Skip to main content

Camshafts and the Valve Train

  • Chapter
  • First Online:
Vehicular Engine Design

Part of the book series: Powertrain ((POWERTRAIN))

  • 4659 Accesses

Abstract

The poppet valve, as previously detailed in Fig. 9.5, is now used universally in four-stroke vehicular engines—both to draw fresh charge into the cylinder, and to exhaust the spent products. The valves face an especially harsh environment. Because they are exposed directly to the combustion chamber, and provide very restrictive heat transfer paths they operate at especially high temperatures. The demand for rapid opening and closing results in high impact loads, and a requirement for high hardness valves and seats. The combination of high hardness and high temperature requirements drives the selection of special steel alloys, typically with high nickel content for both the valve head and the valve seat. Most automobile valves are made as a single piece, while the valves in heavy-duty engines generally have the nickel alloy head inertia welded to a mild steel stem. Hollow stem two-piece valves are generating interest in automobile applications, for savings of both weight and cost. A valve spring and retainer assembly as shown in Fig. 9.5 completes the installation. The retainer is typically stamped from mild steel, and holds the spring in a partially compressed position with two hardened steel keepers fitted near the top of the valve stem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, J., Law, D.: Production electro-hydraulic variable valve-train for a new generation of I.C. engines. SAE 2002-01-1109 (2002)

    Google Scholar 

  • Arnold, E.B., Bara, M.A., Zang, D.M., Tunnecliffe, T.N., Oltean, J.: Development and application of a cycle for evaluating factors contributing to diesel engine valve guttering. SAE 880669 (1988)

    Google Scholar 

  • Colechin, M., Stone, C.R., Leonard, H.J.: Analysis of roller-follower valve gear. SAE 930692 (1993)

    Google Scholar 

  • Druschitz, A.P., Thelen, S.: Induction hardened ductile iron camshafts. SAE 2002-01-0918 (2002)

    Google Scholar 

  • Duffy, P.E.: An experimental investigation of sliding at cam to roller tappet contacts. SAE 930691 (1993)

    Google Scholar 

  • Flierl, R., Klüting, M.: The third generation of valvetrains—new fully variable valvetrains for throttle-free load control. SAE 2000-01-1227 (2000)

    Google Scholar 

  • Hannibal, W., Flierl, R., Stiegler, L., Meyer, R.: Overview of current continuously variable valve lift systems for four-stroke spark-ignition engines and the criteria for their design ratings. SAE 2004-01-1263 (2004)

    Google Scholar 

  • Keribar, R.: A valvetrain design analysis tool with multiple functionality. SAE 2000-01-0562 (2000)

    Google Scholar 

  • Kerres, R., Schwarz, D., Bach, M., Fuoss, K., Eichenberg, A., Wüst, J.: Overview of measurement technology for valve lift and rotation on motored and fired engines. SAE 2012-01-0159 (2012)

    Google Scholar 

  • Kirsten, K.: The variable valve train in the debate on downsizing and hybrid drives. 32nd International Vienna Motor Symposium (April 2011)

    Google Scholar 

  • Kramer, U., Phlips, P.: Phasing strategy for an engine with twin variable cam timing. SAE 2002-01-1101 (2002)

    Google Scholar 

  • Kreuter, P., Heuser, P., Reinicke-Murmann, J., Erz, R., Peter, U., Böcker, O.: Variable valve actuation—switchable and continuously variable valve lifts. SAE 2003-01-0026 (2003)

    Google Scholar 

  • Norton, R.L., Eovaldi, D., Westbrook III, J., Stene, R.L.: Effect of valve-cam ramps on valve train dynamics. SAE 1999-01-0801 (1999)

    Google Scholar 

  • Pischinger, M., Salber, W., van der Staay, F., Baumgarten, H., Kemper, H.: Benefits of the electromechanical valve train in vehicle operation. SAE 2000-01-1223 (2000)

    Google Scholar 

  • Rodriguez, J., Keribar, R., Fialek, G.: A comprehensive drive chain model applicable to valvetrain systems. SAE 2005-01-1650 (2005a)

    Google Scholar 

  • Rodriguez, J., Keribar, R., Fialek, G.: A geartrain model with dynamic or quasi-static formulation for variable mesh stiffness. SAE 2005-01-1649 (2005b)

    Google Scholar 

  • Roth, G.: Fatigue analysis methodology for predicting engine valve life. SAE 2003-01-0726 (2003)

    Google Scholar 

  • Sakaguchi, M., Yamada, S., Seki, M., Koiwa, Y., Yamauchi, T., Wakabayashi, T.: Study on reduction of timing chain friction using multi-body dynamics. SAE 2012-01-0412 (2012)

    Google Scholar 

  • Sandhu, J.S., Wehrly, M.K., Perkins, N.C., Ma, Z.-D., Design kit for accessory drives (DKAD): Dynamic analysis of serpentine belt drives. SAE 2003-01-1661 (2003)

    Google Scholar 

  • Schamel, A.R., Hammacher, J., Utsch, D.: Modeling and measurement techniques for valve spring dynamics in high revving internal combustion engines. SAE 930615 (1993)

    Google Scholar 

  • Sellnau, M., Rask, E.: Two-step variable valve actuation for fuel economy, emissions, and performance. SAE 2003-01-0029 (2003)

    Google Scholar 

  • Suh, I.-S., Lyon, R.H.: An investigation of valve train noise for the sound quality of I.C. engines. SAE 1999-01-1711 (1999)

    Google Scholar 

  • Takagishi, H., Shimoyama, K., Asari, M.: Prediction of camshaft torque and timing chain load for turbo direct injection diesel engine. SAE 2004-01-0611 (2004)

    Google Scholar 

  • Turner, J.W.G., Bassett, M.D., Pearson, R.J., Pitcher, G., Douglas, K.J.: New operating strategies afforded by fully variable valve trains. SAE 2004-01-1386 (2004)

    Google Scholar 

  • Wang, Y.: Introduction to engine valvetrains. SAE International, Warrendale, PA (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Hoag .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Vienna

About this chapter

Cite this chapter

Hoag, K., Dondlinger, B. (2016). Camshafts and the Valve Train. In: Vehicular Engine Design. Powertrain. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1859-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1859-7_17

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1858-0

  • Online ISBN: 978-3-7091-1859-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics