo embrionale di Ctenofori. Acta Embryol Morphol Exp 7:191–200Google Scholar
  57. Pang K, Martindale MQ (2008a) Ctenophores. Curr Biol 18(24):R1119–R1120PubMedCrossRefGoogle Scholar
  58. Pang K, Martindale MQ (2008b) Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Dev Genes Evol 218:307–319PubMedCrossRefGoogle Scholar
  59. Pang K, Martindale MQ (2009) Comb jellies (Ctenophora): a model for basal metazoan evolution and development. In: Crotty DA, Gann A (eds) Emerging model organisms, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 167–195Google Scholar
  60. Pang K, Ryan JF, Baxevanis AD, Martindale MQ (2010) Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. Evodevo 1:10PubMedCentralPubMedCrossRefGoogle Scholar
  61. Pang K, Ryan JF, Baxevanis AD, Martindale MQ (2011) Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsis leidyi. PLoS One 6(9):e24152. doi: 10.1371/journal.pone.0024152 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19(8):706–712PubMedCrossRefGoogle Scholar
  63. Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, Wiens M, Alie A, Morgenstern B, Manuel M, Worheide G (2010) Improved phylogenomic taxon sampling noticeably affects non-bilaterian relationships. Mol Biol Evol 27(9):1983–1987PubMedCentralPubMedCrossRefGoogle Scholar
  64. Podar M, Haddock SHD, Sogin ML, Harbison GR (2001) A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol Phylogenet Evol 21:218–230PubMedCrossRefGoogle Scholar
  65. Putnum N, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev I, Sequencing Team JGI, Steele R, Finnerty JR, Technau U, Martindale MQ, Rokhsar D (2007) Sea anemone genome reveals the gene repertoire and genomic organization of the eumetazoan ancestor. Science 317:86–94. doi: 10.1126/science.1139158 CrossRefGoogle Scholar
  66. Reeve MR, Walter MA (1978) Nutritional ecology of ctenophores-a review of recent research. New York. Adv Mar Biol 15:249–287Google Scholar
  67. Reitzel AM, Pang K, Ryan JF, Mullikin JC, Martindale MQ, Baxevanis AD, Tarrant A (2011) Nuclear receptors from the ctenophore Mnemiopsis leidyi lack a zinc-finger DNA-binding domain: lineage-specific loss or ancestral condition in the emergence of the nuclear receptor superfamily? Evodevo 2:3PubMedCentralPubMedCrossRefGoogle Scholar
  68. Reitzel A, Pang K, Martindale MQ (2015) The expression of vasa, nanos, and piwi in the ctenophore, Mnmiopsis leidyi. In PrepGoogle Scholar
  69. Reusch TBH, Bolte S, Saprwel M, Moss A, Javidpour J (2010) Microsatellites reveal origin and genetic diversity of Eurasian invasions by one of the world’s most notorious invader, Mnemiopsis leidyi (Ctenophora). Mol Ecol 19:2690–2699PubMedCrossRefGoogle Scholar
  70. Reverberi G, Ortolani G (1963) On the origin of the ciliated plates and mesoderm in the ctenophore. Acta Embryol Morphol Exp 6:175–199Google Scholar
  71. Ryan JF, Pang K, NIH Intramural Sequencing Center, Mullikin JC, Martindale MQ, Baxevanis AD (2010) The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. Evodevo 1:9PubMedCentralPubMedCrossRefGoogle Scholar
  72. Ryan JF, Pang K, Schnitzler CE, Nguyen A, Moreland RT, Simmons DK, Koch BJ, Havlak P, NISC Comparative Sequencing Program, Smith SA, Putnam N, Dunn CW, Wolfsberg TG, JE, Mullikin JC, Martindale MQ, Baxevanis AD (2013) Total genome sequencing of the genome of the ctenophore Mnemiopsis leidyi using new generation approaches. Science 342, doi: 10.1126/science.1242592
  73. Schnitzler C, Pang K, Powers M, Reitzel AM, Ryan JF, Simmons D, Park M, Gupta J, Brooks SY, Blakesley RW, Haddock SH, Mullikin JC, Martindale MQ, Baxevanis AD (2012) Bioluminescence and the evolution of photoproteins: a ctenophore genome lights the way. BMC Biol 10:107. doi: 10.1186/1741-7007-10-107 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Schnitzler CE, Simmons DK, Pang K, Martindale MQ, Baxevanis AD (2014) Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. Evodevo 5:15. doi: 10.1186/2041-9139-5-15 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Simmons DK, Pang K, Martindale MQ (2012) Lim homeobox genes in the ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification. Evodevo 3:2PubMedCentralPubMedCrossRefGoogle Scholar
  76. Spek J (1926) Über gesetzmässige Substanzverteilung bei der Furchung des Ctenophoreneis und ihre Beziehung du dem Determinationsproblem. Arch Entwicklungsmech Organismen 107:54–73CrossRefGoogle Scholar
  77. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960. doi: 10.1038/nature07191 PubMedCrossRefGoogle Scholar
  78. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726PubMedCentralPubMedCrossRefGoogle Scholar
  79. Stanlaw KA, Reeve MR, Walter MA (1981) Growth, food, and vulnerability to damage of the ctenophore Mnemiopsis mccradyi in its early life history stages. Limnol Oceanogr 26:224–234CrossRefGoogle Scholar
  80. Tamm SL (1982) Ctenophora. In: Shelton GG (ed) Electrical conduction and behavior in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 266–358Google Scholar
  81. Tamm SL (2012a) Patterns of comb row development in young and adult stages of the ctenophores Mnemiopsis leidyi and Pleurobrachia pileus. J Morphol 273(9):1050–1063PubMedCrossRefGoogle Scholar
  82. Tamm SL (2012b) Regeneration of ciliary comb plates in the ctenophore Mnemiopsis leidyi. J Morphol 273(1):109–120PubMedCrossRefGoogle Scholar
  83. Tamm SL (2014) Cilia and the life of ctenophores. Invertebr Biol 133:1–46CrossRefGoogle Scholar
  84. Tanaka H (1931) Reorganization in regenerating pieces of Coeloplana. Kyoto Imp Univ Coll Sci Ser B 7:223–246Google Scholar
  85. Wallberg A, Thollesson M, Farris JS, Jondelius U (2004) The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20(6):558CrossRefGoogle Scholar
  86. Yamada A, Martindale MQ (2002) The ctenophore Brain Factor-1 forkhead gene ortholog (ctenoBF-1) is expressed in the presumptive oral region and feeding apparatus: implications for axial organization in the Metazoa. Dev Genes Evol 212:338–348PubMedCrossRefGoogle Scholar
  87. Yamada A, Pang K, Martindale MQ, Tochinai S (2007) Surprisingly complex T-box gene complement in diploblastic metazoans. Evol Dev 9:220–230PubMedCrossRefGoogle Scholar
  88. Yamada A, Martindale MQ, Fukui A, Tochinai S (2010) Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora. Dev Biol 339:212–222PubMedCrossRefGoogle Scholar
  89. Yatsu N (1911) Observation and experiments on the ctenophore egg. II. Notes on the early cleavage stages and experiments on cleavage. Ann Zool Jpn 7:333–346Google Scholar
  90. Yatsu N (1912) Observation and experiments on the ctenophore egg. III. Experiments on germinal localization of the egg Beroe ovata. Ann Zool Jpn 8:5–13Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Whitney Lab for Marine BioscienceUniversity of FloridaSt. AugustineUSA
  2. 2.Department of Cell and Developmental BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations