Embryology in Deep Time

  • Philip C. J. Donoghue
  • John A. Cunningham
  • Xi-Ping Dong
  • Stefan Bengtson


For anyone who has cared for animal embryos, it beggars belief that these squishy cellular aggregates could be fossilised. Hence, with hindsight, it is possible to empathise with palaeontologists who found such fossils and, in their naming of Olivooides, Pseudooides, etc., drew attention to their likeness to animal eggs and embryos but without going so far as to propose such an interpretation. However, in 1994, Zhang Xi-guang and Brian Pratt described microscopic balls of calcium phosphate from Cambrian rocks of China, one or two of which preserved polygonal borders that resembled blastomeres on the surface of an early cleaving animal embryo. In retrospect, these fossils are far from remarkable, some of them may not be fossils at all, and it is not as if anyone ever conceived Cambrian animals as having lacked an embryology. But Zhang Xi-guang and Brian Pratt dared the scientific world, not least their fellow palaeontologists, to believe that the fragile embryonic stages of invertebrate animals could be fossilised, that there was a fossil record of animal embryology, that this record hailed from the interval of time in which animal body plans were first established, and that it had been awaiting discovery in the rocks, for want of looking. The proof of this concept came a few years later, when phosphatised Cambrian fossils from China and Siberia were shown to display indisputable features of animal embryonic morphologies. In the case of Olivooides, a series of developmental stages from cleavage to morphogenesis through hatching and juvenile growth could be tentatively identified; in Markuelia, the coiled-up body of an annulated worm-like animal could be clearly seen within its fertilisation envelope.


Fossil Record Lower Cambrian Internal Anatomy Doushantuo Formation Early Cleavage Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the TOMCAT beamline scientists at the Swiss Light Source, Paul Scherrer Institut, Marco Stampanoni, Federica Marone, and Julie Fife, and the researchers at Beijing, Bristol, and Stockholm who have assisted in our research into fossil embryos over the years: Chen Fang, Cheng Gong, Duan Baichuan, Peng Fan, Zhi-kun Gai, Sam Giles, Neil Gostling, Jenny Greenwood, Guo Wei, Sandy Hetherington, Therese Huldtgren, David Jones, Joe Keating, Liu Jie, Liu Zheng, Duncan Murdock, Maria Pawlowska, Martin Rücklin, Ceri-Wynn Thomas, Zhao Yue, Chongyu Yin, and Zhang Huaqiao. We would also like to thank our colleagues with whom we have enjoyed fruitful discussions on embryology, fossilisation, and embryo fossils over the years. Finally, we thank Andreas Wanninger for inviting us to contribute to this wonderful and insightful volume on comparative embryology of invertebrates.


  1. Bailey JV, Joye SB, Kalanetra KM, Flood BE, Corsetti FA (2007a) Evidence of giant sulfur bacteria in Neoproterozoic phosphorites. Nature 445:198–201PubMedCrossRefGoogle Scholar
  2. Bailey JV, Joye SB, Kalanetra KM, Flood BE, Corsetti FA (2007b) Palaeontology – undressing and redressing ediacaran embryos – reply. Nature 446:E10–E11CrossRefGoogle Scholar
  3. Bengtson S (2003) Tracing metazoan roots in the fossil record. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Pensoft, Moscow, pp 289–300Google Scholar
  4. Bengtson S (2005) Mineralized skeletons and early animal evolution. In: Briggs DEG (ed) Evolving form and function: fossils and development. Yale Peabody Museum, New Haven, pp 101–124Google Scholar
  5. Bengtson S, Budd G (2004) Comment on “Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian”. Science 306:1291aCrossRefGoogle Scholar
  6. Bengtson S, Yue Z (1997) Fossilized metazoan embryos from the earliest Cambrian. Science 277:1645–1648CrossRefGoogle Scholar
  7. Briggs DEG (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Planet Sci 31:275–301CrossRefGoogle Scholar
  8. Briggs DEG, Kear AJ, Martill DM, Wilby PR (1993) Phosphatization of soft-tissue in experiments and fossils. J Geol Soc Lond 150:1035–1038CrossRefGoogle Scholar
  9. Broce J, Schiffbauer JD, Sharma KS, Wang G, Xiao S (2014) Possible animal embryos from the Lower Cambrian (stage 3) Shuijingtuo Formation, Hubei Province, South China. J Paleontol 88:385–394CrossRefGoogle Scholar
  10. Butterfield NJ (2011) Terminal developments in Ediacaran embryology. Science 334:1655–1656PubMedCrossRefGoogle Scholar
  11. Chen JY (2004) The dawn of animal world. Jiangsu Science and Technology Press, ChinaGoogle Scholar
  12. Chen JY, Chi HM (2005) Precambrian phosphatized embryos and larvae from the Doushantuo Formation and their affinities, Guizhou (SW China). Chin Sci Bull 50:2193–2200CrossRefGoogle Scholar
  13. Chen J, Oliveri P, Li C-W, Zhou G-Q, Gao F, Hagadorn JW, Peterson KJ, Davidson EH (2000) Precambrian animal diversity: putative phosphatised embryos from the Doushantuo Formation of China. Proc Natl Acad Sci U S A 97:4457–4462PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chen J, Oliveri P, Gao F, Dornbos SQ, Li CW, Bottjer DJ, Davidson EH (2002) Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China. Dev Biol 248:182–196PubMedCrossRefGoogle Scholar
  15. Chen J, Braun A, Waloszek D, Peng Q-Q, Maas A (2004) Lower Cambrian yolk-pyramid embryos from southern Shaanxi, China. Prog Nat Sci 14:167–172CrossRefGoogle Scholar
  16. Chen JY, Bottjer DJ, Davidson EH, Dornbos SQ, Gao X, Yang YH, Li CW, Li G, Wang XQ, Xian DC, Wu HJ, Hwu YK, Tafforeau P (2006) Phosphatized polar lobe-forming embryos from the Precambrian of Southwest China. Science 312:1644–1646PubMedCrossRefGoogle Scholar
  17. Chen J-Y, Schopf JW, Bottjer DJ, Zhang C-Y, Kudryavtsev AB, Tripathi AB, Wang X-Q, Yang Y-H, Gao X, Yang Y (2007) Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proc Natl Acad Sci 104:6289–6292PubMedCentralPubMedCrossRefGoogle Scholar
  18. Chen J-Y, Bottjer DJ, Davidson EH, Li G, Gao F, Cameron RA, Hadfield MG, Xian D-C, Tafforeau P, Jia Q-J, Sugiyama H, Tang R (2009a) Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: phylogenetic diversity and evolutionary implications. Precambrian Res 173:191–200CrossRefGoogle Scholar
  19. Chen J-Y, Bottjer DJ, Li G, Hadfield MG, Gao F, Cameron AR, Zhang C-Y, Xian D-C, Tafforeau P, Liao X, Yin Z-J (2009b) Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng’an, Guizhou, China. Proc Natl Acad Sci U S A 106:19056–19060PubMedCentralPubMedCrossRefGoogle Scholar
  20. Conway Morris S (1998) Eggs and embryos from the Cambrian. BioEssays 20:676–682CrossRefGoogle Scholar
  21. Conway Morris S, Chen M (1992) Carinachitids, Hexangulaconulariids, and Punctatus: problematic metazoans from the Early Cambrian of South China. J Paleontol 66:384–406Google Scholar
  22. Cunningham JA (2012) Fossil focus: animal embryos. Palaeontology 2:1–4 (Online)Google Scholar
  23. Cunningham JA, Thomas C-W, Bengtson S, Kearns SL, Xiao S, Marone F, Stampanoni M, Donoghue PCJ (2012a) Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proc R Soc B Biol Sci 279:2369–2376CrossRefGoogle Scholar
  24. Cunningham JA, Thomas C-W, Bengtson S, Marone F, Stampanoni M, Turner FR, Bailey JV, Raff RA, Raff EC, Donoghue PCJ (2012b) Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Proc R Soc B Biol Sci 279:1857–1864CrossRefGoogle Scholar
  25. Cunningham JA, Donoghue PCJ, Bengtson S (2014) Distinguishing biology from geology in soft tissue preservation. In: Laflamme M, Schiffbauer JD, Darroch SAF (eds.), Reading and writing of the fossil record: preservational pathways to exceptional fossilization. Paleontol Soc 20: 275–287.Google Scholar
  26. Dong X-P (2007) Developmental sequence of the Cambrian embryo Markuelia. Chin Sci Bull 52:929–935CrossRefGoogle Scholar
  27. Dong X-P, Donoghue PCJ, Cheng H, Liu J (2004) Fossil embryos from the Middle and Late Cambrian period of Hunan, south China. Nature 427:237–240PubMedCrossRefGoogle Scholar
  28. Dong X-P, Donoghue PCJ, Cunningham J, Liu J, Cheng H (2005) The anatomy, affinity and phylogenetic significance of Markuelia. Evol Dev 7:468–482PubMedCrossRefGoogle Scholar
  29. Dong X-P, Bengtson S, Gostling NJ, Cunningham JA, Harvey THP, Kouchinsky A, Val’kov AK, Repetski JE, Stampanoni M, Donoghue PCJ (2010) The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: early Cambrian to early Ordovician scalidophorans. Palaeontology 53:1291–1314CrossRefGoogle Scholar
  30. Dong X-P, Cunningham JA, Bengtson S, Thomas CW, Liu J, Stampanoni M, Donoghue PCJ (2013) Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides. Proc Biol Sci Royal Soc 280:20130071CrossRefGoogle Scholar
  31. Donoghue PCJ (2007) Palaeontology: embryonic identity crisis. Nature 445:155–156PubMedCrossRefGoogle Scholar
  32. Donoghue PCJ, Dong X-P (2005) Embryos and ancestors. In: Briggs DEG (ed) Evolving form and function: fossils and development. Yale Peabody Museum of Natural History, Yale University, New Haven, pp 81–99Google Scholar
  33. Donoghue PCJ, Purnell MA (2009) Distinguishing heat from light in debate over controversial fossils. BioEssays 31:178–189PubMedCrossRefGoogle Scholar
  34. Donoghue PCJ, Forey PL, Aldridge RJ (2000) Conodont affinity and chordate phylogeny. Biol Rev 75:191–251PubMedCrossRefGoogle Scholar
  35. Donoghue PCJ, Bengtson S, Dong X-P, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Peng F, Stampanoni M (2006a) Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442:680–683PubMedCrossRefGoogle Scholar
  36. Donoghue PCJ, Kouchinsky A, Waloszek D, Bengtson S, Dong X-P, Val’kov AK, Cunningham JA, Repetski JE (2006b) Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evol Dev 8:232–238PubMedCrossRefGoogle Scholar
  37. Duan B, Dong X-P, Donoghue PCJ (2012) New palaeoscolecid worms from the Furongian (upper Cambrian) of Hunan, South China: is Markuelia an embryonic palaeoscolecid? Palaeontology 55:613–622CrossRefGoogle Scholar
  38. Gostling NJ, Thomas C-W, Greenwood JM, Dong X-P, Bengtson S, Raff EC, Raff RA, Degnan BM, Stampanoni M, Donoghue PCJ (2008) Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy. Evol Dev 10:339–349PubMedCrossRefGoogle Scholar
  39. Gostling NJ, Dong X-P, Donoghue PCJ (2009) Ontogeny and taphonomy: and experimental taphonomy study of the development of the brine shrimp Artemia salina. Palaeontology 52:169–186CrossRefGoogle Scholar
  40. Hagadorn JW, Xiao S, Donoghue PCJ, Bengtson S, Gostling NJ, Pawlowska M, Raff EC, Raff RA, Turner FR, Yin C, Zhou C, Yuan X, McFeely MB, Stampanoni M, Nealson KH (2006) Cellular and subcellular structure of Neoproterozoic animal embryos. Science 314:291–294PubMedCrossRefGoogle Scholar
  41. Han J, Kubota S, Li G, Kubota S, Yao X, Yang X, Shu D, Li Y, Kinoshita S, Sasaki O, Komiya T, Yan G (2013) Early Cambrian pentamerous cubozoan embryos from South China. PLoS ONE 8:e70741PubMedCentralPubMedCrossRefGoogle Scholar
  42. Harvey THP, Dong X, Donoghue PCJ (2010) Are palaeoscolecids ancestral ecdysozoans? Evol Dev 12:177–200PubMedCrossRefGoogle Scholar
  43. Haug JT, Maas A, Waloszek D, Donoghue PCJ, Bengtson S (2009) A new species of Markuelia from the Middle Cambrian of Australia. Mem Assoc Australas Palaeontol 37:303–313Google Scholar
  44. Huldtgren T, Cunningham JA, Yin C, Stampanoni M, Marone F, Donoghue PCJ, Bengtson S (2011) Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science 334:1696–1699PubMedCrossRefGoogle Scholar
  45. Huldtgren T, Cunningham JA, Yin C, Stampanoni M, Marone F, Donoghue PCJ, Bengtson S (2012) Response to comment on “fossilized nuclei and germination structures identify Ediacaran ‘animal embryos’ as encysting protists”. Science 335:1169CrossRefGoogle Scholar
  46. Jeppsson L, Fredholm D, Mattiasson B (1985) Acetic acid and phosphatic fossils – a warning. J Paleontol 59:952–956Google Scholar
  47. Kouchinsky A, Bengtson S, Gershwin L (1999) Cnidarian-like embryos associated with the first shelly fossils in Siberia. Geology 27:609–612CrossRefGoogle Scholar
  48. Li C, Chen JY, Hua TE (1998) Precambrian sponges with cellular structures. Science 279:879–882PubMedCrossRefGoogle Scholar
  49. Lin J-P, Scott AC, Li C-W, Wu H-J, Ausich WI, Zhao Y-L, Hwu Y-K (2006) Silicified egg clusters from a Middle Cambrian Burgess Shale-type deposit, Guizhou, south China. Geology 34:1037–1040CrossRefGoogle Scholar
  50. Mathur VK, Shome S, Nath S, Babu R (2014) First record of metazoan eggs and embryos from early Cambrian Chert Member of Deo ka Tibba Formation, Tal Group, Uttarakhand Lesser Himalaya. J Geol Soc India 83:191–197CrossRefGoogle Scholar
  51. Pyle LJ, Narbonne GM, Nowlan GS, Xiao SH, James NP (2006) Early Cambrian metazoan eggs, embryos, and phosphatic microfossils from northwestern Canada. J Paleontol 80:811–825CrossRefGoogle Scholar
  52. Qian Y (1977) Hyolitha and some problematica from the Lower Cambrian Meischucunian Stage in central and southwestern China. Acta Palaeontol Sin 16:255–275Google Scholar
  53. Raff EC, Villinski JT, Turner FR, Donoghue PCJ, Raff RA (2006) Experimental taphonomy shows the feasibility of fossil embryos. Proc Natl Acad Sci U S A 103:5846–5851PubMedCentralPubMedCrossRefGoogle Scholar
  54. Raff EC, Schollaert KL, Nelson DE, Donoghue PCJ, Thomas C-W, Turner FR, Stein BD, Dong X-P, Bengtson S, Huldtgren T, Stampanoni M, Yin C, Raff RA (2008) Embryo fossilization is a biological process mediated by microbial biofilms. Proc Natl Acad Sci 105:19359–19364CrossRefGoogle Scholar
  55. Raff EC, Andrews ME, Turner FR, Toh E, Nelson DE, Raff RA (2013) Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evol Dev 15:243–256PubMedCrossRefGoogle Scholar
  56. Steiner M, Li G, Zhu M (2004a) Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic significance. Geobios 37:259–275CrossRefGoogle Scholar
  57. Steiner M, Zhu M, Li G, Qian Y, Erdtmann B-D (2004b) New early Cambrian bilaterian embryos and larvae from China. Geology 32:833–836CrossRefGoogle Scholar
  58. Steiner M, Qian Y, Li G, Hagadorn JW, Zhu M (2014) The developmental cycles of early Cambrian Olivooidae fam. nov. (?Cycloneuralia) from the Yangtze Platform (China). Palaeogeogr Palaeoclimatol Palaeoecol 398:97–124CrossRefGoogle Scholar
  59. Tang F, Yin C, Bengtson S, Liu P, Wang Z, Gao L (2008) Octoradiate spiral organisms in the Ediacaran of South China. Acta Geologica Sinica 82:27–34Google Scholar
  60. Val’kov AK (1983) Rasprostranenie drevnejshikh skeletnykh organizmov i korrelyatsiya nizhnej granitsy kembriya v yugo-vostochnoj chasti Sibirskoj platformy [Distribution of the oldest skeletal organisms and correlation of the lower boundary of the Cambrian in the southeastern part of the Siberian Platform]. In: Khomentovsky VV, Yakshin MS, Karlova GA (eds) Pozdnij dokembrij i rannij paleozoj Sibiri, Vendskie otlozheniya. Inst Geol Geofiz SO AN SSSR, Novosibirsk, pp 37–48Google Scholar
  61. Val’kov AK (1987) Biostratigrafiya nizhnego kembriya vostoka Sibirskoj Platformy (Yudoma-Olenyokskij region). [Lower Cambrian biostratigraphy of the eastern part of the Siberian Platform (Yudoma-Olenyok region)]. Nauka, MoscowGoogle Scholar
  62. Xiao S (2002) Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos. Paleobiology 28:244–250CrossRefGoogle Scholar
  63. Xiao S, Knoll AH (2000) Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia 32:219–240CrossRefGoogle Scholar
  64. Xiao S, Zhang Y, Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558CrossRefGoogle Scholar
  65. Xiao S, Yuan X, Knoll AH (2000) Eumetazoan fossils in terminal Proterozoic phosphorites? Proc Natl Acad Sci U S A 97:13684–13689PubMedCentralPubMedCrossRefGoogle Scholar
  66. Xiao S, Zhou CM, Yuan XL (2007) Undressing and redressing Ediacaran embryos. Nature 446(7136):E9–E10PubMedCrossRefGoogle Scholar
  67. Xiao S, Knoll AH, Schiffbauer JD, Zhou C, Yuan X (2012) Comment on “Fossilized nuclei and germination structures identify Ediacaran ‘animal embryos’ as ecysting protists”. Science 335:1169PubMedCrossRefGoogle Scholar
  68. Xue Y-S, Tang T-F, Yu C-l, Z C-M (1995) Large spheroidal Chlorophyta fossils from Doushantuo Formation phosphoric sequence (late Sinian), central Guizhou, South China. Acta Palaeontol Sin 34:688–706, In ChineseGoogle Scholar
  69. Yasui K, Reimer JD, Liu Y, Yao X, Kubo D, Shu D, Li Y (2013) A diploblastic radiate animal at the dawn of Cambrian diversification with a simple body plan: distinct from Cnidaria? PLoS ONE 8:e65890PubMedCentralPubMedCrossRefGoogle Scholar
  70. Yin C, Bengtson S, Zhao Y (2004) Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontol Pol 49:1–12Google Scholar
  71. Yue Z, Bengtson S (1999) Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides. Lethaia 32:181–195Google Scholar
  72. Zhang XG, Pratt BR (1994) Middle Cambrian arthropod embryos with blastomeres. Science 266:637–639PubMedCrossRefGoogle Scholar
  73. Zhang X-G, Pratt BR (2014) Possible algal origin and life cycle of Ediacaran Doushantuo microfossils with dextral spiral structure. J Palaeontol 88:92–98CrossRefGoogle Scholar
  74. Zhang X-G, Pratt BR, Shen C (2011) Embryonic development of a middle Cambrian (500 Myr old) scalidophoran worm. J Paleontol 85:898–903CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Philip C. J. Donoghue
    • 1
  • John A. Cunningham
    • 1
  • Xi-Ping Dong
    • 2
  • Stefan Bengtson
    • 3
  1. 1.School of Earth SciencesLife Sciences Building, University of BristolBristolUK
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Department of PalaeobiologyNordic Center for Earth Evolution, Swedish Museum of Natural HistoryStockholmSweden

Personalised recommendations