Advertisement

Cnidaria

  • Ulrich Technau
  • Grigory Genikhovich
  • Johanna E. M. Kraus

Abstract

Cnidaria is a large animal phylum comprising mostly marine, with few species that have adapted to freshwater environments. Molecular phylogenies place the Cnidaria as a sister group to the Bilateria. The sister group relationship between Cnidaria and Bilateria is very robust and puts this phylum in a strategic position for the understanding of the evolution of key bilaterian features, such as the third germ layer (the mesoderm), the central nervous system, and bilaterality. We will give a short historical account and then highlight recent advances in the field of evolution and development from a variety of cnidarian model systems.

Keywords

Nurse Cell Planar Cell Polarity Body Column Primary Polyp Planula Larva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the members of the Technau lab for continuous fruitful discussions. We especially thank Andy Aman for critically reading and correcting the manuscript. Also, we wish to acknowledge the Core Facility Cell Imaging and Ultrastructure Research for support in confocal imaging. Work in the Technau lab is supported by grants of the Austrian Science Fund FWF to UT and GG (P24858; P22618; P26962).

References

  1. Ambrosone A, Marchesano V, Tino A, Hobmayer B, Tortiglione C (2012) Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris. PLoS One 7(1):e30660PubMedCentralPubMedGoogle Scholar
  2. Augustin R, Franke A, Khalturin K, Kiko R, Siebert S, Hemmrich G, Bosch TC (2006) Dickkopf related genes are components of the positional value gradient in Hydra. Dev Biol 296(1):62–70PubMedGoogle Scholar
  3. Ball EE, Hayward DC, Reece-Hoyes JS, Hislop NR, Samuel G, Saint R, Harrison PL, Miller DJ (2002) Coral development: from classical embryology to molecular control. Int J Dev Biol 46(4):671–678PubMedGoogle Scholar
  4. Bielen H, Oberleitner S, Marcellini S, Gee L, Lemaire P, Bode HR, Rupp R, Technau U (2007) Divergent functions of two ancient Hydra brachyury paralogues suggest specific roles for their C-terminal domains in tissue fate induction. Development 134(23):4187–4197PubMedGoogle Scholar
  5. Bode HR (1992) Continuous conversion of neuron phenotype in Hydra. Trends Genet 8(8):279–284PubMedGoogle Scholar
  6. Bode PM, Bode HR (1980) Formation of pattern in regenerating tissue pieces of Hydra attenuata. I. Head-body proportion regulation. Dev Biol 78(2):484–496PubMedGoogle Scholar
  7. Bode HR, Heimfeld S, Chow MA, Huang LW (1987) Gland cells arise by differentiation from interstitial cells in Hydra attenuata. Dev Biol 122(2):577–585PubMedGoogle Scholar
  8. Bode PM, Awad TA, Koizumi O, Nakashima Y, Grimmelikhuijzen CJ, Bode HR (1988) Development of the two-part pattern during regeneration of the head in Hydra. Development 102(1):223–235PubMedGoogle Scholar
  9. Boehm AM, Khalturin K, Anton-Erxleben F, Hemmrich G, Klostermeier UC, Lopez-Quintero JA, Oberg HH, Puchert M, Rosenstiel P, Wittlieb J, Bosch TC (2012) FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc Natl Acad Sci U S A 109(48):19697–19702PubMedCentralPubMedGoogle Scholar
  10. Boelsterli U (1977) An electron microscopic study of early developmental stages, myogenesis, oogenesis, and cnidogenesis in the anthomedusa, Podocoryne carnea M. Sars. J Morphol 154:259–289PubMedGoogle Scholar
  11. Bosch TC (2012a) Understanding complex host-microbe interactions in Hydra. Gut Microbes 3(4):345–351PubMedCentralPubMedGoogle Scholar
  12. Bosch TC (2012b) What Hydra has to say about the role and origin of symbiotic interactions. Biol Bull 223(1):78–84PubMedGoogle Scholar
  13. Broun M, Bode HR (2002) Characterization of the head organizer in Hydra. Development 129(4):875–884PubMedGoogle Scholar
  14. Broun M, Gee L, Reinhardt B, Bode HR (2005) Formation of the head organizer in Hydra involves the canonical Wnt pathway. Development 132(12):2907–2916PubMedGoogle Scholar
  15. Browne E (1909) The production of new Hydrants by the insertion of small grafts. J Exp Zool 7:1–37Google Scholar
  16. Byrum CA, Martindale MQ (2004) Gastrulation in the Cnidaria and Ctenophora. In: Stern CD (ed) Gastrulation. From cells to embryos. Cold Spring Harbor Laboratory Press, New York, pp 33–50Google Scholar
  17. Campbell RD (1976) Elimination by Hydra interstitial and nerve cells by means of colchicine. J Cell Sci 21(1):1–13PubMedGoogle Scholar
  18. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PR, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Bottger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TC, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of Hydra. Nature 464(7288):592–596PubMedCentralPubMedGoogle Scholar
  19. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive Hydra head regeneration. Dev Cell 17(2):279–289PubMedGoogle Scholar
  20. Chourrout D, Delsuc F, Chourrout P, Edvardsen RB, Rentzsch F, Renfer E, Jensen MF, Zhu B, de Jong P, Steele RE, Technau U (2006) Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442(7103):684–687PubMedGoogle Scholar
  21. Collins, AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15: 418–432Google Scholar
  22. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan Phylogeny and Character Evolution Clarified by New Large and Small Subunit rDNA Data and an Assessment of the Utility of Phylogenetic Mixture Models. Syst Biol 55(1):97–115Google Scholar
  23. Darling JA, Reitzel AM, Finnerty JR (2004) Regional population structure of a widely introduced estuarine invertebrate: nematostella vectensis Stephenson in New England. Mol Ecol 13(10):2969–2981Google Scholar
  24. Darling JA, Reitzel AR, Burton PM, Mazza ME, Ryan JF, Sullivan JC, Finnerty JR (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays 27(2):211–221PubMedGoogle Scholar
  25. David CN (1973) A quantitative method for maceration of Hydra tissue. Wilhelm Roux Arch 171:259–268Google Scholar
  26. David CN (2012) Interstitial stem cells in Hydra: multipotency and decision-making. Int J Dev Biol 56(6–8):489–497PubMedGoogle Scholar
  27. David CN, Campbell RD (1972) Cell cycle kinetics and development of Hydra attenuata. I. Epithelial cells. J Cell Sci 11(2):557–568PubMedGoogle Scholar
  28. David CN, MacWilliams H (1978) Regulation of the self-renewal probability in Hydra stem cell clones. Proc Natl Acad Sci U S A 75(2):886–890PubMedCentralPubMedGoogle Scholar
  29. David CN, Murphy S (1977) Characterization of interstitial stem cells in Hydra by cloning. Dev Biol 58(2):372–383PubMedGoogle Scholar
  30. David CN, Plotnick I (1980) Distribution of interstitial stem cells in Hydra. Dev Biol 76(1):175–184PubMedGoogle Scholar
  31. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76(2):229–261PubMedCentralPubMedGoogle Scholar
  32. DuBuc TQ, Ryan JF, Shinzato C, Satoh N, Martindale MQ (2012) Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor. Integr Comp Biol 52(6):835–841PubMedGoogle Scholar
  33. Duffy DJ, Plickert G, Kuenzel T, Tilmann W, Frank U (2010) Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration. Development 137(18):3057–3066PubMedGoogle Scholar
  34. Elms P, Siggers P, Napper D, Greenfield A, Arkell R (2003) Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol 264(2):391–406PubMedGoogle Scholar
  35. Engel U, Ozbek S, Streitwolf-Engel R, Petri B, Lottspeich F, Holstein TW (2002) Nowa, a novel protein with minicollagen Cys-rich domains, is involved in nematocyst formation in Hydra. J Cell Sci 115(Pt 20):3923–3934PubMedGoogle Scholar
  36. Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: hox and dpp expression in a sea anemone. Science 304(5675):1335–1337Google Scholar
  37. Frank U, Leitz T, Muller WA (2001) The hydroid Hydractinia: a versatile, informative cnidarian representative. Bioessays 23(10):963–971PubMedGoogle Scholar
  38. Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TC (2012) MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci U S A 109(47):19374–19379PubMedCentralPubMedGoogle Scholar
  39. Franzenburg S, Walter J, Kunzel S, Wang J, Baines JF, Bosch TC, Fraune S (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A 110(39):E3730–E3738PubMedCentralPubMedGoogle Scholar
  40. Fraune S, Bosch TC (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci U S A 104(32):13146–13151PubMedCentralPubMedGoogle Scholar
  41. Freeman G (1981a) The cleavage initiation site establishes the posterior pole of the hydrozoan embryo. Roux’s Arch Dev Biol 190:123–125Google Scholar
  42. Freeman G (1981b) The role of polarity in the development of the hydrozoan planula larva. Roux’s Arch Dev Biol 190:168–184Google Scholar
  43. Freeman G, Miller RL (1982) Hydrozoan eggs can only be fertilized at the site of the polar body formation. Dev Biol 94:142–152PubMedGoogle Scholar
  44. Fritzenwanker JH, Technau U (2002) Induction of gametogenesis in the basal cnidarian Nematostella vectensis(Anthozoa). Dev Genes Evol 212(2):99–103PubMedGoogle Scholar
  45. Fritzenwanker JH, Saina M, Technau U (2004) Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275(2):389–402PubMedGoogle Scholar
  46. Fritzenwanker JH, Genikhovich G, Kraus Y, Technau U (2007) Early development and axis specification in the sea anemone Nematostella vectensis. Dev Biol 310(2):264–279PubMedGoogle Scholar
  47. Fuchs B, Wang W, Graspeuntner S, Li Y, Insua S, Herbst EM, Dirksen P, Bohm AM, Hemmrich G, Sommer F, Domazet-Loso T, Klostermeier UC, Anton-Erxleben F, Rosenstiel P, Bosch TC, Khalturin K (2014) Regulation of polyp-to-jellyfish transition in Aurelia aurita. Curr Biol 24(3):263–273PubMedGoogle Scholar
  48. Galliot B, Quiquand M (2011) A two-step process in the emergence of neurogenesis. Eur J Neurosci 34(6):847–862PubMedGoogle Scholar
  49. Galliot B, Quiquand M, Ghila L, de Rosa R, Miljkovic-Licina M, Chera S (2009) Origins of neurogenesis, a cnidarian view. Dev Biol 332(1):2–24PubMedGoogle Scholar
  50. Garm A, Coates MM, Gad R, Seymour J, Nilsson DE (2007a) The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(5):547–557PubMedGoogle Scholar
  51. Garm A, O’Connor M, Parkefelt L, Nilsson DE (2007b) Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J Exp Biol 210(Pt 20):3616–3623PubMedGoogle Scholar
  52. Garm A, Andersson F, Nilsson DE (2008) Unique structure and optics of the lesser eyes of the box jellyfish Tripedalia cystophora. Vision Res 48(8):1061–1073PubMedGoogle Scholar
  53. Garm A, Oskarsson M, Nilsson DE (2011) Box jellyfish use terrestrial visual cues for navigation. Curr Biol 21(9):798–803PubMedGoogle Scholar
  54. Garm A, Bielecki J, Petie R, Nilsson DE (2012) Opposite patterns of diurnal activity in the box jellyfish Tripedalia cystophora and Copula sivickisi. Biol Bull 222(1):35–45PubMedGoogle Scholar
  55. Gauchat D, Kreger S, Holstein T, Galliot B (1998) prdl-a, a gene marker for Hydra apical differentiation related to triploblastic paired-like head-specific genes. Development 125(9):1637–1645PubMedGoogle Scholar
  56. Gauchat D, Escriva H, Miljkovic-Licina M, Chera S, Langlois MC, Begue A, Laudet V, Galliot B (2004) The orphan COUP-TF nuclear receptors are markers for neurogenesis from cnidarians to vertebrates. Dev Biol 275(1):104–123PubMedGoogle Scholar
  57. Gee L, Hartig J, Law L, Wittlieb J, Khalturin K, Bosch TC, Bode HR (2010) beta-catenin plays a central role in setting up the head organizer in Hydra. Dev Biol 340(1):116–124PubMedGoogle Scholar
  58. Gehring WJ, Kloter U, Suga H (2009) Evolution of the Hox gene complex from an evolutionary ground state. Curr Top Dev Biol 88:35–61PubMedGoogle Scholar
  59. Genikhovich G, Technau U (2009a) In situ hybridization of starlet sea anemone (Nematostella vectensis) embryos, larvae, and polyps. CSH Protoc 2009(9):pdb prot5282Google Scholar
  60. Genikhovich G, Technau U (2009b) The starlet sea anemone Nematostella vectensis: an anthozoan model organism for studies in comparative genomics and functional evolutionary developmental biology. CSH Protoc 2009(9):pdb emo129Google Scholar
  61. Genikhovich G, Technau U (2011) Complex functions of Mef2 splice variants in the differentiation of endoderm and of a neuronal cell type in a sea anemone. Development 138(22):4911–4919PubMedGoogle Scholar
  62. Genikhovich G, Fried P, Prünster MM, Schinko JB, Gilles AF, Fredman D, Meier K, Iber D, Technau U (2015) Axis patterning by BMPs: cnidarian network reveals evolutionary constraints. Cell Rep pii: S2211–1247(15)00181–00183Google Scholar
  63. Genikhovich G, Kurn U, Hemmrich G, Bosch TC (2006) Discovery of genes expressed in Hydra embryogenesis. Dev Biol 289(2):466–481PubMedGoogle Scholar
  64. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30–39PubMedGoogle Scholar
  65. Gierer A, Berking S, Bode H, David CN, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of Hydra from reaggregated cells. Nat New Biol 239(91):98–101PubMedGoogle Scholar
  66. Grasso LC, Negri AP, Foret S, Saint R, Hayward DC, Miller DJ, Ball EE (2011) The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis. Dev Biol 353(2):411–419PubMedGoogle Scholar
  67. Graziussi DF, Suga H, Schmid V, Gehring WJ (2012) The “eyes absent” (eya) gene in the eye-bearing hydrozoan jellyfish Cladonema radiatum: conservation of the retinal determination network. J Exp Zool B Mol Dev Evol 318(4):257–267PubMedGoogle Scholar
  68. Grens A, Mason E, Marsh JL, Bode HR (1995) Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila. Development 121(12):4027–4035PubMedGoogle Scholar
  69. Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW (2006a) The Wnt code: cnidarians signal the way. Oncogene 25(57):7450–7460PubMedGoogle Scholar
  70. Guder C, Pinho S, Nacak TG, Schmidt HA, Hobmayer B, Niehrs C, Holstein TW (2006b) An ancient Wnt-Dickkopf antagonism in Hydra. Development 133(5):901–911PubMedGoogle Scholar
  71. Gur Barzilai M, Reitzel AM, Kraus JE, Gordon D, Technau U, Gurevitz M, Moran Y (2012) Convergent evolution of sodium ion selectivity in metazoan neuronal signaling. Cell Rep 2(2):242–248PubMedCentralPubMedGoogle Scholar
  72. Hager G, David CN (1997) Pattern of differentiated nerve cells in Hydra is determined by precursor migration. Development 124(2):569–576PubMedGoogle Scholar
  73. Hanaoka K (1934) Notes to the early development of a stalked medusa. Proc Imp Acad Jpn 10:117–120Google Scholar
  74. Hand C, Uhlinger KR (1992) The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 182:169–176Google Scholar
  75. Hartl M, Mitterstiller AM, Valovka T, Breuker K, Hobmayer B, Bister K (2010) Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc Natl Acad Sci U S A 107(9):4051–4056PubMedCentralPubMedGoogle Scholar
  76. Hassel M, Bieller A (1996) Stepwise transfer from high to low lithium concentrations increases the head-forming potential in Hydra vulgaris and possibly activates the PI cycle. Dev Biol 177(2):439–448PubMedGoogle Scholar
  77. Hassel M, Albert K, Hofheinz S (1993) Pattern formation in Hydra vulgaris is controlled by lithium-sensitive processes. Dev Biol 156(2):362–371PubMedGoogle Scholar
  78. Hayakawa E, Fujisawa C, Fujisawa T (2004) Involvement of Hydra achaete-scute gene CnASH in the differentiation pathway of sensory neurons in the tentacles. Dev Genes Evol 214(10):486–492PubMedGoogle Scholar
  79. Hayward DC, Samuel G, Pontynen PC, Catmull J, Saint R, Miller DJ, Ball EE (2002) Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc Natl Acad Sci U S A 99(12):8106–8111PubMedCentralPubMedGoogle Scholar
  80. Hayward DC, Hetherington S, Behm CA, Grasso LC, Forêt S, Miller DJ, Ball EE (2011) Differential gene expression at coral settlement and metamorphosis – a subtractive hybridization study. PLoS One 6(10):e26411PubMedCentralPubMedGoogle Scholar
  81. Hemmrich G, Anokhin B, Zacharias H, Bosch TC (2007) Molecular phylogenetics in Hydra, a classical model in evolutionary developmental biology. Mol Phylogenet Evol 44(1):281–290PubMedGoogle Scholar
  82. Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F, Wittlieb J, Klostermeier UC, Rosenstiel P, Oberg HH, Domazet-Loso T, Sugimoto T, Niwa H, Bosch TC (2012) Molecular signatures of the three stem cell lineages in Hydra and the emergence of stem cell function at the base of multicellularity. Mol Biol Evol 29(11):3267–3280PubMedGoogle Scholar
  83. Hobmayer E, Holstein TW, David CN (1990) Tentacle morphogenesis in Hydra. II. Formation of a complex between a sensory nerve cell and a battery cell. Development 109:897–904Google Scholar
  84. Hobmayer B, Holstein TW, David CN (1997) Stimulation of tentacle and bud formation by the neuropeptide head activator in Hydra magnipapillata. Dev Biol 183(1):1–8PubMedGoogle Scholar
  85. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, Rothbacher U, Holstein TW (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407(6801):186–189PubMedGoogle Scholar
  86. Holstein TW (2008) Wnt signaling in cnidarians. Methods Mol Biol 469:47–54PubMedGoogle Scholar
  87. Holstein TW (2012) The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol 4(7):a007922PubMedCentralPubMedGoogle Scholar
  88. Holstein T, Tardent P (1984) An ultrahigh-speed analysis of exocytosis: nematocyst discharge. Science 223(4638):830–833PubMedGoogle Scholar
  89. Holstein TW, Hobmayer E, David CN (1991) Pattern of epithelial cell cycling in Hydra. Dev Biol 148(2):602–611PubMedGoogle Scholar
  90. Holstein TW, Benoit M, Herder GV, David CN, Wanner G, Gaub HE (1994) Fibrous mini-collagens in Hydra nematocysts. Science 265(5170):402–404PubMedGoogle Scholar
  91. Holstein TW, Hobmayer E, Technau U (2003) Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn 226(2):257–267PubMedGoogle Scholar
  92. Houliston E, Momose T, Manuel M (2010) Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet 26(4):159–167PubMedGoogle Scholar
  93. Hudry B, Thomas-Chollier M, Volovik Y, Duffraisse M, Dard A, Frank D, Technau U, Merabet S (2014) Molecular insights into the origin of the Hox-TALE patterning system. eLife 3:e01939PubMedCentralPubMedGoogle Scholar
  94. Hwang JS, Takaku Y, Momose T, Adamczyk P, Ozbek S, Ikeo K, Khalturin K, Hemmrich G, Bosch TC, Holstein TW, David CN, Gojobori T (2010) Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Natl Acad Sci U S A 107(43):18539–18544PubMedCentralPubMedGoogle Scholar
  95. Juliano CE, Reich A, Liu N, Gotzfried J, Zhong M, Uman S, Reenan RA, Wessel GM, Steele RE, Lin H (2014) PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells. Proc Natl Acad Sci U S A 111(1):337–342PubMedCentralPubMedGoogle Scholar
  96. Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV (2013) Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 13:5PubMedCentralPubMedGoogle Scholar
  97. Khalturin K, Anton-Erxleben F, Milde S, Plotz C, Wittlieb J, Hemmrich G, Bosch TC (2007) Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Dev Biol 309(1):32–44PubMedGoogle Scholar
  98. Koch AW, Holstein TW, Mala C, Kurz E, Engel J, David CN (1998) Spinalin, a new glycine- and histidine-rich protein in spines of Hydra nematocysts. J Cell Sci 111(Pt 11):1545–1554PubMedGoogle Scholar
  99. Koizumi O, Bode HR (1991) Plasticity in the nervous system of adult Hydra. III. Conversion of neurons to expression of a vasopressin-like immunoreactivity depends on axial location. J Neurosci 11(7):2011–2020PubMedGoogle Scholar
  100. Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13(24):2190–2195PubMedGoogle Scholar
  101. Kowalewsky A (1884) Zur Entwicklung der Lucernaria (vorläufige Mittelung). Zool Anz 7:712–717Google Scholar
  102. Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, Noll M, Piatigorsky J (2003) Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5(5):773–785PubMedGoogle Scholar
  103. Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P, Kozmikova I, Strnad H, Kawamura S, Piatigorsky J, Paces V, Vlcek C (2008) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci U S A 105(26):8989–8993PubMedCentralPubMedGoogle Scholar
  104. Kraus Y, Technau U (2006) Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study. Dev Genes Evol 216(3):119–132PubMedGoogle Scholar
  105. Kraus Y, Fritzenwanker JH, Genikhovich G, Technau U (2007) The blastoporal organiser of a sea anemone. Curr Biol 17(20):R874–R876PubMedGoogle Scholar
  106. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Biol Sci 280(1755):20122328PubMedCentralPubMedGoogle Scholar
  107. Kumburegama S, Wijesena N, Xu R, Wikramanayake AH (2011) Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/beta-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): implications for the evolution of gastrulation. EvoDevo 2(1):2PubMedCentralPubMedGoogle Scholar
  108. Kuniyoshi H, Okumura I, Kuroda R, Tsujita N, Arakawa K, Shoji J, Saito T, Osada H (2012) Indomethacin induction of metamorphosis from the asexual stage to sexual stage in the moon jellyfish, Aurelia aurita. Biosci Biotechnol Biochem 76(7):1397–1400PubMedGoogle Scholar
  109. Kunzel T, Heiermann R, Frank U, Muller W, Tilmann W, Bause M, Nonn A, Helling M, Schwarz RS, Plickert G (2010) Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in eGFP-transgenic animals and chimeras. Dev Biol 348(1):120–129PubMedGoogle Scholar
  110. Kurz EM, Holstein TW, Petri BM, Engel J, David CN (1991) Mini-collagens in Hydra nematocytes. J Cell Biol 115(4):1159–1169PubMedGoogle Scholar
  111. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433(7022):156–160PubMedGoogle Scholar
  112. Layden MJ, Martindale, MQ (2014) Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation. Evodevo 5:30Google Scholar
  113. Layden MJ, Boekhout M, Martindale MQ (2012) Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139(5):1013–1022PubMedCentralPubMedGoogle Scholar
  114. Lee PN, Pang K, Matus DQ, Martindale MQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17(2):157–167PubMedGoogle Scholar
  115. Lee PN, Kumburegama S, Marlow HQ, Martindale MQ, Wikramanayake AH (2007) Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol 310(1):169–186PubMedGoogle Scholar
  116. Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Ozbek S, Bode H, Holstein TW (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330(1):186–199PubMedGoogle Scholar
  117. Lindgens D, Holstein TW, Technau U (2004) Hyzic, the Hydra homolog of the zic/odd-paired gene, is involved in the early specification of the sensory nematocytes. Development 131(1):191–201PubMedGoogle Scholar
  118. Littlefield CL, Bode HR (1986) Germ cells in Hydra oligactis males. II. Evidence for a subpopulation of interstitial stem cells whose differentiation is limited to sperm production. Dev Biol 116(2):381–386PubMedGoogle Scholar
  119. Littlefield CL, Dunne JF, Bode HR (1985) Spermatogenesis in Hydra oligactis. I. Morphological description and characterization using a monoclonal antibody specific for cells of the spermatogenic pathway. Dev Biol 110(2):308–320PubMedGoogle Scholar
  120. Littlefield CL, Finkemeier C, Bode HR (1991) Spermatogenesis in Hydra oligactis. II. How temperature controls the reciprocity of sexual and asexual reproduction. Dev Biol 146(2):292–300PubMedGoogle Scholar
  121. MacWilliams HK (1982) Numerical simulations of Hydra head regeneration using a proportion-regulating version of the Gierer-Meinhardt model. J Theor Biol 99(4):681–703PubMedGoogle Scholar
  122. MacWilliams HK (1983a) Hydra transplantation phenomena and the mechanism of Hydra head regeneration. I. Properties of the head inhibition. Dev Biol 96(1):217–238PubMedGoogle Scholar
  123. MacWilliams HK (1983b) Hydra transplantation phenomena and the mechanism of Hydra head regeneration. II. Properties of the head activation. Dev Biol 96(1):239–257PubMedGoogle Scholar
  124. Magie CR, Pang K, Martindale MQ (2005) Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 215(12):618–630PubMedGoogle Scholar
  125. Magie CR, Daly M, Martindale MQ (2007) Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Dev Biol 305(2):483–497PubMedGoogle Scholar
  126. Mahoney JL, Graugnard EM, Mire P, Watson GM (2011) Evidence for involvement of TRPA1 in the detection of vibrations by hair bundle mechanoreceptors in sea anemones. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(7):729–742PubMedGoogle Scholar
  127. Marcum BA, Campbell RD (1978) Development of Hydra lacking nerve and interstitial cells. J Cell Sci 29:17–33PubMedGoogle Scholar
  128. Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69(4):235–254PubMedGoogle Scholar
  129. Marlow H, Roettinger E, Boekhout M, Martindale MQ (2012) Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol 362(2):295–308PubMedCentralPubMedGoogle Scholar
  130. Marlow H, Matus DQ, Martindale MQ (2013) Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis. Dev Biol 380(2):324–334PubMedGoogle Scholar
  131. Martin VJ, Littlefield CL, Archer WE, Bode HR (1997) Embryogenesis in Hydra. Biol Bull 192(3):345–363PubMedGoogle Scholar
  132. Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: “mesodermal” gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131(10):2463–2474PubMedGoogle Scholar
  133. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invert Biol 123: 23–42Google Scholar
  134. Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ (2006a) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A 103(30):11195–11200PubMedCentralPubMedGoogle Scholar
  135. Matus DQ, Thomsen GH, Martindale MQ (2006b) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 16(5):499–505PubMedGoogle Scholar
  136. Matus DQ, Pang K, Daly M, Martindale MQ (2007) Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis. Evol Dev 9(1):25–38PubMedGoogle Scholar
  137. Meinhardt H (1993) A model for pattern formation of hypostome, tentacles, and foot in Hydra: how to form structures close to each other, how to form them at a distance. Dev Biol 157(2):321–333PubMedGoogle Scholar
  138. Meinhardt H (2012) Modeling pattern formation in Hydra: a route to understanding essential steps in development. Int J Dev Biol 56(6–8):447–462PubMedGoogle Scholar
  139. Meinhardt H, Gierer A (2000) Pattern formation by local self-activation and lateral inhibition. Bioessays 22(8):753–760PubMedGoogle Scholar
  140. Miljkovic-Licina M, Chera S, Ghila L, Galliot B (2007) Head regeneration in wild-type Hydra requires de novo neurogenesis. Development 134(6):1191–1201PubMedGoogle Scholar
  141. Millane RC, Kanska J, Duffy DJ, Seoighe C, Cunningham S, Plickert G, Frank U (2011) Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. Development 138(12):2429–2439PubMedGoogle Scholar
  142. Miller DJ, Ball EE (2008) Cryptic complexity captured: the Nematostella genome reveals its secrets. Trends Genet 24(1):1–4PubMedGoogle Scholar
  143. Miller MA, Technau U, Smith KM, Steele RE (2000) Oocyte development in Hydra involves selection from competent precursor cells. Dev Biol 224(2):326–338PubMedGoogle Scholar
  144. Minguillon C, Garcia-Fernandez J (2003) Genesis and evolution of the Evx and Mox genes and the extended Hox and ParaHox gene clusters. Genome Biol 4(2):R12PubMedCentralPubMedGoogle Scholar
  145. Mokady O, Buss LW (1996) Transmission genetics of allorecognition in Hydractinia symbiolongicarpus (Cnidaria:Hydrozoa). Genetics 143(2):823–827PubMedCentralPubMedGoogle Scholar
  146. Momose T, Houliston E (2007) Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 5(4):e70PubMedCentralPubMedGoogle Scholar
  147. Momose T, Schmid V (2006) Animal pole determinants define oral-aboral axis polarity and endodermal cell-fate in hydrozoan jellyfish Podocoryne carnea. Dev Biol 292(2):371–380PubMedGoogle Scholar
  148. Momose T, Derelle R, Houliston E (2008) A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 135(12):2105–2113PubMedGoogle Scholar
  149. Momose T, Kraus Y, Houliston E (2012) A conserved function for Strabismus in establishing planar cell polarity in the ciliated ectoderm during cnidarian larval development. Development 139(23):4374–4382PubMedGoogle Scholar
  150. Moran Y, Praher D, Fredman D, Technau U (2013) The evolution of MicroRNA pathway protein components in Cnidaria. Mol Biol Evol 30(12):2541–2552PubMedCentralPubMedGoogle Scholar
  151. Moran Y, Fredman D, Praher D, Li XZ, Wee LM, Rentzsch F, Zamore PD, Technau U, Seitz H (2014) Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res 24(4):651–663PubMedCentralPubMedGoogle Scholar
  152. Müller WA (1964) Experimental investigations on colony development, polyp differentiation and sexual chimeras in Hydractinia echinata Wilhelm Roux’. Arch Entwicklungsmechanik 155:181–268Google Scholar
  153. Müller WA (1982) Intercalation and pattern regulation in hydroids. Differentiation 22:141–150Google Scholar
  154. Muller WA (1990) Ectopic head and foot formation in Hydra: diacylglycerol-induced increase in positional value and assistance of the head in foot formation. Differentiation 42(3):131–143PubMedGoogle Scholar
  155. Muller WA, Teo R, Frank U (2004) Totipotent migratory stem cells in a hydroid. Dev Biol 275(1):215–224PubMedGoogle Scholar
  156. Muller W, Frank U, Teo R, Mokady O, Guette C, Plickert G (2007) Wnt signaling in hydroid development: ectopic heads and giant buds induced by GSK-3beta inhibitors. Int J Dev Biol 51(3):211–220PubMedGoogle Scholar
  157. Nakanishi N, Yuan D, Hartenstein V, Jacobs DK (2010) Evolutionary origin of rhopalia: insights from cellular-level analyses of Otx and POU expression patterns in the developing rhopalial nervous system. Evol Dev 12(4):404–415PubMedGoogle Scholar
  158. Nakanishi N, Renfer E, Technau U, Rentzsch F (2012) Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 139(2):347–357PubMedGoogle Scholar
  159. Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, Lakkis FG, Dellaporta SL, Buss LW (2009) A hypervariable invertebrate allodeterminant. Curr Biol 19(7):583–589PubMedCentralPubMedGoogle Scholar
  160. Nishimiya-Fujisawa C, Kobayashi S (2012) Germline stem cells and sex determination in Hydra. Int J Dev Biol 56(6–8):499–508PubMedGoogle Scholar
  161. Nüchter T, Benoit M, Engel U, Ozbek S, Holstein TW (2006) Nanosecond-scale kinetics of nematocyst discharge. Curr Biol 16(9):R316–R318PubMedGoogle Scholar
  162. Oliver D, Brinkmann M, Sieger T, Thurm U (2008) Hydrozoan nematocytes send and receive synaptic signals induced by mechano-chemical stimuli. J Exp Biol 211(Pt 17):2876–2888PubMedGoogle Scholar
  163. Oren M, Brikner I, Appelbaum L, Levy O (2014) Fast neurotransmission related genes are expressed in non nervous endoderm in the sea anemone Nematostella vectensis. PLoS One 9(4):e93832PubMedCentralPubMedGoogle Scholar
  164. Ormestad M, Martindale MQ, Rottinger E (2011) A comparative gene expression database for invertebrates. EvoDevo 2:17PubMedCentralPubMedGoogle Scholar
  165. Otto JJ (1976) Early development and planula movement in Haliclystus (Scyphozoa, Stauromedusae). In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 319–329Google Scholar
  166. Petie R, Garm A, Nilsson DE (2011) Visual control of steering in the box jellyfish Tripedalia cystophora. J Exp Biol 214(Pt 17):2809–2815PubMedGoogle Scholar
  167. Philipp I, Aufschnaiter R, Ozbek S, Pontasch S, Jenewein M, Watanabe H, Rentzsch F, Holstein TW, Hobmayer B (2009) Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc Natl Acad Sci U S A 106(11):4290–4295PubMedCentralPubMedGoogle Scholar
  168. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Queinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Worheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19(8):706–712PubMedGoogle Scholar
  169. Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, Wiens M, Alie A, Morgenstern B, Manuel M, Worheide G (2010) Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol 27(9):1983–1987PubMedCentralPubMedGoogle Scholar
  170. Plickert G, Jacoby V, Frank U, Muller WA, Mokady O (2006) Wnt signaling in hydroid development: formation of the primary body axis in embryogenesis and its subsequent patterning. Dev Biol 298(2):368–378PubMedGoogle Scholar
  171. Plickert G, Frank U, Muller WA (2012) Hydractinia, a pioneering model for stem cell biology and reprogramming somatic cells to pluripotency. Int J Dev Biol 56(6–8):519–534PubMedGoogle Scholar
  172. Poudyal M, Rosa S, Powell AE, Moreno M, Dellaporta SL, Buss LW, Lakkis FG (2007) Embryonic chimerism does not induce tolerance in an invertebrate model organism. Proc Natl Acad Sci U S A 104(11):4559–4564PubMedCentralPubMedGoogle Scholar
  173. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317(5834):86–94PubMedGoogle Scholar
  174. Raikova EV (1994) Life cycle, cytology and morphology on Polypodium hydriforme, a coelenterate parasite of the eggs of acipenseriform fishes. J Parasitol 80(1):1–22PubMedGoogle Scholar
  175. Rebscher N, Volk C, Teo R, Plickert G (2008) The germ plasm component vasa allows tracing of the interstitial stem cells in the cnidarian Hydractinia echinata. Dev Dyn 237(6):1736–1745PubMedGoogle Scholar
  176. Renfer E, Amon-Hassenzahl A, Steinmetz PR, Technau U (2010) A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci U S A 107(1):104–108PubMedCentralPubMedGoogle Scholar
  177. Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 296(2):375–387PubMedGoogle Scholar
  178. Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 135(10):1761–1769PubMedGoogle Scholar
  179. Rosa SF, Powell AE, Rosengarten RD, Nicotra ML, Moreno MA, Grimwood J, Lakkis FG, Dellaporta SL, Buss LW (2010) Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr Biol 20(12):1122–1127PubMedCentralPubMedGoogle Scholar
  180. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5(5):355–362PubMedGoogle Scholar
  181. Rosenberg E, Sharon G, Atad I, Zilber-Rosenberg I (2010) The evolution of animals and plants via symbiosis with microorganisms. Environ Microbiol Rep 2(4):500–506PubMedGoogle Scholar
  182. Rosengarten RD, Moreno MA, Lakkis FG, Buss LW, Dellaporta SL (2011) Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus. Mol Biol Evol 28(2):933–947PubMedCentralPubMedGoogle Scholar
  183. Rottinger E, Dahlin P, Martindale MQ (2012) A framework for the establishment of a cnidarian gene regulatory network for “endomesoderm” specification: the inputs of ss-catenin/TCF signaling. PLoS Genet 8(12):e1003164PubMedCentralPubMedGoogle Scholar
  184. Ruzickova J, Piatigorsky J, Kozmik Z (2009) Eye-specific expression of an ancestral jellyfish PaxB gene interferes with Pax6 function despite its conserved Pax6/Pax2 characteristics. Int J Dev Biol 53(4):469–482PubMedGoogle Scholar
  185. Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2(1):e153PubMedCentralPubMedGoogle Scholar
  186. Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, Program NCS, Smith SA, Putnam NH, Haddock SH, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342(6164):1242592PubMedCentralPubMedGoogle Scholar
  187. Saina M, Genikhovich G, Renfer E, Technau U (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 106(44):18592–18597PubMedCentralPubMedGoogle Scholar
  188. Sarras MP Jr (2012) Components, structure, biogenesis and function of the Hydra extracellular matrix in regeneration, pattern formation and cell differentiation. Int J Dev Biol 56(6–8):567–576PubMedGoogle Scholar
  189. Sato M, Bode HR, Sawada Y (1990) Patterning processes in aggregates of Hydra cells visualized with the monoclonal antibody, TS19. Dev Biol 141(2):412–420PubMedGoogle Scholar
  190. Schaller H, Gierer A (1973) Distribution of the head-activating substance in Hydra and its localization in membranous particles in nerve cells. J Embryol Exp Morphol 29(1):39–52PubMedGoogle Scholar
  191. Schaller HC, Hofmann M, Javois LC (1990) Effect of head activator on proliferation, head-specific determination and differentiation of epithelial cells in Hydra. Differentiation 43(3):157–164PubMedGoogle Scholar
  192. Schmich J, Trepel S, Leitz T (1998) The role of GLWamides in metamorphosis of Hydractinia echinata. Dev Genes Evol 208(5):267–273PubMedGoogle Scholar
  193. Schmid V, Alder H (1984) Isolated, mononucleated, striated muscle can undergo pluripotent transdifferentiation and form a complex regenerate. Cell 38(3):801–809PubMedGoogle Scholar
  194. Schmidt T, David CN (1986) Gland cells in Hydra: cell cycle kinetics and development. J Cell Sci 85:197–215PubMedGoogle Scholar
  195. Scholz CB, Technau U (2003) The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 212(12):563–570PubMedGoogle Scholar
  196. Schwaiger M, Schonauer A, Rendeiro AF, Pribitzer C, Schauer A, Gilles AF, Schinko JB, Renfer E, Fredman D, Technau U (2014) Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res 24(4):639–650PubMedCentralPubMedGoogle Scholar
  197. Seipel K, Schmid V (2005) Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282(1):14–26PubMedGoogle Scholar
  198. Seipel K, Yanze N, Schmid V (2004) Developmental and evolutionary aspects of the basic helix-loop-helix transcription factors Atonal-like 1 and Achaete-scute homolog 2 in the jellyfish. Dev Biol 269(2):331–345PubMedGoogle Scholar
  199. Seipp S, Schmich J, Kehrwald T, Leitz T (2007) Metamorphosis of Hydractinia echinata–natural versus artificial induction and developmental plasticity. Dev Genes Evol 217(5):385–394PubMedGoogle Scholar
  200. Seipp S, Schmich J, Will B, Schetter E, Plickert G, Leitz T (2010) Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa). Invert Neurosci 10(2):77–91PubMedGoogle Scholar
  201. Shimizu H (2012) Transplantation analysis of developmental mechanisms in Hydra. Int J Dev Biol 56(6–8):463–472PubMedGoogle Scholar
  202. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476(7360):320–323PubMedGoogle Scholar
  203. Spring J, Yanze N, Middel AM, Stierwald M, Groger H, Schmid V (2000) The mesoderm specification factor twist in the life cycle of jellyfish. Dev Biol 228(2):363–375PubMedGoogle Scholar
  204. Spring J, Yanze N, Josch C, Middel AM, Winninger B, Schmid V (2002) Conservation of Brachyury, Mef2, and Snail in the myogenic lineage of jellyfish: a connection to the mesoderm of Bilateria. Dev Biol 244(2):372–384PubMedGoogle Scholar
  205. Squire JM, Al-Khayat HA, Knupp C, Luther PK (2005) Molecular architecture in muscle contractile assemblies. Adv Protein Chem 71:17–87. doi: 10.1016/S0065-3233(04)71002-5 PubMedGoogle Scholar
  206. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454(7207):955–960PubMedGoogle Scholar
  207. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466(7307):720–726PubMedCentralPubMedGoogle Scholar
  208. Stangl K, Salvini-Plawen L, Holstein TW (2002) Staging and induction of medusa metamorphosis in Carybdea marsupialis (Cnidaria, Cubozoa). Vie Mileu 52:131–140Google Scholar
  209. Steinmetz PR, Kraus JE, Larroux C, Hammel JU, Amon-Hassenzahl A, Houliston E, Worheide G, Nickel M, Degnan BM, Technau U (2012) Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487(7406):231–234PubMedCentralPubMedGoogle Scholar
  210. Straehler-Pohl I, Jarms G (2005) Life cycle of Carybdea marsupialis Linnaeus, 1758 (Cubozoa, Carybdeidae) reveals metamorphosis to be a modified strobilation. Mar Biol 147:1271–1277Google Scholar
  211. Suga H, Schmid V, Gehring WJ (2008) Evolution and functional diversity of jellyfish opsins. Curr Biol 18(1):51–55PubMedGoogle Scholar
  212. Suga H, Tschopp P, Graziussi DF, Stierwald M, Schmid V, Gehring WJ (2010) Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. Proc Natl Acad Sci U S A 107(32):14263–14268PubMedCentralPubMedGoogle Scholar
  213. Takahashi T (2013) Neuropeptides and epitheliopeptides: structural and functional diversity in an ancestral metazoan Hydra. Protein Pept Lett 20(6):671–680PubMedGoogle Scholar
  214. Takahashi T, Fujisawa T (2009) Important roles for epithelial cell peptides in Hydra development. Bioessays 31(6):610–619PubMedGoogle Scholar
  215. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedGoogle Scholar
  216. Tardent P (1978) Coelenterata, Cnidaria. Morphogenese der Tiere. Gustav Fischer Verlag, JenaGoogle Scholar
  217. Technau U (2001) Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23(9):788–794PubMedGoogle Scholar
  218. Technau U, Bode HR (1999) HyBra1, a Brachyury homologue, acts during head formation in Hydra. Development 126(5):999–1010PubMedGoogle Scholar
  219. Technau U, Holstein TW (1992) Cell sorting during the regeneration of Hydra from reaggregated cells. Dev Biol 151(1):117–127PubMedGoogle Scholar
  220. Technau U, Holstein TW (1995a) Boundary cells of endodermal origin define the mouth of Hydra vulgaris (Cnidaria). Cell Tissue Res 280:235–242Google Scholar
  221. Technau U, Holstein TW (1995b) Head formation is different at apical and basal levels. Development 121:1273–1282Google Scholar
  222. Technau U, Holstein TW (1996) Phenotypic maturation of neurons and continuous precursor migration in the formation of the peduncle nerve net in Hydra. Dev Biol 177(2):599–615PubMedGoogle Scholar
  223. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: cnidaria. Development 138(8):1447–1458Google Scholar
  224. Technau U, Cramer von Laue C, Rentzsch F, Luft S, Hobmayer B, Bode HR, Holstein TW (2000) Parameters of self-organization in Hydra aggregates. Proc Natl Acad Sci U S A 97(22):12127–12131PubMedCentralPubMedGoogle Scholar
  225. Technau U, Miller MA, Bridge D, Steele RE (2003) Arrested apoptosis of nurse cells during Hydra oogenesis and embryogenesis. Dev Biol 260(1):191–206PubMedGoogle Scholar
  226. Technau U, Rudd S, Maxwell P, Gordon PM, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller DJ (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21(12):633–639PubMedGoogle Scholar
  227. Teo R, Mohrlen F, Plickert G, Muller WA, Frank U (2006) An evolutionary conserved role of Wnt signaling in stem cell fate decision. Dev Biol 289(1):91–99PubMedGoogle Scholar
  228. Thomas-Chollier M, Ledent V, Leyns L, Vervoort M (2010) A non-tree-based comprehensive study of metazoan Hox and ParaHox genes prompts new insights into their origin and evolution. BMC Evol Biol 10:73PubMedCentralPubMedGoogle Scholar
  229. Turing A (1952) The chemical basis for morphogenesis. Phil Trans R Soc B 237:37–72Google Scholar
  230. Watanabe H, Hoang VT, Mattner R, Holstein TW (2009) Immortality and the base of multicellular life: lessons from cnidarian stem cells. Semin Cell Dev Biol 20(9):1114–1125PubMedGoogle Scholar
  231. Weber J (1990) Poly(gamma-glutamic acid)s are the major constituents of nematocysts in Hydra (Hydrozoa, Cnidaria). J Biol Chem 265(17):9664–9669PubMedGoogle Scholar
  232. Weill R (1934) Contribution à l’étude des cnidaires et leurs nematocystes. Trav Stat Zool Wimereux 10–11:1–700Google Scholar
  233. Wietrzykowski W (1910) Sur le développement des Lucernaridés (note préliminaire). Arch Zool Exp 2:10–27Google Scholar
  234. Wietrzykowski W (1912) Recherches sur le développement des Lucernaires. Arch Zool Exp Gen 10:1–95Google Scholar
  235. Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426(6965):446–450PubMedGoogle Scholar
  236. Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TC (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci U S A 103(16):6208–6211PubMedCentralPubMedGoogle Scholar
  237. Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13(24):3185–3190PubMedCentralPubMedGoogle Scholar
  238. Zenkert C, Takahashi T, Diesner MO, Ozbek S (2011) Morphological and molecular analysis of the Nematostella vectensis cnidom. PLoS One 6(7):e22725PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Ulrich Technau
    • 1
  • Grigory Genikhovich
    • 1
  • Johanna E. M. Kraus
    • 1
  1. 1.Department of Molecular Evolution and Development, Faculty of Life SciencesUniversity of ViennaWienAustria

Personalised recommendations