EvoDevo and Its Significance for Animal Evolution and Phylogeny

  • Alessandro Minelli


Despite Steinböck’s (1963, p. 49) dismissive statement that “ontogeny has only a very limited value for phylogenetic questions,” successful attempts to infer phylogenetic relationships from comparative information about the developmental schedules of animal species are numerous, beginning with two well-known, eighteenth-century examples. One is Thompson’s (1830) discovery of the crustacean nature of barnacles, based on his observation of nauplius larvae metamorphosing into sessile adults (see Chap. XX) whose morphology deviates so strongly from the arthropod ground plan that Linné (1758) placed Lepas (inclusive of barnacles) in his Vermes Testacea (i.e., the shelled mollusks) rather than in his Insecta (a “class” broadly equivalent to present-day Arthropoda). The other example is Kowalewski’s (1866) discovery of the affinities between vertebrates and ascidians, revealed by the presence of the notochord in the larva of the latter (Chap. XX). This does not imply, however, that the relationships between ontogeny and phylogeny are always easy to discover or that these follow simple and perhaps universal principles such as Haeckel’s (1866) “biogenetic law.” Haeckel’s recapitulationist views, indeed, have never been again much in favor since Garstang (1922) demonstrated that many larval adaptations are recent and independent; and a further strong blow to the theory was de Beer’s (1930, 1940) demonstration of the pervasiveness of heterochrony. However, new opportunities to extract phylogenetic information from ontogenetic data have been emerging since the advent of evolutionary developmental biology (Telford and Budd 2003; Cracraft 2005; Minelli 2007, 2009; Minelli et al. 2007).


Gene Regulatory Network Phylogenetic Signal Germ Layer Postembryonic Development Evolutionary Developmental Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboobaker A, Blaxter M (2003a) Hox gene evolution in nematodes: novelty conserved. Curr Opin Genet Dev 13:593–598PubMedGoogle Scholar
  2. Aboobaker AA, Blaxter ML (2003b) Hox gene loss during dynamic evolution of the nematode cluster. Curr Biol 13:37–40PubMedGoogle Scholar
  3. Abzhanov A, Popadić A, Kaufman TC (1999) Chelicerate Hox genes and the homology of arthropod segments. Evol Dev 1:77–89PubMedGoogle Scholar
  4. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci U S A 97:4453–4456PubMedCentralPubMedGoogle Scholar
  5. Aguinaldo AMA, Turbeville JM, Lindford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493PubMedGoogle Scholar
  6. Alberch P (1991) From genes to phenotype: dynamical systems and evolvability. Genetica 84:5–11PubMedGoogle Scholar
  7. Alberch P, Gould SJ, Oster G, Wake D (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317Google Scholar
  8. Altenberg L (1995) Genome growth and the evolution of the genotype-phenotype map. In: Banzhaf W, Eeckman FH (eds) Evolution and biocomputation. Computational models of evolution. Springer, Berlin, pp 205–259Google Scholar
  9. Amirthalingam K, Lorens JB, Saetre BO, Salaneck E, Fjose A (1995) Embryonic expression and DNA-binding properties of zebrafish Pax-6. Biochem Biophys Res Commun 215:122–128PubMedGoogle Scholar
  10. Angelini DR, Kaufman TC (2005) Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet 39:95–119PubMedGoogle Scholar
  11. Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643PubMedGoogle Scholar
  12. Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764PubMedGoogle Scholar
  13. Atallah J, Watabe H, Kopp A (2012) Many ways to make a novel structure: a new mode of sex comb development in Drosophila. Evol Dev 14:476–483PubMedGoogle Scholar
  14. Balavoine G, de Rosa R, Adoutte A (2002) Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol 24:366–373PubMedGoogle Scholar
  15. Ball EE, Hayward DC, Saint R, Miller DJ (2004) A simple plan – cnidarians and the origins of developmental mechanisms. Nat Rev Genet 5:567–577PubMedGoogle Scholar
  16. Barmina O, Kopp A (2007) Sex-specific expression of a Hox gene associated with rapid morphological evolution. Dev Biol 311:277–286PubMedGoogle Scholar
  17. Barrantes G, Eberhard WG (2010) Ontogeny repeats phylogeny in Steatoda and Latrodectus spiders. J Arachnol 38:485–494Google Scholar
  18. Beklemishev VN (1963) On the relationships of the Turbellaria to other groups of the animal kingdom. In: Dougherty EC (ed) The lower metazoa. Comparative biology and phylogeny. University of California Press, Berkeley, pp 234–244Google Scholar
  19. Bininda-Emonds ORP, Jeffery JE, Coates MI, Richardson MK (2002) From Haeckel to event-pairing: the evolution of developmental sequences. Theory Biosci 121:297–320Google Scholar
  20. Blin M, Rabet N, Deutsch JS, Mouchel-Vielh E (2003) Possible implication of Hox genes Abdominal-B and abdominal-A in the specification of genital and abdominal segments in cirripedes. Dev Genes Evol 213:90–96PubMedGoogle Scholar
  21. Boero F, Gravili C, Pagliara P, Piraino S, Bouillon J, Schmid V (1998) The Cnidarian premises of metazoan evolution: from triploblasty, to coelom formation, to metamery. Ital J Zool 65:5–9Google Scholar
  22. Botas J, Auwers L (1996) Chromosomal binding sites of ultrabithorax homeotic proteins. Mech Dev 56:129–138PubMedGoogle Scholar
  23. Bourlat SJ, Nielsen C, Economou AD, Telford MJ (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phyl Evol 49:23–31Google Scholar
  24. Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724PubMedGoogle Scholar
  25. Brigandt I, Love AC (2010) Evolutionary novelty and the evo-devo synthesis: field notes. Evol Biol 37:93–99Google Scholar
  26. Brigandt I, Love AC (2012) Conceptualizing evolutionary novelty: moving beyond definitional debates. J Exp Zool (Mol Dev Evol) 318B:417–427Google Scholar
  27. Burton PM (2008) Insights from diploblasts; the evolution of mesoderm and muscle. J Exp Zool (Mol Dev Evol) 310B:5–14Google Scholar
  28. Butts T, Holland PWH, Ferrier DE (2008) The urbilaterian Super-Hox cluster. Trends Genet 24:259–262PubMedGoogle Scholar
  29. Cameron RA, Peterson KJ, Davidson EH (1998) Developmental gene regulation and the evolution of large animal body plans. Am Zool 38:609–620Google Scholar
  30. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36PubMedGoogle Scholar
  31. Carroll SB, Gates J, Keys D, Paddock SW, Panganiban GE, Selegue JE, Williams JA (1994) Pattern formation and eyespot determination in butterfly wings. Science 265:109–114PubMedGoogle Scholar
  32. Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity: molecular genetics and the evolution of animal design, 2nd edn. Blackwell, MaldenGoogle Scholar
  33. Casares F, Mann RS (1998) Control of antennal versus leg development in Drosophila. Nature 392:723–726PubMedGoogle Scholar
  34. Casares F, Mann RS (2001) The ground state of the ventral appendage in Drosophila. Science 293:1477–1480PubMedGoogle Scholar
  35. Chagas A Jr, Edgecombe GD, Minelli A (2008) Variability in trunk segmentation in the centipede order Scolopendromorpha: a remarkable new species of Scolopendropsis Brandt (Chilopoda: Scolopendridae) from Brazil. Zootaxa 1888:36–46Google Scholar
  36. Chipman AD (2010) Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 32:60–70PubMedGoogle Scholar
  37. Chisholm AD, Horvitz HR (1995) Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature 377:52–55PubMedGoogle Scholar
  38. Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222PubMedGoogle Scholar
  39. Collins AG, Valentine JW (2001) Defining phyla: evolutionary pathways to metazoan body plans. Evol Dev 3:432–442PubMedGoogle Scholar
  40. Conway Morris S (1998) Metazoan phylogenies: falling into place or falling to pieces? A paleontological perspective. Curr Opin Genet Dev 8:662–666Google Scholar
  41. Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763PubMedGoogle Scholar
  42. Copf T, Rabet N, Celniker SE, Averof M (2003) Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 130:5915–5927PubMedGoogle Scholar
  43. Cracraft J (2005) Phylogeny and evo-devo: characters, phylogeny and historical analysis of the evolution of development. Zoology 108:345–356PubMedGoogle Scholar
  44. Cuvier G (1812) Sur un nouveau rapprochement à établir entre les classes qui composent le règne animal. Ann Mus Nat Hist Nat Paris 19:73–84Google Scholar
  45. Czerny T, Busslinger M (1995) DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol Cell Biol 15:2858–2871PubMedCentralPubMedGoogle Scholar
  46. Davidson EH (1991) Spatial mechanisms of gene regulation in metazoan embryos. Development 113:1–26Google Scholar
  47. Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic Press, OxfordGoogle Scholar
  48. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800PubMedGoogle Scholar
  49. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C-H, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Zj P, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678PubMedGoogle Scholar
  50. Davidson EH, McClay DR, Hood L (2003) Regulatory gene networks and the properties of the developmental process. Proc Natl Acad Sci U S A 100:1475–1480PubMedCentralPubMedGoogle Scholar
  51. de Beer GR (1930) Embryology and evolution. Clarendon Press, OxfordGoogle Scholar
  52. de Beer GR (1940) Embryos and ancestors. Clarendon Press, OxfordGoogle Scholar
  53. de Beer GR (1954) The evolution of the metazoa. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen and Unwin, London, pp 24–33Google Scholar
  54. de Queiroz K (1985) The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics. Syst Zool 34:280–299Google Scholar
  55. de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776PubMedGoogle Scholar
  56. Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H, Prud’homme B, Ferrier DEK, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288PubMedGoogle Scholar
  57. Dong PDS, Chu J, Panganiban G (2001) Proximodistal domain specification and interactions in Drosophila developing appendages. Development 128:2365–2372PubMedGoogle Scholar
  58. Dray N, Tessmar-Raible K, Le Gouar M, Vibert L, Christodoulou F, Schipany K, Guillou A, Zantke J, Snyman H, Béhague J, Vervoort M, Arendt D, Balavoine G (2010) Hedgehog signaling regulates segment formation in the annelid Platynereis. Science 329:339–342PubMedCentralPubMedGoogle Scholar
  59. Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev 1994 Suppl 135–142Google Scholar
  60. Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560PubMedGoogle Scholar
  61. Duda TF, Palumbi SR (1999) Developmental shifts and species selection in gastropods. Proc Natl Acad Sci U S A 96:10272–10277PubMedCentralPubMedGoogle Scholar
  62. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedGoogle Scholar
  63. Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172Google Scholar
  64. Eernisse DJ, Albert JS, Anderson FE (1992) Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Syst Biol 41:305–330Google Scholar
  65. Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG (2012) Oskar predates the evolution of germ plasm in insects. Curr Biol 22:2278–2283PubMedGoogle Scholar
  66. Ferrier DEK (2007) Evolution of Hox gene clusters. In: Papageorgiou S (ed) Hox gene expression. Springer, New York, pp 53–67Google Scholar
  67. Ferrier DEK (2010) Evolution of Hox complexes. Adv Exp Med Biol 689:91–100PubMedGoogle Scholar
  68. Ferrier DEK (2011) Tunicates push the limits of animal evo-devo. BMC Biol 9:3PubMedCentralPubMedGoogle Scholar
  69. Ferrier DE, Holland PW (2001) Ancient origin of the Hox gene cluster. Nat Rev Genet 2:33–38PubMedGoogle Scholar
  70. Ferrier DE, Minguillon C (2003) Evolution of the Hox/ParaHox gene clusters. Int J Dev Biol 47:605–611PubMedGoogle Scholar
  71. Fink WL (1982) The conceptual relationship between ontogeny and phylogeny. Paleobiology 8:254–264Google Scholar
  72. Finnerty JR, Martindale MQ (1998) The evolution of the Hox cluster: insights from outgroups. Curr Opin Genet Dev 8:681–687PubMedGoogle Scholar
  73. Fišer C, Bininda-Emonds ORP, Blejec A, Sket B (2008) Can heterochrony help explain the high morphological diversity within the genus Niphargus (Crustacea: Amphipoda)? Org Divers Evol 8:146–162Google Scholar
  74. Fritsch M, Bininda-Emonds ORP, Richter S (2013) Unraveling the origin of Cladocera by identifying heterochrony in the developmental sequences of Branchiopoda. Front Zool 10:35PubMedCentralPubMedGoogle Scholar
  75. Galis F (2001) Key innovations and radiations. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, San Diego, pp 58–605Google Scholar
  76. Galis F, Metz JA (2001) Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J Exp Zool (Mol Dev Evol) 291:195–204Google Scholar
  77. Gao K-Q, Shubin NH (2001) Late Jurassic salamanders from northern China. Nature 410:574–577PubMedGoogle Scholar
  78. Garcia-Fernàndez J (2005a) Hox, ParaHox, ProtoHox: facts and guesses. Heredity 94:145–152PubMedGoogle Scholar
  79. Garcia-Fernàndez J (2005b) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6:881–892PubMedGoogle Scholar
  80. Garstang W (1922) The theory of recapitulation: a critical restatement of the biogenetic law. J Linnean Soc Zool 35:81–101Google Scholar
  81. Gehring WJ (2000) Reply to Meyer-Rochow. Trends Genet 16:245PubMedGoogle Scholar
  82. Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377PubMedGoogle Scholar
  83. Giribet G (2003) Molecules, development and fossils in the study of metazoan evolution: articulata versus Ecdysozoa revisited. Zoology 106:303–326Google Scholar
  84. Glardon S, Holland LZ, Gehring WJ, Holland ND (1998) Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125:2701–2710PubMedGoogle Scholar
  85. Gould SJ (1977) Ontogeny and phylogeny. The Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  86. Guralnick RP, Lindberg DR (2001) Reconnecting cell and animal lineages: what do cell lineages tell us about the evolution and development of Spiralia? Evolution 55:1501–1519PubMedGoogle Scholar
  87. Haag ES (2014) The same but different: worms reveal the pervasiveness of developmental system drift. PLoS Genet 10:e1004150PubMedCentralPubMedGoogle Scholar
  88. Hadfield MG, Carpizo-Ituarte EJ, Del Carmen K, Nedved BT (2001) Metamorphic competence, a major adaptive convergence in marine invertebrate larvae. Am Zool 41:1123–1131Google Scholar
  89. Hadži J (1955) K diskusiji o novi sistematiki živalstva (Zur Diskussion über das neue zoologische System.) Razprave, Slovenska Akademija Znanosti in Umetnosti, Razrad za Prirodoslovne in Medicinske Vede, Ljubljana 3:175–207 [In Slovenian with German summary]Google Scholar
  90. Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie, vol 1, Allgemeine Anatomie der Organismen. Reimer, BerlinGoogle Scholar
  91. Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256Google Scholar
  92. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792PubMedGoogle Scholar
  93. Hall BK (1997) Phylotypic stage or phantom, is there a highly conserved embryonic stage in vertebrates? Trends Ecol Evol 12:461–463PubMedGoogle Scholar
  94. Hall BK (1998) Evolutionary developmental biology, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  95. Hall BK, Kerney R (2012) Levels of biological organization and the origin of novelty. J Exp Zool (Mol Dev Evol) 318B:428–437Google Scholar
  96. Hall BK, Olson WM (2003) Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge, MAGoogle Scholar
  97. Harris WA (1997) Pax-6: where to be conserved is not conservative. Proc Natl Acad Sci U S A 94:2098–2100PubMedCentralPubMedGoogle Scholar
  98. Haszprunar G, von Salvini-Plawen L, Rieger RM (1995) Larval plantkotrophy. Acta Zool 76:141–154Google Scholar
  99. Hayward DC, Miller DJ, Ball EE (2004) snail expression during embryonic development of the coral Acropora: blurring the diploblast/triploblast divide? Dev Genes Evol 214:257–260PubMedGoogle Scholar
  100. Heffer A, Xiang J, Pick L (2013) Variation and constraint in Hox gene evolution. Proc Natl Acad Sci U S A 110:2211–2216PubMedCentralPubMedGoogle Scholar
  101. Hendrikse JL, Parsons TE, Hallgrímsson B (2007) Evolvability as the proper focus of evolutionary developmental biology. Evol Dev 9:93–401Google Scholar
  102. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  103. Henry JJ, Klueg KM, Raff RA (1992) Evolutionary dissociation between cleavage, cell lineage and embryonic axes in sea urchin embryos. Development 114:931–938PubMedGoogle Scholar
  104. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF, The Students of Bioinformatics Computer Labs 2004 and 2005 (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25PubMedCentralPubMedGoogle Scholar
  105. Holland LZ, Holland ND (1998) Developmental gene expression in amphioxus: new insights into the evolutionary origin of vertebrate brain regions, neural crest, and rostrocaudal segmentation. Am Zool 38:647–658Google Scholar
  106. Holland PWH (2012) Evolution of homeobox genes. WIREs Dev Biol. doi: 10.1002/wdev.78
  107. Holley SA, Jülich D, Rauch GJ, Geisler R, Nüsslein-Volhard C (2002) her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129:1175–1183Google Scholar
  108. Hueber SD, Rauch J, Djordjevic MA, Gunter H, Weiller GF, Frickey T (2013) Analysis of central Hox protein types across bilaterian clades: on the diversification of central Hox proteins from an Antennapedia/Hox7-like protein. Dev Biol 383:175–185PubMedGoogle Scholar
  109. Hughes CL, Kaufman TC (2002) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499PubMedGoogle Scholar
  110. Ivanova Kazas OM (2013) Origin of arthropods and of the clades of Ecdysozoa. Russ J Dev Biol 44:221–231Google Scholar
  111. Jacobs DK, Wray CG, Wedeen CJ, Kostriken R (2000) Molluscan engrailed expression, serial organization, and shell evolution. Evol Dev 2:340–347PubMedGoogle Scholar
  112. Jager M, Murienne J, Clabaut C, Deutsch J, Le Guyader H, Manuel M (2006) Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. Nature 441:506–508PubMedGoogle Scholar
  113. Jeffery JE, Bininda-Emonds ORP, Coates MI, Richardson MK (2005) A new technique for identifying sequence heterochrony. Syst Biol 54:230–240PubMedGoogle Scholar
  114. Jenner RA (2000) Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evol Dev 2:208–221PubMedGoogle Scholar
  115. Jiang Y-J, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408:475–479PubMedGoogle Scholar
  116. Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026PubMedGoogle Scholar
  117. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–814PubMedGoogle Scholar
  118. Kell DB (2002) Genotype–phenotype mapping: genes as computer programs. Trends Genet 18:555–559PubMedGoogle Scholar
  119. Khadjeh S, Turetzek N, Pechmann M, Schwager EE, Wimmer EA, Damen WGM, Prpic N-M (2012) Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc Natl Acad Sci U S A 109:4921–4926PubMedCentralPubMedGoogle Scholar
  120. Kluge AG (1985) Ontogeny and phylogenetic systematics. Cladistics 1:13–27Google Scholar
  121. Kmita-Cunisse M, Loosli F, Bierne J, Gehring WJ (1998) Homeobox genes in the ribbonworm Lineus sanguineus: evolutionary implications. Proc Natl Acad Sci U S A 95:3030–3035PubMedCentralPubMedGoogle Scholar
  122. Kourakis MJ, Martindale MQ (2000) Combined-method phylogenetic analysis of Hox and ParaHox genes of the metazoa. J Exp Zool 288:175–191PubMedGoogle Scholar
  123. Kowalewski A (1866) Entwicklungsgeschichte der einfachen Ascidien. Mém Acad Imp Sci St Petersburg (7)10(15):1–19Google Scholar
  124. Kozmik Z (2005) Pax genes in eye development and evolution. Curr Opin Genet Dev 15:430–438PubMedGoogle Scholar
  125. Kristensen RM (2003) Comparative morphology: do the ultrastructural investigations of Loricifera and Tardigrada support the clade Ecdysozoa? In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the 18th international congress of Zoology. Pensoft, Sofia-Moscow, pp 467–477Google Scholar
  126. Kugler JE, Kerner P, Bouquet J-M, Jiang D, Di Gregorio A (2011) Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evol Biol 11:21PubMedCentralPubMedGoogle Scholar
  127. Kulakova M, Bakalenko N, Nivikova E, Cook CE, Eliseeva E, Steinmetz PRH, Kostyuchenko RP, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217:39–54PubMedGoogle Scholar
  128. Laubichler MD (2010) Evolutionary developmental biology offers a significant challenge to the Neo-Darwinian paradigm. In: Ayala FJ, Arp R (eds) Contemporary debates in philosophy of biology. Wiley-Blackwell, New York, pp 199–212Google Scholar
  129. Lewis J, Hanisch A, Holder M (2009) Notch signaling, the segmentation clock, and the patterning of vertebrate somites. J Biol 8:44PubMedCentralPubMedGoogle Scholar
  130. Li HS, Yang JM, Jacobson RD, Pasko D, Sundin O (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: implications for stepwise determination of the lens. Dev Biol 162:181–194PubMedGoogle Scholar
  131. Lichtneckert R, Reichert H (2005) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity 94:465–477PubMedGoogle Scholar
  132. Lindberg DR, Ponder WF, Haszprunar G (2004) The Mollusca: relationships and patterns from their first half-billion years. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, Oxford, pp 252–278Google Scholar
  133. Linné C (1758) Systema Naturae per regna tria Naturae secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima. Tomus I. Apud Laurentium Salvium, HolmiaeGoogle Scholar
  134. Love AC (2008) Explaining evolutionary innovations and novelties: criteria of explanatory adequacy and epistemological prerequisites. Philos Sci 75:874–886Google Scholar
  135. Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721PubMedGoogle Scholar
  136. Maduro MF (2006) Endomesoderm specification in Caenorhabditis elegans and other nematodes. Bioessays 28:1010–1022PubMedGoogle Scholar
  137. Maduro MF, Rothman JH (2002) Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev Biol 246:68–85PubMedGoogle Scholar
  138. Mallatt J, Craig CW, Yoder MJ (2012) Nearly complete rRNA genes from 371 animalia: updated structure-based alignment and phylogenetic analysis. Mol Phylogenet Evol 63:604–617Google Scholar
  139. Manuel M, Jager M, Murienne J, Clabaut C, Le Guyader H (2006) Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 216:481–491PubMedGoogle Scholar
  140. Mara A, Schroeder J, Chalouni C, Holley SA (2007) Priming, initiation and synchronization of the segmentation clock by delta D and delta C. Nat Cell Biol 9:523–530PubMedGoogle Scholar
  141. Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (Phylum, Cnidaria; Class, Anthozoa). Development 131:2463–2474PubMedGoogle Scholar
  142. Martynov AV (2012) Ontogenetic systematics: the synthesis of taxonomy, phylogenetics, and evolutionary developmental biology. Paleontol J 46:833–864Google Scholar
  143. Mastick GS, McKay R, Oligino T, Donovan K, Lopez AJ (1995) Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast. Genetics 139:349–363PubMedCentralPubMedGoogle Scholar
  144. Maxmen A, Browne WE, Martindale MQ, Giribet G (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437:1144–1148PubMedGoogle Scholar
  145. McEdward LR, Janies DA (1997) Relationships among development, ecology and morphology in the evolution of echinoderm larvae and life cycles. Biol J Linn Soc 60:381–400Google Scholar
  146. McHugh D, Rouse GW (1998) Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends Ecol Evol 13:182–186PubMedGoogle Scholar
  147. McKinney ML (ed) (1988) Heterochrony in evolution: a multidisciplinary approach. Plenum, New YorkGoogle Scholar
  148. McKinney ML, McNamara KJ (1991) Heterochrony. The evolution of ontogeny. Plenum, New YorkGoogle Scholar
  149. McNamara KJ (1986) A guide to the nomenclature of heterochrony. J Paleontol 60:4–13Google Scholar
  150. McNamara KJ (ed) (1995) Evolutionary change and heterochrony. Wiley, ChichesterGoogle Scholar
  151. Meyer-Rochow VB (2000) The eye: monophyletic, polyphyletic or perhaps biphyletic? Trends Genet 16:244–245PubMedGoogle Scholar
  152. Mezey JG, Cheverud JM, Wagner GP (2000) Is the genotype-phenotype map modular?: a statistical approach using mouse quantitative trait loci data. Genetics 156:305–311PubMedCentralPubMedGoogle Scholar
  153. Minelli A (2000) Limbs and tail as evolutionarily diverging duplicates of the main body axis. Evol Dev 2:157–165PubMedGoogle Scholar
  154. Minelli A (2003a) The development of animal form. Cambridge University Press, CambridgeGoogle Scholar
  155. Minelli A (2003b) The origin and evolution of appendages. Int J Dev Biol 47:573–581PubMedGoogle Scholar
  156. Minelli A (2007) Invertebrate taxonomy and evolutionary developmental biology. Zootaxa 1668:55–60Google Scholar
  157. Minelli A (2009) Perspectives in animal phylogeny and evolution. Oxford University Press, OxfordGoogle Scholar
  158. Minelli A (2010) Evolutionary developmental biology does not offer a significant challenge to the Neo-Darwinian paradigm. In: Ayala FJ, Arp R (eds) Contemporary debates in philosophy of biology. Wiley-Blackwell, New York, pp 213–226Google Scholar
  159. Minelli A, Bortoletto S (1988) Myriapod metamerism and arthropod segmentation. Biol J Linn Soc 33:323–343Google Scholar
  160. Minelli A, Fusco G (2005) Conserved vs. innovative features in animal body organization. J Exp Zool (Mol Dev Evol) 304B:520–525Google Scholar
  161. Minelli A, Fusco G (eds) (2008) Evolving pathways. Key themes in evolutionary developmental biology. Cambridge University Press, CambridgeGoogle Scholar
  162. Minelli A, Fusco G (2013) Homology. In: Kampourakis K (ed) The philosophy of biology: a companion for educators. Springer, Dordrecht, pp 289–322Google Scholar
  163. Minelli A, Negrisolo E, Fusco G (2007) Reconstructing animal phylogeny in the light of evolutionary developmental biology. In: Hodkinson TR, Parnell JAN (eds) Reconstructing the tree of life: taxonomy and systematics of species rich taxa. Taylor and Francis – CRC Press, Boca Raton, pp 177–190Google Scholar
  164. Minelli A, Chagas-Júnior A, Edgecombe GD (2009) Saltational evolution of trunk segment number in centipedes. Evol Dev 11:318–322PubMedGoogle Scholar
  165. Moczek AP (2008) On the origins of novelty in development and evolution. Bioessays 30:432–447PubMedGoogle Scholar
  166. Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311PubMedCentralPubMedGoogle Scholar
  167. Moshel SM, Levine M, Collier JR (1998) Shell differentiation and engrailed expression in the Ilyanassa embryo. Dev Genes Evol 208:135–141PubMedGoogle Scholar
  168. Müller GB (1990) Developmental mechanisms at the origin of morphological novelty: a side-effect hypothesis. In: Nitecki MH (ed) Evolutionary innovations. University of Chicago Press, Chicago, pp 99–130Google Scholar
  169. Müller GB (2008) Evo-devo as a discipline. In: Minelli A, Fusco G (eds) Evolving pathways. Key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 5–30Google Scholar
  170. Müller GB, Newman SA (eds) (2003) Origination of organismal form: beyond the gene in developmental and evolutionary biology. MIT Press, Cambridge, MAGoogle Scholar
  171. Müller GB, Newman SA (2005) The innovation triad: an EvoDevo agenda. J Exp Zool (Mol Dev Evol) 304B:487–503Google Scholar
  172. Müller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Annu Rev Ecol Syst 22:229–256Google Scholar
  173. Müller GB, Wagner GP (2003) Innovation. In: Hall BK, Olson WM (eds) Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge, MA, pp 218–227Google Scholar
  174. Mundel P (1979) The centipedes (chilopoda) of the Mazon Creek. In: Nitecki MH (ed) Mazon Creek fossils. Academic, New York, pp 361–378Google Scholar
  175. Nederbragt AJ, van Loon AE, Dictus WJAG (2002) Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355PubMedGoogle Scholar
  176. Nelson GJ (1978) Ontogeny, phylogeny, paleontology and the biogenetic law. Syst Zool 27:324–345Google Scholar
  177. Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  178. Nielsen C (2003a) Defining phyla: morphological and molecular clues to metazoan evolution. Evol Dev 5:386–393PubMedGoogle Scholar
  179. Nielsen C (2003b) Proposing a solution to the Articulata-Ecdysozoa controversy. Zool Scr 32:475–482Google Scholar
  180. Nielsen C (2008) Ontogeny of the spiralian brain. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 399–416Google Scholar
  181. Oates AC, Morelli LG, Ares S (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139:625–639PubMedGoogle Scholar
  182. Özbudak EM, Lewis J (2008) Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet 4:e15PubMedCentralPubMedGoogle Scholar
  183. Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29:66–73PubMedCentralPubMedGoogle Scholar
  184. Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS, Sherbon B, Grenier JK, Fallon JF, Kimble J, Walker M, Wray GA, Swalla BJ, Martindale MQ, Carroll SB (1997) The origin and evolution of animal appendages. Proc Natl Acad Sci U S A 94:5162–5166PubMedCentralPubMedGoogle Scholar
  185. Parks AL, Parr BA, Chin J-E, Leaf DS, Raff RA (1988) Molecular analysis of heterochronic changes in the evolution of direct developing sea urchins. J Evol Biol 1:27–44Google Scholar
  186. Passamaneck YJ, Halanych KM (2004) Evidence from Hox genes that bryozoans are lophotrochozoans. Evol Dev 6:275–281PubMedGoogle Scholar
  187. Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6:893–904PubMedGoogle Scholar
  188. Peterson KJ, Cameron RA, Davidson EH (1997) Set-aside cells in maximal indirect development: evolutionary and developmental significance. BioEssays 19:623–631Google Scholar
  189. Peterson KJ, Davidson EH (2000) Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci U S A 97:4430–4433Google Scholar
  190. Peterson KJ, Irvine SQ, Cameron RA, Davidson EH (2000) Quantitative assessment of Hox complex expression in the indirect development of the polychaete annelid Chaetopterus sp. Proc Natl Acad Sci U S A 97:4487–4492PubMedCentralPubMedGoogle Scholar
  191. Peterson T, Müller GB (2013) What is evolutionary novelty? Process versus character based definitions. J Exp Zool (Mol Dev Evol) 320B:345–350Google Scholar
  192. Pigliucci M (2008) What, if anything, is an evolutionary novelty? Philos Sci 75:887–898Google Scholar
  193. Pigliucci M (2010) Genotype→phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Phil Trans R Soc B 365:557–566PubMedCentralPubMedGoogle Scholar
  194. Pigliucci M, Müller G (eds) (2010) Evolution: the extended synthesis. MIT Press, Cambridge, MAGoogle Scholar
  195. Pilato G, Binda MG, Biondi O, D’Urso V, Lisi O, Marletta A, Maugeri S, Nobile V, Rappazzo G, Sabella G, Sammartano F, Turrisi G, Viglianisi F (2005) The clade Ecdysozoa, perplexities and questions. Zool Anz 244:43–50Google Scholar
  196. Pineda D, Gonzalez J, Callaerts P, Ikeo K, Gehring WJ, Saló E (2000) Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci U S A 97:4525–4529PubMedCentralPubMedGoogle Scholar
  197. Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4:39–49PubMedGoogle Scholar
  198. Ponder WF, Lindberg DR (1997) Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool J Linn Soc 119:83–265Google Scholar
  199. Prochnik SE, Rokhsar DS, Aboobaker AA (2007) Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol 217:73–77PubMedGoogle Scholar
  200. Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105:16614–16619PubMedCentralPubMedGoogle Scholar
  201. Rabinowitz JS, Chan XY, Kingsley EP, Duan Y, Lambert JD (2008) nanos is required in somatic blast cell lineages in the posterior of a mollusc embryo. Curr Biol 18:331–336PubMedGoogle Scholar
  202. Raff RA (1996) The shape of life: genes, development and the evolution of animal form. University of Chicago Press, ChicagoGoogle Scholar
  203. Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol 196:91–106PubMedGoogle Scholar
  204. Richmond DL, Oates AC (2012) The segmentation clock: inherited trait or universal design principle? Curr Opin Genet 22:600–606Google Scholar
  205. Rieppel O (1979) Ontogeny and the recognition of primitive character states. Zschr zool Syst Evol Forsch 17:57–61Google Scholar
  206. Rivera AS, Weisblat DA (2009) And Lophotrochozoa makes three: Notch/Hes signaling in annelid segmentation. Dev Genes Evol 219:37–43PubMedCentralPubMedGoogle Scholar
  207. Robinson JM, Sperling EA, Bergum B, Adamski M, Nichols SA, Adamska M, Peterson KJ (2013) The identification of microRNAs in calcisponges: independent evolution of microRNAs in basal metazoans. J Exp Zool (Mol Dev Evol) 320B:84–93Google Scholar
  208. Rokas A, Kathirithamby J, Holland PWH (1999) Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera. Insect Mol Biol 8:527–530PubMedGoogle Scholar
  209. Sander K (1976) Specification of the basic body plan in insect embryogenesis. Adv Insect Physiol 12:125–238Google Scholar
  210. Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CC (eds) Evolution and development. Cambridge University Press, Cambridge, pp 137–159Google Scholar
  211. Sarrazin AF, Peel AD, Averof M (2012) A segmentation clock with two-segment periodicity in insects. Science 336:338–341PubMedGoogle Scholar
  212. Schierenberg E, Schulze J (2008) Many roads lead to Rome: different ways to construct a nematode. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 261–280Google Scholar
  213. Schmidt-Rhaesa A (2004) Ecdysozoa versus Articulata. Sitzungsber Ges Naturforsch Freunde Berl 43:35–49Google Scholar
  214. Schmidt-Rhaesa A (2006) Perplexities concerning the Ecdysozoa: a reply to Pilato et al. Zool Anz 244:205–208Google Scholar
  215. Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR (1998) The position of the Arthropoda in the phylogenetic system. J Morphol 238:263–285Google Scholar
  216. Scholtz G (2002) The Articulata hypothesis – or what is a segment? Org Divers Evol 2:197–215Google Scholar
  217. Scholtz G (2003) Is the taxon Articulata obsolete? Arguments in favour of a close relationship between annelids and arthropods. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the 18th international congress of zoology, Athens 2000. Pensoft, Sofia, pp 489–501Google Scholar
  218. Schulmeister S, Wheeler WC (2004) Comparative and phylogenetic analysis of developmental sequences. Evol Dev 6:50–57PubMedGoogle Scholar
  219. Schulze J, Schierenberg E (2011) Evolution of embryonic development in nematodes. EvoDevo 2:18PubMedCentralPubMedGoogle Scholar
  220. Seaver EC, Paulson D, Irvine SQ, Martindale MQ (2001) The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus does not support a role in body axis segmentation. Dev Biol 236:195–209PubMedGoogle Scholar
  221. Seipel K, Schmid V (2005) Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282:14–26PubMedGoogle Scholar
  222. Seipel K, Schmid V (2006) Mesodermal anatomies in cnidarian polyps and medusa. Int J Dev Biol 50:589–599PubMedGoogle Scholar
  223. Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zool (Mol Dev Evol) 306B:575–588Google Scholar
  224. Shankland M (2003) Evolution of body axis segmentation in the bilaterian radiation. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the 18th international congress of zoology. Pensoft, Sofia, pp 187–195Google Scholar
  225. Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823PubMedGoogle Scholar
  226. Slack JMW, Holland PWH, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492PubMedGoogle Scholar
  227. Sly BJ, Snoke MS, Raff RA (2003) Who came first – larvae or adults? Origins of bilaterian metazoan larvae. Int J Dev Biol 47:623–632PubMedGoogle Scholar
  228. Smith KK (1996) Integration of craniofacial structures during development in mammals. Am Zool 36:70–79Google Scholar
  229. Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73:169–186Google Scholar
  230. Smith KK (2002) Sequence heterochrony and the evolution of development. J Morphol 252:82–97PubMedGoogle Scholar
  231. Smith KK (2003) Time’s arrow: heterochrony and the evolution of development. Int J Dev Biol 47:613–621PubMedGoogle Scholar
  232. Spring J, Yanze N, Middel AM, Stierwald M, Gröger H, Schmid V (2000) The mesoderm specification factor twist in the life cycle of jellyfish. Dev Biol 228:363–375PubMedGoogle Scholar
  233. Stauber M, Taubert H, Schmidt-Ott U (2000) Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae). Proc Natl Acad Sci U S A 97:10844–10849PubMedCentralPubMedGoogle Scholar
  234. Steinböck O (1963) Origin and affinities of the lower metazoa: the “aceloid” ancestry of the Eumetazoa. In: Dougherty EC (ed) The lower metazoa. Comparative biology and phylogeny. University of California Press, Berkeley, pp 40–54Google Scholar
  235. Steinböck O, Ausserhofer B (1950) Zwei grundverschiedene Entwicklungsabläufe bei einer Art (Prorhynchus stagnatilis M. Sch., Turbellaria). Arch Entw Mech 144:155–177Google Scholar
  236. Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865PubMedGoogle Scholar
  237. Tabin CJ, Carroll SB, Panganiban G (1999) Out on a limb: parallels in vertebrate and invertebrate limb patterning and the origin of appendages. Am Zool 39:650–663Google Scholar
  238. Tanaka K, Barmina O, Kopp A (2009) Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs. Proc Natl Acad Sci U S A 106:4764–4769PubMedCentralPubMedGoogle Scholar
  239. Tanaka K, Barmina O, Sanders LE, Arbeitman MN, Kopp A (2011) Evolution of sex-specific traits through changes in HOX dependent doublesex expression. PLoS Biol 9:e1001131PubMedCentralPubMedGoogle Scholar
  240. Technau U, Scholz C (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47:531–539PubMedGoogle Scholar
  241. Telford MJ, Budd GE (2003) The place of phylogeny and cladistics in Evo-Devo research. Int J Dev Biol 47:479–490PubMedGoogle Scholar
  242. Telford ML, Littlewood DTJ (eds) (2009) Animal evolution: genomes, fossils, and trees. Oxford University Press, OxfordGoogle Scholar
  243. Thamm K, Seaver EC (2008) Notch signaling during larval and juvenile development in the polychaete annelid Capitella sp I. Dev Biol 320:304–318PubMedGoogle Scholar
  244. Thomas MB, Freeman G, Martin VJ (1987) The embryonic origin of neurosensory cells and the role of nerve cells in metamorphosis of Phialidium gregarium (Cnidaria, Hydrozoa). Int J Invertebr Reprod Dev 11:265–287Google Scholar
  245. Thompson JV (1830) Zoological researches. Memoir IV. On the cirripedes or barnacles; demonstrating their deceptive character; the extraordinary metamorphosis they undergo, and the class of animals to which they undisputably belong. King and Ridings, Cork, pp 69–85Google Scholar
  246. Tills O, Rundle SD, Salinger M, Haun T, Pfenninger M, Spicer JI (2011) A genetic basis for intraspecific differences in developmental timing? Evol Dev 13:542–548PubMedGoogle Scholar
  247. Tomarev SI, Callaerts P, Kos L, Zinovieva R, Halder G, Gehring W, Piatigorsky J (1997) Squid Pax-6 and eye development. Proc Natl Acad Sci U S A 94:2421–2426PubMedCentralPubMedGoogle Scholar
  248. True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119PubMedGoogle Scholar
  249. Valentine JW, Collins AG (2000) The significance of moulting in ecdysozoan evolution. Evol Dev 2:152–156PubMedGoogle Scholar
  250. Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851–859PubMedGoogle Scholar
  251. Van de Vyver G (1993) [Classe des Hydrozoaires] Reproduction sexuée – Embryologie. In: Grassé PP (ed) Traité de Zoologie, 3(2). Masson, Paris, pp 417–473Google Scholar
  252. Velhagen WA Jr (1997) Analyzing developmental sequences using sequence units. Syst Biol 46:204–210PubMedGoogle Scholar
  253. Verster A, Ramani A, McKay S, Fraser A (2014) Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet 10:e1004077PubMedCentralPubMedGoogle Scholar
  254. von Baer KE (1828) Über Entwicklungsgeschichte der Thiere: beobachtung und Reflexion, I. Bornträger, KönigsbergGoogle Scholar
  255. Wägele JW, Erikson T, Lockhart P, Misof B (1999) The Ecdysozoa: artifact or monophylum? J Zool Syst Evol Res 37:211–223Google Scholar
  256. Wagner GP (2000) What is the promise of developmental evolution? Part I: why is developmental biology necessary to explain evolutionary innovations? J Exp Zool (Mol Dev Evol) 288:95–98Google Scholar
  257. Wagner GP (ed) (2001) The character concept in evolutionary biology. Academic Press, San DiegoGoogle Scholar
  258. Wagner A (2011) The origins of evolutionary innovations. A theory of transformative change in living systems. Oxford University Press, OxfordGoogle Scholar
  259. Wagner GP (2014) Homology, genes, and evolutionary innovation. Princeton University Press, PrincetonGoogle Scholar
  260. Wagner GP, Zhang J (2011) The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat Rev Genet 12:204–213PubMedGoogle Scholar
  261. Wagner GP, Zhang J (2013) On the definition and measurement of pleiotropy. Trends Genet 29:383–384PubMedGoogle Scholar
  262. Waller TR (1998) Origin of the molluscan class Bivalvia and a phylogeny of the major groups. In: Johnston PA, Haggard JW (eds) Bivalves: an eon of evolution. University of Calgary Press, Calgary, pp 1–45Google Scholar
  263. Wanninger A, Haszprunar G (2001) The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entails (Mollusca, Scaphopoda). Evol Dev 3:312–321PubMedGoogle Scholar
  264. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New YorkGoogle Scholar
  265. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68PubMedGoogle Scholar
  266. Whiting MF, Wheeler WC (1994) Insect homeotic transformation. Nature 368:696Google Scholar
  267. Whiting M, Carpenter JC, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46:1–68PubMedGoogle Scholar
  268. Wiegmann B, Trautwein M, Kim JW, Cassel B, Bertone M, Winterton S, Yeates D (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:34PubMedCentralPubMedGoogle Scholar
  269. Wiens JJ, Bonett RM, Chippindale PT (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54:91–110PubMedGoogle Scholar
  270. Wilkins A (2001) The evolution of developmental pathways. Sinauer Associates, SunderlandGoogle Scholar
  271. Wotton KR, Alcaine Colet A, Jaeger J, Jimenez-Guri E (2013) Evolution and expression of BMP genes in flies. Dev Genes Evol 223:335–340PubMedCentralPubMedGoogle Scholar
  272. Wray GA, Raff RA (1991) The evolution of developmental strategy in marine invertebrates. Trends Ecol Evol 6:45–50PubMedGoogle Scholar
  273. Zrzavý J (2001) Ecdysozoa versus Articulata: clades, artifacts, prejudices. J Zool Syst Evol Res 39:159–163Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of BiologyUniversity of PadovaPadovaItaly

Personalised recommendations