Myxozoa are endoparasitic animals exhibiting complex life cycles that in most known cases involve two hosts: a vertebrate (usually fish, but also rarely amphibian, avian, or mammalian) intermediate host and an invertebrate, mostly annelid or freshwater ectoproct (bryozoan), definitive host. Direct fish-to-fish transmission has been demonstrated in only one species. About 2,200 species are known, but only about 100 life cycles have been completely resolved. Myxozoans occur in both marine and freshwater habitats; only few exclusively terrestrial life cycles are suspected. For general reviews on Myxozoa, see, e.g. Kent et al. (2001), Canning and Okamura (2004), Feist and Longshaw (2006), and Lom and Dyková (2006).


Synaptonemal Complex Polar Capsule Complex Life Cycle Sister Group Relationship Compact Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alama-Bermejo G, Bron JE, Raga JA, Holzer AS (2012) 3D morphology, ultrastructure and development of Ceratomyxa puntazzi stages: first insights into the mechanisms of motility and budding in the Myxozoa. PLoS One 7:e32679PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alvarez-Pellitero P, Molnár K, Sitjà-Bobadilla A, Székely C (2002) Comparative ultrastructure of the actinosporean stages of Myxobolus bramae and M. pseudodispar (Myxozoa). Parasitol Res 88:198–207PubMedCrossRefGoogle Scholar
  3. Bartholomew J, Whipple M, Stevens D, Fryer JL (1997) The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. J Parasitol 83:859–868PubMedCrossRefGoogle Scholar
  4. Bartošová P, Fiala I (2011) Molecular evidence for the existence of cryptic species assemblages of several myxosporeans (Myxozoa). Parasitol Res 108:573–583PubMedCrossRefGoogle Scholar
  5. Bartošová P, Fiala I, Jirků M, Cinková M, Caffara M, Fioravanti ML, Atkinson SD, Bartholomew JL, Holzer AS (2013) Sphaerospora sensu stricto: taxonomy, diversity and evolution of a unique lineage of myxosporeans (Myxozoa). Mol Phylogenet Evol 68:93–105PubMedCrossRefGoogle Scholar
  6. Canning EU, Okamura B (2004) Biodiversity and evolution of the Myxozoa. Adv Parasitol 56:43–131PubMedCrossRefGoogle Scholar
  7. Canning EU, Okamura B, Curry A (1996) Development of a myxozoan parasite Tetracapsula bryozoides gen. n. et sp. n. in Cristatella mucedo (Bryozoa: Phylactolaemata). Folia Parasitol (Praha) 43:259–261Google Scholar
  8. Canning EU, Curry A, Feist SW, Longshaw M, Okamura B (2000) A new class and order of myxozoans to accommodate parasites of bryozoans with ultrastructural observations on Tetracapsula bryosalmonae (PKX organism). J Eukaryot Microbiol 47:456–468PubMedCrossRefGoogle Scholar
  9. Canning EU, Curry A, Hill SLL, Okamura B (2007) Ultrastructure of Buddenbrockia allmani n. sp. (Myxozoa, Malacosporea), a parasite of Lophopus crystallinus (Bryozoa, Phylactolaemata). J Eukaryot Microbiol 54:247–262PubMedCrossRefGoogle Scholar
  10. Canning EU, Curry A, Okamura B (2008) Early development of the myxozoan Buddenbrockia plumatellae in the bryozoans Hyalinella punctata and Plumatella fungosa, with comments on taxonomy and systematics of the Myxozoa. Folia Parasitol (Praha) 45:241–255CrossRefGoogle Scholar
  11. Diamant A (1997) Fish-to-fish transmission of a marine myxosporean. Dis Aquat Organ 30:99–105CrossRefGoogle Scholar
  12. El-Mansy A, Molnár K, Székely C (1998) Development of Myxobolus portucalensis Saraiva & Molnár, 1990 (Myxosporea: Myxobolidae) in the oligochaete Tubifex tubifex (Müller). Syst Parasitol 41:95–103CrossRefGoogle Scholar
  13. El-Matbouli M, Hoffmann RW (1998) Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in Tubifex tubifex. Int J Parasitol 28:195–217PubMedCrossRefGoogle Scholar
  14. Eszterbauer E, Kallert DM, Grabner D, El-Matbouli M (2009) Differentially expressed parasite genes involved in host recognition and invasion of the triactinomyxon stage of Myxobolus cerebralis (Myxozoa). Parasitology 136:367–377PubMedCrossRefGoogle Scholar
  15. Evans N, Lindner A, Raikova EV, Collins AG, Cartwright P (2008) Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the phylum Cnidaria. BMC Evol Biol 8:139PubMedCentralPubMedCrossRefGoogle Scholar
  16. Evans NM, Holder MT, Barbeitos MS, Okamura B, Cartwright P (2010) The phylogenetic position of Myxozoa: exploring conflicting signals in phylogenomic and ribosomal data sets. Mol Biol Evol 27:2733–2746. doi: 10.1093/molbev/msq159 PubMedCrossRefGoogle Scholar
  17. Feist SW, Longshaw M (2006) Phylum Myxozoa. In: Woo PTK (ed) Fish diseases and disorders, vol 1, 2nd edn, Protozoan and metazoan infections. Cab Intl, Wallingford, pp 230–296Google Scholar
  18. Fiala I (2006) The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. Int J Parasitol 36:1521–1534PubMedCrossRefGoogle Scholar
  19. Fiala I, Bartosová P (2010) History of myxozoan character evolution on the basis of rDNA and EF-2 data. BMC Evol Biol 10:228PubMedCentralPubMedCrossRefGoogle Scholar
  20. Grabner D, El-Matbouli M (2010) Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) portal of entry into the fish host. Dis Aquat Organ 90:197–206PubMedCrossRefGoogle Scholar
  21. Gruhl A, Okamura B (2012) Development and myogenesis of the vermiform Buddenbrockia (Myxozoa) and implications for cnidarian body plan evolution. EvoDevo 3:10PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hallett SL, Lester RJ (1999) Actinosporeans (Myxozoa) with four developing spores within a pansporocyst: Tetraspora discoidea n.g. n.sp. and Tetraspora rotundum n.sp. Int J Parasitol 29:419–427PubMedCrossRefGoogle Scholar
  23. Hallett SL, O’Donoghue PJ, Lester RJG (1998) Structure and development of a marine actinosporean, Sphaeractinomyxon ersei n. sp. (Myxozoa). J Eukaryot Microbiol 45:142–150CrossRefGoogle Scholar
  24. Hartikainen H, Johnes P, Moncrieff C, Okamura B (2009) Bryozoan populations reflect nutrient enrichment and productivity gradients in rivers. Freshw Biol 54:2320–2334CrossRefGoogle Scholar
  25. Hartikainen H, Gruhl A, Okamura B (2014) Diversification and repeated morphological transitions in endoparasitic cnidarians (Myxozoa: Malacosporea). Mol Phylogenet Evol 76:261–269PubMedCrossRefGoogle Scholar
  26. Holland JW, Okamura B, Hartikainen H, Secombes CJ (2011) A novel minicollagen gene links cnidarians and myxozoans. Proc Biol Sci 278:546–553PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kent ML, Hedrick R (1986) Development of the PKX myxosporean in rainbow trout Salmo gairdneri. Dis Aquat Organ 1:169–182CrossRefGoogle Scholar
  28. Kent ML, Margolis L, Corliss JO (1994) The demise of a class of protists: taxonomic and nomenclatural revisions proposed for the protist phylum Myxozoa Grassé, 1970. Can J Zool 72:932–937CrossRefGoogle Scholar
  29. Kent ML, Andree KB, Bartholomew JL, El-Matbouli M, Desser SS, Devlin RH, Feist SW, Hedrick RP, Hoffmann RW, Khattra J, Hallett SL, Lester RJG, Longshaw M, Palenzeula O, Siddall ME, Xiao CX (2001) Recent advances in our knowledge of the Myxozoa. J Eukaryot Microbiol 48:395–413PubMedCrossRefGoogle Scholar
  30. Kumar G, Abd-Elfattah A, Soliman H, El-Matbouli M (2013) Establishment of medium for laboratory cultivation and maintenance of Fredericella sultana for in vivo experiments with Tetracapsuloides bryosalmonae (Myxozoa). J Fish Dis 36:81–88PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lom J, Dyková I (1992) Fine structure of Triactinomyxon early stages and sporogony: myxosporean and actinosporean features compared. J Eukaryot Microbiol 39:16–27Google Scholar
  32. Lom J, Dyková I (1997) Ultrastructural features of the actinosporean phase of Myxosporea (Phylum Myxozoa): a comparative study. Acta Protozool 36:83–103Google Scholar
  33. Lom J, Dyková I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol (Praha) 53:1–36CrossRefGoogle Scholar
  34. Lom J, Yokoyama H, Dykova I (1997) Comparative ultrastructure of Aurantiactinomyxon and Raabeia, actinosporean stages of myxozoan life cycles. Arch Protistenkd 148:173–189Google Scholar
  35. Markiw ME, Wolf K (1983) Myxosoma cerebralis (Myxozoa: Myxosporea) etiologic agent of salmonid whirling disease requires tubificid worm (Annelida: Oligochaeta) in its life cycle. J Protozool 30:561–564CrossRefGoogle Scholar
  36. Marques A (1986) La sexualite chez les Actinomyxidies: etude chez Neoactinomyxon eiseniellae (Ormieres et Frezil, 1969), Actinosporea, Noble, 1980; Myxozoa, Grasse, 1970. Ann Sci Nat Zool Paris Be ser 8:81–101Google Scholar
  37. Marton S, Eszterbauer E (2012) The susceptibility of diverse species of cultured oligochaetes to the fish parasite Myxobolus pseudodispar Gorbunova (Myxozoa). J Fish Dis 35:303–314CrossRefGoogle Scholar
  38. McGurk C, Morris DJ, Adams A (2006) Sequential development of Buddenbrockia plumatellae (Myxozoa: Malacosporea) within Plumatella repens (Bryozoa: Phylactolaemata). Dis Aquat Organ 73:159–169PubMedCrossRefGoogle Scholar
  39. Meaders MD, Hendrickson GL (2009) Chronological development of Ceratomyxa shasta in the polychaete host, Manayunkia speciosa. J Parasitol 95:1CrossRefGoogle Scholar
  40. Morris DJ (2010) Cell formation by myxozoan species is not explained by dogma. Proc Biol Sci 277:2565–2570PubMedCentralPubMedCrossRefGoogle Scholar
  41. Morris D (2012a) Towards an in vitro culture method for the rainbow trout pathogen Tetracapsuloides bryosalmonae. J Fish Dis 35:941–944PubMedCrossRefGoogle Scholar
  42. Morris DJ (2012b) A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int J Parasitol 42:829–840PubMedCrossRefGoogle Scholar
  43. Morris DJ, Adams A (2007a) Sacculogenesis of Buddenbrockia plumatellae (Myxozoa) within the invertebrate host Plumatella repens (Bryozoa) with comments on the evolutionary relationships of the Myxozoa. Int J Parasitol 37:1163–1171PubMedCrossRefGoogle Scholar
  44. Morris DJ, Adams A (2007b) Sacculogenesis and sporogony of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) within the bryozoan host Fredericella sultana (Bryozoa: Phylactolaemata). Parasitol Res 100:983–992PubMedCrossRefGoogle Scholar
  45. Morris DJ, Adams A (2008) Sporogony of Tetracapsuloides bryosalmonae in the brown trout Salmo trutta and the role of the tertiary cell during the vertebrate phase of myxozoan life cycles. Parasitology 135:1075–1092PubMedCrossRefGoogle Scholar
  46. Nesnidal MP, Helmkampf M, Bruchhaus I, El-Matbouli M, Hausdorf B (2013) Agent of whirling disease meets orphan worm: phylogenomic analyses firmly place Myxozoa in Cnidaria. PLoS One 8:e54576PubMedCentralPubMedCrossRefGoogle Scholar
  47. Okamura B, Curry A, Wood TS, Canning EU (2002) Ultrastructure of Buddenbrockia identifies it as a myxozoan and verifies the bilaterian origin of the Myxozoa. Parasitology 124:215–223PubMedCrossRefGoogle Scholar
  48. Okamura B, Gruhl A, Bartholomew J (eds) (2015) Myxozoan evolution, ecology and development. Springer International Publishing. ISBN 978-3-319-14752-9Google Scholar
  49. Oumouna M, Hallett SL, Hoffmann RW, El-Matbouli M (2002) Early developmental stages of two actinosporeans, Raabeia and Aurantiactinomyxon (Myxozoa), as detected by light and electron microscopy. J Invertebr Pathol 79:17–26PubMedCrossRefGoogle Scholar
  50. Özer A, Wootten R (2001) Ultrastructural observations on the development of some actinosporean types within their oligochaete hosts. Turk J Zool 25:199–216Google Scholar
  51. Rangel LF, Santos MJ, Cech G, Székely C (2009) Morphology, molecular data, and development of Zschokkella mugilis (Myxosporea, Bivalvulida) in a polychaete alternate host, Nereis diversicolor. J Parasitol 95:561–569PubMedCrossRefGoogle Scholar
  52. Siddall ME, Martin DS, Bridge D, Desser SS, Cone DK (1995) The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic Cnidaria. J Parasitol 81:961–967PubMedCrossRefGoogle Scholar
  53. Tops S, Okamura B (2003) Infection of bryozoans by Tetracapsuloides bryosalmonae at sites endemic for salmonid proliferative kidney disease. Dis Aquat Organ 57:221–226PubMedCrossRefGoogle Scholar
  54. Tops S, Baxa DV, McDowell TS, Hedrick RP, Okamura B (2004) Evaluation of malacosporean life cycles through transmission studies. Dis Aquat Organ 60:109–121PubMedCrossRefGoogle Scholar
  55. Weill R (1938) L’interpretation des Cnidosporidies et la valeur taxonomique de leur cnidome. Leur cycle comparé à la phase larvaire des Narcomeduses cuninides. Trav Stn Zool Wimereaux 13:727–744Google Scholar
  56. Wolf K, Markiw ME (1984) Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of invertebrate and vertebrate hosts. Science 225:1449–1452PubMedCrossRefGoogle Scholar
  57. Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, Liu Y, Zhang J, Feng J, Wang M, Wang L, Yao B (2014) The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol Evol 6:3182–3198Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Natural History MuseumLondonUK

Personalised recommendations