Advertisement

Abstract

The most primitive metazoan animal phylum Placozoa presently harbors a single named species, the enigmatic Trichoplax adhaerens. In 1883, the German zoologist Franz Eilhard Schulze discovered this microscopic marine animal on the glass walls of a seawater aquarium at the University of Graz, Austria (Schulze 1883). The animal, usually measuring less than 5 mm in diameter and less than 20 μm in thickness, looked like an irregular hairy plate sticking to the glass surface (Fig. 5.1) and was thus named Trichoplax adhaerens (Greek for “sticky hairy plate”) (see Schierwater 2005 for historical overview). Recent genetic analysis of placozoan specimens from different ocean waters around the world, including the Mediterranean Sea, revealed the presence of several cryptic species (Eitel et al. 2013), i.e., species, which are morphologically cum grano salis undistinguishable. The real placozoan biodiversity is estimated to include several dozen genetically, developmentally, and ecologically distinguishable species.

Keywords

Fiber Cell Developmental Gene Vegetative Reproduction Cortical Granule Somatic Cell Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bütschli O (1884) Bemerkungen zur Gastraea-Theorie. Morphologisches Jahrblatt 9:415–427Google Scholar
  2. Eitel M, Schierwater B (2010) The phylogeography of the placozoa suggests a taxon rich phylum in tropical and subtropical waters. Mol Ecol 19:2315–2327PubMedCrossRefGoogle Scholar
  3. Eitel M, Guidi L, Hadrys H, Balsamo M, Schierwater B (2011) New insights into placozoan sexual reproduction and development. PLoS One 6:e19639PubMedCentralPubMedCrossRefGoogle Scholar
  4. Eitel M, Osigus HJ, DeSalle R, Schierwater B (2013) Global diversity of the placozoa. PLoS One 8:e57131PubMedCentralPubMedCrossRefGoogle Scholar
  5. Grell KG (1971) Trichoplax adhaerens F.E. Schulze und die Entstehung der Metazoan. Naturwissenschaftliche Rundschau 24:160–161Google Scholar
  6. Grell KG, Benwitz G (1971) Die Ultrastruktur von Trichoplax adhaerens F.E. Schulze. Cytobiologie 4:216–240Google Scholar
  7. Grell KG, Benwitz G (1974) Elektronenmikroskopische Beobachtungen über das Wachstum der Eizelle und die Bildung der “Befruchtungsmembran” von Trichoplax adhaerens F.E. Schulze (placozoa). Z für Morphol Tiere 79:295–310Google Scholar
  8. Grell KG, Benwitz G (1981) Ergänzende Untersuchungen zur Ultrastruktur von Trichoplax adhaerens F.E. Schulze (placozoa). Zoomorphology 98:47–67CrossRefGoogle Scholar
  9. Grell KG, Ruthmann A (1991) Placozoa. In: Harrison FW, Westfall JA (eds) Microscopic anatomy of invertebrates, placozoa, porifera, cnidaria, and ctenophora. Wiley-Liss, New York, pp 13–28Google Scholar
  10. Guidi L, Eitel M, Cesarini E, Schierwater B, Balsamo M (2011) Ultrastructural analyses support different morphological lineages in the placozoa, Grell 1971. J Morphol 272:371–378PubMedCrossRefGoogle Scholar
  11. Jakob W, Sagasser S, Dellaporta S, Holland P, Kuhn K, Schierwater B (2004) The Trox-2 Hox/ParaHox gene of Trichoplax (placozoa) marks an epithelial boundary. Dev Genes Evol 214:170–175PubMedCrossRefGoogle Scholar
  12. Osigus HJ, Eitel M, Schierwater B (2013) Chasing the urmetazoon: striking a blow for quality data? Mol Phylogenet Evol 66:551–557Google Scholar
  13. Schierwater B (2005) My favorite animal, Trichoplax adhaerens. Bioessays 27:1294–1302PubMedCrossRefGoogle Scholar
  14. Schierwater B (2013) Placozoa, Plattentiere. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: einzeller und Wirbellose Tiere, 3rd edn. Springer-Spektrum, Berlin, pp 103–107Google Scholar
  15. Schierwater B, de Jong D, DeSalle R (2009a) Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 41:370–379PubMedCrossRefGoogle Scholar
  16. Schierwater B, Eitel M, Jakob W, Osigus HJ, Hadrys H, Dellaporta SL, Kolokotronis SO, DeSalle R (2009b) Concatenated analysis sheds light on early metazoan evolution and fuels a modern “Urmetazoon” hypothesis. Plos Biol 7:36–44CrossRefGoogle Scholar
  17. Schierwater B, Eitel M, Osigus HJ, von der Chevallerie K, Bergmann T, Hadrys H, Cramm M, Heck, L, MR L, DeSalle R (2010) Trichoplax and placozoa: one of the crucial keys to understanding metazoan evolution. In: DeSalle R, Schierwater B (eds) Key transitions in animal evolution. CRC Press, Enfield, USA. pp 289–326Google Scholar
  18. Schulze FE (1883) Trichoplax adhaerens, nov. gen., nov. spec. Zool Anz 6:92–97Google Scholar
  19. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960PubMedCrossRefGoogle Scholar
  20. Thiemann M, Ruthmann A (1988) Trichoplax adhaerens Schulze, F. E. (placozoa) – the formation of swarmers. Z Naturforsch C 43:955–957Google Scholar
  21. Thiemann M, Ruthmann A (1989) Microfilaments and microtubules in isolated fiber cells of Trichoplax adhaerens (placozoa). Zoomorphology 109:89–96CrossRefGoogle Scholar
  22. Wenderoth H (1986) Transepithelial cytophagy by Trichoplax adhaerens F.E. Schulze (placozoa) feeding on yeast. Z Naturforsch C 41:343–347Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.ITZ – Institut für Tierökologie und Zellbiologie, Stiftung Tierärztliche HochschuleHannoverGermany

Personalised recommendations