Advertisement

Chaetognatha

  • Steffen Harzsch
  • Carsten H. G. Müller
  • Yvan Perez

Abstract

According to palaeontological evidence, the Chaetognatha (arrow worms), a group of small marine predators that are major components of the zooplankton throughout our world oceans, were present already in the Early Cambrian (approx. 540–520 Myr years ago), namely, as Chengjiang biota, but have also been documented in the Middle Cambrian Burgess Shale. The so-called protoconodonts, spine-like, small, shelly microfossil elements that were abundant in the Cambrian, are today convincingly interpreted as parts of the chaetognath grasping apparatus or, at least, as belonging to protoconodont animals most closely related to Chaetognatha (e.g., Szaniawski 1982, 2002, 2005; Vannier et al. 2007; but see Conway Morris 2009; Szaniawski 2009 for a controversial discussion). The presence of protoconodonts in the lowermost Cambrian and the complexity of their feeding apparatus points to a Precambrian origin of these animals. These authors also suggested placing them among the earliest active predator metazoans and argued that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Today, the taxon Chaetognatha comprises more than 150 described species from all geographical and vertical ranges of the ocean. They are characterised by an elongated, streamlined body; the presence of horizontally projecting fins; and, at the anterior end, two groups of moveable, cuticularised grasping spines used in capturing prey such as copepods (Fig. 10.1). With a body length between just a few millimetres up to 120 mm, these glassily transparent carnivores are among the most abundant planktonic organisms, but several epibenthic species are also known.

Keywords

Germ Plasm Mesodermal Cell Coelomic Cavity ParaHox Gene Stomatogastric Nervous System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Verena Rieger for her contribution to the experimental work on nervous system development reported here and Tina Kirchhoff for editing the reference list. We gratefully acknowledge the exchange with Thurston Lacalli and Andreas Hejnol on metazoan gastrulation patterns, Carolin and Joachim Haug on fossil chaetognaths, and Günter Purschke on photoreceptor structure. Research on arrow worms by SH was supported by grants HA 2540/7-1, 2, 3 in the DFG focus programme “Metazoan Deep Phylogeny”.

References

  1. Alvarino A (1992) Chaetognatha. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Oxford & IBH Publishing Co. PVT. LTD., New Delhi, pp 425–470, Chapter 22Google Scholar
  2. Arendt D, Nübler-Jung K (1997) Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech Dev 61:7–21PubMedCrossRefGoogle Scholar
  3. Ax P (2001) Das System der Metazoa III. Spektrum Akademischer Verlag, HamburgGoogle Scholar
  4. Backeljau T, Winnepenninckx B, De Bruyn L (1993) Cladistic analysis of metazoan relationships: a reappraisal. Cladistics 9:167–181Google Scholar
  5. Bieri R (1991) Systematics of the Chaetognatha. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of Chaetognaths. Oxford University Press, New York, pp 122–136Google Scholar
  6. Bone Q, Goto T (1991) The nervous system. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of Chaetognaths. Oxford University Press, New York, pp 18–31Google Scholar
  7. Bone Q, Pulsford A (1984) The sense organs and ventral ganglion of Sagitta (Chaetognatha). Acta Zool (Stockh) 65:209–220CrossRefGoogle Scholar
  8. Bone Q, Kapp H, Pierrot-Bults AC (1991) The biology of Chaetognaths. Oxford University Press, New York, pp 1–173Google Scholar
  9. Brusca RC, Brusca GJ (2003) The invertebrates, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  10. Burfield ST (1927) Sagitta. Liverpool Mar Biol Com Mem 28:1–104Google Scholar
  11. Carré D, Djediat C, Sardet C (2002) Formation of a large vasa-positive germ granule and its inheritance by germ cells in the enigmatic chaetognaths. Development 129:661–670PubMedGoogle Scholar
  12. Conway MS (2009) The Burgess Shale animal Oesia is not a chaetognath: a reply to Szaniawski. Acta Palaeontol Pol 54:175–179CrossRefGoogle Scholar
  13. Darwin C (1844) Observations on the structure and propagation of the genus Sagitta. Ann Mag Nat Hist Lond 13:1–6Google Scholar
  14. Doncaster L (1903) On the development of Sagitta, with notes on the anatomy of adult. Q J Microsc Sci 46:351–398Google Scholar
  15. Duvert M, Salat C (1979) Fine structure of muscle and other components of the trunk of Sagitta setosa (Chaetognatha). Tissue Cell 11:217–230PubMedCrossRefGoogle Scholar
  16. Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172CrossRefGoogle Scholar
  17. Elpatiewsky VW (1909) Die Urgeschlechtszellenbildung bei Sagitta. Anat Anz 35:226–239Google Scholar
  18. Feigenbaum DL (1976) Development of the adhesive organ in Spadella schizoptera (Chaetognatha) with comments on growth and pigmentation. Bull Mar Sci 26:600–603Google Scholar
  19. Ghiradelli E (1995) Chaetognaths: two unsolved problems: the coelom and their affinities. In: Lanzavecchia G, Valvassori R, Candia Carnevali MD (eds) Body cavities: function and phylogeny. Selected Symposia and Monographs, vol 8. UZI, Modena, Italy, pp 167–185Google Scholar
  20. Ghirardelli E (1953) L’accopiamento in Spadella cephaloptera Busch. Pubbl Staz Zool Napoli XXIV, Fasc 3o: 3–12Google Scholar
  21. Ghirardelli E (1968) Some aspects of the biology of the chaetognaths. Adv Arch Biol 6:271–357CrossRefGoogle Scholar
  22. Goto T (1999) Fertilization process in the arrow worm Spadella cephaloptera (Chaetognatha). Zool Sci 16:109–114CrossRefGoogle Scholar
  23. Goto T, Yoshida M (1984) Photoreception in Chaetognatha. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Publishing Corporation, New York, pp 727–742CrossRefGoogle Scholar
  24. Goto T, Yoshida M (1985) The mating sequence of the benthic arrowworm Spadella schizoptera. Biol Bull 169:328–333CrossRefGoogle Scholar
  25. Goto T, Yoshida M (1987) Nervous system in Chaetognatha. In: Ali MA (ed) Nervous systems in invertebrates. Plenum Publishing Corporation, New York, pp 461–481CrossRefGoogle Scholar
  26. Goto T, Yoshida M (1997) Growth and reproduction of the benthic arrowworm Paraspadella gotoi (Chaetognatha) in laboratory culture. Invert Repro Dev 32:210–207CrossRefGoogle Scholar
  27. Goto T, Katayama-Kumoi Y, Tohyama M, Yoshida M (1992) Distribution and development of the serotonin-and RFamide-like immunoreactive neurons in the arrowworm, Paraspadella gotoi (Chaetognatha). Cell Tissue Res 267:215–222CrossRefGoogle Scholar
  28. Harzsch S, Müller CHG (2007) A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms) and the evolution of the bilaterian nervous system. Front Zool 4:14PubMedCentralPubMedCrossRefGoogle Scholar
  29. Harzsch S, Wanninger A (2009) Evolution of invertebrate nervous systems: the Chaetognatha as a case study. Acta Zool (Stockh) 91:35–41CrossRefGoogle Scholar
  30. Harzsch S, Müller CHG, Rieger V, Perez Y, Sintoni S, Sardet C, Hansson B (2009) Fine structure of the ventral nerve centre and interspecific identification of individual neurons in the enigmatic Chaetognatha. Zoomorphology 128:53–73CrossRefGoogle Scholar
  31. Hejnol A, Martindale MQ (2009) The mouth, the anus and the blastopore – open questions about questionable openings. In: Telford MJ, Littlewood DTJ (eds) Animal evolution: genes, genomes, fossils and trees. Oxford University Press, Oxford, pp 33–40CrossRefGoogle Scholar
  32. Hertwig O (1880) Die Chaetognathen. Monatl Jenaer Z Med Nat 14:196–311Google Scholar
  33. Hyman LH (1959) Phylum Chaetognatha. Smaller coelomate groups. The invertebrates, vol 5. McGraw Hill Book Company, New York, pp 1–71Google Scholar
  34. Jenner RA (2004) Towards a phylogeny of the Metazoa: evaluating alternative phylogenetic positions of Platyhelminthes, Nemertea, and Gnathostomulida, with a critical reappraisal of cladistic characters. Contr Zool 73:3–163Google Scholar
  35. John CC (1933) Habits, structure and development of Spadella cephaloptera. Q J Microsc Sci 75:625–696Google Scholar
  36. Kapp H (1991) Morphology and anatomy. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of Chaetognaths. Oxford University Press, New York, pp 5–17Google Scholar
  37. Kapp H (2000) The unique embryology of Chaetognatha. Zool Anz 239:263–266Google Scholar
  38. Kapp H (2007) Chaetognatha, Pfeilwürmer. In: Westheide W, Rieger R (eds) Spezielle Zoologie. Teil 1. Einzeller und Wirbellose Tiere. Gustav Fischer Verlag, Stuttgart, pp 898–904Google Scholar
  39. Koch M, Quast B, Bartolomaeus T (2014) Coeloms and nephridia in annelids and arthropods. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. New insights from analyses of molecules, morphology, and theory of data analysis. De Gruyter, Berlin, pp 173–284Google Scholar
  40. Kotori M (1975) Morphology of Sagitta elegans (Chaetognatha) in Early Larval Stages. J Oceanographical Society of Japan 31:139–144Google Scholar
  41. Kuhl W (1938) Chaetognatha. In: Bronn HG (ed) Klassen und Ordnungen des Tierreiches, vol IV. Akademische Verlagsgesellschaft, Leipzig, Abt. IV, Buch 2, Teil 1Google Scholar
  42. Kuhl W, Kuhl G (1965) Die Dynamik der Frühentwicklung von Sagitta setosa. Helgol Mar Res 12:260–301Google Scholar
  43. Lacalli TC (2010) The emergence of the chordate body plan: some puzzles and problems. Acta Zool (Stockh) 9:4–10CrossRefGoogle Scholar
  44. Martindale MQ, Heijnol A (2009) A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 17:162–174PubMedCrossRefGoogle Scholar
  45. Martín-Duran JM, Janssen R, Wennberg S, Budd GE, Hejnol A (2012) Deuterostomic development in the protostome Priapulus caudatus. Curr Biol 22:2161–2166PubMedCrossRefGoogle Scholar
  46. Matus DQ, Halanych KM, Martindale MQ (2007) The Hox gene complement of a pelagic chaetognath, Flaccisagitta enflata. Int Comput Biol 47:854–864CrossRefGoogle Scholar
  47. Meglitsch PA, Schram FR (1991) Invertebrate Zoology. Oxford University Press, OxfordGoogle Scholar
  48. Müller CHG, Rieger V, Perez Y, Harzsch S (2014) Immunohistochemical and ultrastructural studies on ciliary sense organs of arrow worms (Chaetognatha). Zoomorphology 133:167–189CrossRefGoogle Scholar
  49. Nielsen C, Scharff N, Eibye-Jacobsen D (1996) Cladistic analyses of the animal kingdom. Biol J Linn Soc 57:385–410Google Scholar
  50. Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  51. Nielsen C (2005a) Larval and adult brains. Evol Dev 7:483–489PubMedCrossRefGoogle Scholar
  52. Nielsen C (2005b) Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. J Exp Zool 304B:401–447CrossRefGoogle Scholar
  53. Nielsen C (2010) Some aspects of spiralian development. Acta Zool (Stockh) 91:20–28CrossRefGoogle Scholar
  54. Nielsen C (2012) Animal evolution: interrelationships of the living phyla, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  55. Papillon D, Perez Y, Fasano L, Le Parco Y, Caubit X (2003) Hox gene survey in the chaetognath Spadella cephaloptera: evolutionary implications. Dev Genet Evol 213:142–148Google Scholar
  56. Papillon D, Perez Y, Caubit X, Le Parco Y (2004) Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Mol Biol Evol 21:2122–2129PubMedCrossRefGoogle Scholar
  57. Papillon D, Perez Y, Fasano L, Parco YL, Caubit X (2005) Restricted expression of a median Hox gene in the central nervous system of chaetognaths. Dev Genet Evol 215:369–373CrossRefGoogle Scholar
  58. Pearre S (1991) Growth and reproduction. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of Chaetognaths. Oxford University Press, New York, pp 61–75Google Scholar
  59. Perez Y, Rieger V, Martin E, Müller C, Harzsch S (2013) Neurogenesis in an early protostome relative: progenitor cells in the ventral nerve centre of chaetognath hatchlings are arranged in a highly organized geometrical pattern. J Exp Zool 320:179–193CrossRefGoogle Scholar
  60. Perez Y, Müller CHG, Harzsch S (2014) The Chaetognatha: an anarchistic taxon between Protostomia and Deuterostomia. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. Walter De Gruyter GmbH, Berlin, pp 49–74Google Scholar
  61. Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18s rDNA gene sequences. Evol Dev 3:170–205Google Scholar
  62. Reeve MR (1970) Complete cycle of development of a pelagic chaetognath in culture. Nature 227:381PubMedCrossRefGoogle Scholar
  63. Reeve MR, Lester B (1974) The process of egg-laying in the chaetognath Sagitta hispida. Biol Bull 147:247–256CrossRefGoogle Scholar
  64. Reeve MR, Walter MA (1972) Conditions of culture, food-size selection and the effects of temperature and salinity on growth rate and generation time in Sagitta hispida Conant. J Exp Mar Biol Ecol 9:191–200CrossRefGoogle Scholar
  65. Rieger V, Perez Y, Müller CHG, Lipke E, Sombke A, Hansson BS, Harzsch S (2010) Immunohistochemical analysis and 3D reconstruction of the cephalic nervous system in Chaetognatha: insights into an early bilaterian brain? Invertebr Biol 129:77–104CrossRefGoogle Scholar
  66. Rieger V, Perez Y, Müller CHG, Lacalli T, Hansson BS, Harzsch S (2011) Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Dev Growth Differ 53:740–759PubMedCrossRefGoogle Scholar
  67. Schram FR, Ellis WN (1994) Metazoan relationships: a rebuttal. Cladistics 10:331–337Google Scholar
  68. Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, OxfordCrossRefGoogle Scholar
  69. Shimotori T, Goto T (1999) Establishment of axial properties in the arrow worm embryo, Paraspadella gotoi (Chaetognatha): developmental fate of the first two blastomeres. Zool Sci 16:459–469CrossRefGoogle Scholar
  70. Shimotori T, Goto T (2001) Developmental fates of the first four blastomeres of the chaetognath Paraspadella gotoi: relationship to protostomes. Dev Growth Differ 43:371–382Google Scholar
  71. Shinn GL (1994a) Ultrastructural evidence that somatic “accessory cells” participate in chaetognath fertilization. In: Wilson WH, SA Stricker, Shinn GL (eds) Reproduction and development of marine invertebrates. Johns Hopkins Univ Press, London, pp 96–105Google Scholar
  72. Shinn GL (1994b) Epithelial origin of mesodermal structures in arrowworms (Phylum Chaetognatha) Amer Zool 34:523–532Google Scholar
  73. Shinn GL (1997) Chaetognatha. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 15, Hemichordata, Chaetognatha, and the invertebrate chordates. Wiley-Liss, New York, pp 103–220Google Scholar
  74. Shinn GL, Roberts ME (1994) Ultrastructure of hatchling chaetognaths (Ferosagitta hispida): epithelial arrangement of mesoderm and its phylogenetic implications. J Morphol 219:143–163CrossRefGoogle Scholar
  75. Szaniawski H (1982) Chaetognath grasping spines recognized among Cambrian protoconodonts. Journal Paleontol 56:806–810Google Scholar
  76. Szaniawski H (2002) New evidence for the protoconodont origin of chaetognaths. Acta Palaeontol Pol 47:405–419Google Scholar
  77. Szaniawski H (2005) Cambrian chaetognaths recognized in Burgess Shale fossils. Acta Palaeontol Pol 50:1–8Google Scholar
  78. Szaniawski H (2009) Fossil chaetognaths from the Burgess Shale: a reply to Conway Morris. Acta Palaeontol Pol 54:361–364CrossRefGoogle Scholar
  79. Takada N, Goto T, Satoh N (2002) Expression pattern of the brachyury gene in the arrow worm Paraspadella gotoi (Chaetognatha). Genesis 32:240–245PubMedCrossRefGoogle Scholar
  80. Technau U (2001) Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23:788–794PubMedCrossRefGoogle Scholar
  81. Terazaki M, Miller CB (1982) Reproduction of meso and bathypelagic chaetognaths in the genus Eukrohnia. Mar Biol 71:193–196CrossRefGoogle Scholar
  82. Turbeville JM (1986) An ultrastructural analysis of coelomogenesis in the hoplonemertine prosorhochmus americanus and the Polychaete Magelona sp. J Morphol 187:51–60Google Scholar
  83. Valentine JW (1997) Cleavage patterns and the topology of the metazoan tree of life. Proc Natl Acad Sci USA 94:8001–8005Google Scholar
  84. Vannier J, Steiner M, Renvoise E, Hu S-X, Casanova J-P (2007) Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proc R Soc Lond B 274:627–633CrossRefGoogle Scholar
  85. Welsch U, Storch V (1982) Fine structure of the coelomic epithelium of Sagitta elegans. Zoomorphology 100:217–222CrossRefGoogle Scholar
  86. Willmer P (1990) Invertebrate relationships: patterns in animal evolution. Cambridge University Press, New YorkGoogle Scholar
  87. Yasuda E, Goto T, Makabe KW, Satoh N (1997) Expression of actin genes in the arrow worm Paraspadella gotoi (Chaetognatha). Zool Sci 14:953–960PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Steffen Harzsch
    • 1
  • Carsten H. G. Müller
    • 2
  • Yvan Perez
    • 3
  1. 1.Department of Cytology and Evolutionary Biology, Zoological Institute and MuseumErnst-Moritz-Arndt-University GreifswaldGreifswaldGermany
  2. 2.Department of General and Systematic Zoology, Zoological Institute and MuseumErnst-Moritz-Arndt-University GreifswaldGreifswaldGermany
  3. 3.Aix-Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263MarseilleFrance

Personalised recommendations