Skip to main content

Abstract

Cirripedes are crustaceans, where the adult forms are so structurally and biologically diverse that it would be impossible to argue from these forms alone that they belong to this group of organisms (Fig. 5.1; Anderson 1994). Yet, cirripede monophyly is assured by a similar and unique ontogeny and in recent years also by robust molecular evidence (Pérez-Losada et al. 2009). The taxon comprises three major subdivisions, the Thoracica (stalked and acorn barnacles), the Acrothoracica (burrowing barnacles), and the Rhizocephala (parasitic barnacles) (Fig. 5.2). They all have a larval development starting with a number of free-swimming naupliar instars and terminating in a cypris larva (Fig. 5.3). The nauplii serve in dispersal and growth, while the cyprid is a stage entirely specialised to settle and by a process of metamorphosis initiates the permanently juvenile and adult phase. Cirripede larvae are always easily recognisable from those of other crustaceans, but they also vary across the taxon. This is especially true for the nauplii and probably relates to differences in habitat and development. Naupliar development can be planktotrophic or lecithotrophic, and each of these schemes can be either very short or very long lasting. In addition, the larvae of different species can live and disperse at different depths, from the surface layers to the deep sea and in some species even in freshwater (Yorisue et al. 2013; Martin et al. 2014). Compared to this, the cyprid has an almost stereotyped structure, at least when studied with low-power microscopy (Høeg et al. 2004). The reason is that this larva is so specialised to its task of settlement that there is little room or need for any structural change. Yet, cyprids do differ in precisely the organs related to the very different habitats of the adults, viz. the structure of the antennules used for surface exploration and attachment, and in the sensory structures employed in locating the settlement site. But from such stereotyped cyprids, the ensuing metamorphosis leads to organisms as different as intertidal suspension feeders, commensals in the tissues of corals, or parasites so specialised they have lost any similarity to crustaceans or even to arthropods altogether.

Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A, Kaufman TC (2000) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227(2):673–689

    CAS  PubMed  Google Scholar 

  • Anderson DT (1969) On the embryology of the cirripede crustaceans Tetraclita rosea (Krauss), Tetraclita purpurascens (Wood), Chthamalus antennatus (Darwin) and Chamaesipho columna (Spengler) and some considerations of crustacean phylogenetic relationships. Phil Trans R Soc B 256:183–235

    Google Scholar 

  • Anderson DT (1987) The larval musculature of the barnacle Ibla quadrivalvis Cuvier (Cirripedia, Lepadomorpha). Proc R Soc Lond B 231:313–338

    Google Scholar 

  • Anderson DT (1994) Barnacles: structure, function, development and evolution. Clarendon Press, London

    Google Scholar 

  • Averof M, Akam M (1995) Hox genes and the diversification of insect and crustacean body plans. Nature 376(6539):420–423

    CAS  PubMed  Google Scholar 

  • Barnett AA, Thomas RH (2012) The delineation of the fourth walking leg is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evol Dev 14(4):383–392

    CAS  PubMed  Google Scholar 

  • Bender W, Spierer P, Hogness DS (1983) Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol 168(1):17–33

    CAS  PubMed  Google Scholar 

  • Bielecki J, Chan BKK, Hoeg JT, Sari A (2009) Antennular sensory organs in cyprids of balanomorphan cirripedes: standardizing terminology using Megabalanus rosa. Biofouling 25:203–214

    Google Scholar 

  • Bigelow MA (1902) The early development of Lepas. A study of cell-lineage and germ-layers. Bull Mus Comp Zool Harv Coll 40(2):62–143

    Google Scholar 

  • Blin M, Rabet et al (2003) Possible implication of Hox genes abdominal-B and abdominal-A in the specification of genital and abdominal segments in cirripedes. Dev Genes Evol 213:90–96

    PubMed  Google Scholar 

  • Blomsterberg M, Glenner H, Høeg JT (2004) Growth and molting in epizoic pedunculate barnacles genus Octolasmis (Crustacea: Thecostraca: Cirripedia: Thoracica). J Morphol 260:154–164

    PubMed  Google Scholar 

  • Bourget E, Crisp DJ (1975a) An analysis of growth bands and ridges of barnacle shell plates. J Exp Mar Biol Ecol 17:221–237

    Google Scholar 

  • Bourget E, Crisp DJ (1975b) Early changes in the shell form of Balanus balanoides. J Mar Biol Assoc U K 55:439–461

    Google Scholar 

  • Bresciani J, Høeg JT (2001) Comparative ultrastructure of the root system in rhizocephalan barnacles (Crustacea: Cirripedia: Rhizocephala). J Morphol 249:2–49

    Google Scholar 

  • Buhl-Mortensen L, Høeg JT (2006) Reproduction and larval development in three scalpellid barnacles Scalpellum scalpellum (Linnaeus 1767), Ornatoscalpellum stroemii (M. Sars 1859) and Arcoscalpellum michelottianum (Sequenza 1876), Crustacea: Cirripedia: Thoracica): implications for reproduction and dispersal in the deep sea. Mar Biol 149:829–844

    Google Scholar 

  • Burkhardt F (ed) (1996) Charles Darwin’s letters, a selection. Cambridge University Press, Cambridge

    Google Scholar 

  • Chan BKK (2003) Studies on Tetraclita squamosa and Tetraclita japonica (Cirripedia: Thoracica) II: larval morphology and development. J Crustac Biol 23:522–547

    Google Scholar 

  • Chan BKK, Leung PTY (2007) Antennular morphology of the cypris larvae of the mangrove barnacle Fistulobalanus albicostatus (Cirripedia: Thoracica: Balanomorpha). J Mar Biol Assoc U K 87:913–915

    Google Scholar 

  • Chan BKK, Poon DYN, Walker G (2005) Distribution, adult morphology, and larval development of Sacculina sinensis (Cirripedia: Rhizocephala: Kentrogonida) in Hong Kong coastal waters. J Crustac Biol 25:1–10

    Google Scholar 

  • Chen ZF, Matsumura K, Wang H, Arellano SM, Yan X, Alam I, Archer JA, Bajic VB, Qian PY (2011) Toward an understanding of the molecular mechanisms of barnacle larval settlement: a comparative transcriptomic approach. PLoS One 6(7):e22913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collis S, Walker G (1994) The morphology of the nauplius stages of Sacculina carcini (Crustacea: Cirripedia: Rhizocephala). Acta Zool (Stockh) 75:297–303

    Google Scholar 

  • Costello DP, Henley C (1976) Spiralian development: a perspective. Am Zool 16(3):277–291

    Google Scholar 

  • Cuvier G (1817) Le règne animal, distribué d’après son organisation, pour servir de base à l’histoire naturelle et d’introduction à l’anatomie comparée. Deterville, Paris

    Google Scholar 

  • Damen WG (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129(5):1239–1250

    CAS  PubMed  Google Scholar 

  • Darwin C (1851a) A monograph on the sub–class Cirripedia with figures of all species, The Lepadidae; or, pedunculated cirripedes. Ray Soc, London

    Google Scholar 

  • Darwin C (1851b) A monograph on the fossil Lepadidae or pedunculated cirripedes of Great Britain. Palaeontol Soc 5(13):1–88

    Google Scholar 

  • Darwin C (1854) A monograph on the subclass Cirripedia, with figures of all the species, The Balanidae, the Verrucidae, etc. Ray Society, London

    Google Scholar 

  • Darwin C (1855) A monograph on the fossil Darwin Balanidae and Verrucidae of Great Britain. Palaeontol Soc 8(30):1–44

    Google Scholar 

  • Darwin C (1859) The origin of species. Penguin Books, London (1968)

    Google Scholar 

  • Darwin Correspondence Project. Darwin, C. R. to Hooker, J. D. 10 May 1848. http://www.darwinproject.ac.uk/letter/entry-1174 Accessed 25 May 2014

  • de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399(6738):772–776

    CAS  PubMed  Google Scholar 

  • Delage Y (1884) Évolution de la Sacculine (Sacculina carcini Thomps) crustacé endoparasite de l’ordre nouveau des kentrogonides. Arch Zool Exp Gen 2(2):417–736

    Google Scholar 

  • Delsman HL (1917) Die Embryonalentwicklung von Balanus balanoides L. Tydschr Niderl Dier Verh 15:419–520

    Google Scholar 

  • Desplan C, Theis J, O’Farrell PH (1985) The Drosophila developmental gene, engrailed, encodes a sequence-specific DNA binding activity. Nature 318:630–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deutsch JS (2010) Darwin and barnacles. C R Biol 333:99–106

    PubMed  Google Scholar 

  • Fjose A, McGinnis WJ, Gehring WJ (1985) Isolation of a homoeobox-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313(6000):284–289

    CAS  PubMed  Google Scholar 

  • Freeman JA, Costlow JD (1983) The cyprid molt cycle and its hormonal control in the barnacle Balanus amphitrite. J Crustac Biol 3:173–182

    Google Scholar 

  • Géant E, Mouchel-Vielh E, Coutanceau JP, Ozouf-Costaz C, Deutsch JS (2006) Are Cirripedia hopeful monsters? Cytogenetic approach and evidence for a Hox gene cluster in the cirripede crustacean Sacculina carcini. Dev Genes Evol 216(7–8):443–449

    PubMed  Google Scholar 

  • Gibert JM (2002) The evolution of engrailed genes after duplication and speciation events. Dev Genes Evol 212(7):307–318

    CAS  PubMed  Google Scholar 

  • Gibert JM, Mouchel-Vielh E, Deutsch JS (1997) Engrailed duplication events during the evolution of barnacles. J Mol Evol 44(6):585–594

    CAS  PubMed  Google Scholar 

  • Gibert JM, Mouchel-Vielh E, Quéinnec E, Deutsch JS (2000) Barnacle duplicate engrailed genes: divergent expression patterns and evidence for a vestigial abdomen. Evol Dev 2:194–202

    Google Scholar 

  • Glenner H (2001) Cypris metamorphosis, injection and earliest internal development of the kentrogonid rhizocephalan Loxothylacus panopaei (Gissler) Crustacea: Cirripedia: Rhizocephala: Sacculinidae. J Morphol 249:43–75

    CAS  PubMed  Google Scholar 

  • Glenner H, Brodin B (1997) Phorbol ester-induced metamorphosis in the parasitic barnacle, Loxothylacus panopaei. J Marine Biol Assoc U K 77:261–264

    Google Scholar 

  • Glenner H, Hebsgaard MB (2006) Phylogeny and evolution of life history strategies of the parasitic barnacles (Crustacea, Cirripedia, Rhizocephala). Mol Phylogenet Evol 41:528–538

    CAS  PubMed  Google Scholar 

  • Glenner H, Høeg JT (1993) Scanning electron microscopy of metamorphosis in four species of barnacles (Cirripedia: Thoracica: Balanomorpha). Mar Biol 117:431–439

    Google Scholar 

  • Glenner H, Høeg JT (1995) A new motile, multicellular stage involved in host invasion by parasitic barnacles (Rhizocephala). Nature 337:147–150

    Google Scholar 

  • Glenner H, Høeg JT (1998) Fate of the cypris and adult adductor muscles during metamorphosis of Balanus amphitrite (Cirripedia: Thoracica). J Crustac Biol 18:463–470

    Google Scholar 

  • Glenner H, Høeg JT (2002) A scenario for the evolution of the Rhizocephala. In: Alvarez F, Escobar-Briones E (eds) Modern approaches to the study of Crustacea. Kluwer Academic/Plenum Publishers, New York, pp 301–310

    Google Scholar 

  • Glenner H, Høeg JT, Klysner A, Brodin-Larsen B (1989) Cypris ultrastructure, metamorphosis and sex in seven families of parasitic barnacles (Crustacea: Cirripedia: Rhizocephala). Acta Zool (Stockh) 70:229–242

    Google Scholar 

  • Glenner H, Høeg JT, O’Brien JJ, Sherman TD (2000) Invasive vermigon stage in the parasitic barnacles Loxothylacus texanus and L panopaei (Sacculinidae): closing of the rhizocephalan life-cycle. Mar Biol 136:249–257

    Google Scholar 

  • Glenner H, Høeg JT, Grygier MJ, Fujita Y (2008) Induced metamorphosis in crustacean y-larvae: Towards a solution to a 100-year-old riddle. BMC Biol 6:21, 6pp

    Google Scholar 

  • Gomez ED (1975) Sex determination in Balanus (Conopea) galeatus (L) (Cirripedia Thoracica). Crustaceana 28:105–107

    Google Scholar 

  • Gomez ED, Faulkner DJ, Newman WA, Ireland C (1973) Juvenile hormone mimics: effect on cirriped crustacean metamorphosis. Science 179:813–814

    CAS  PubMed  Google Scholar 

  • Gruvel A (1905) Monographie des cirrhipèdes ou thécostracés. Masson, Paris

    Google Scholar 

  • Hallberg E, Elofsson R (1983) The larval compound eye of barnacles. J Crustac Biol 3:17–25

    Google Scholar 

  • Harrison PJH, Sandeman DC (1999) Morphology of the nervous system of the barnacle cypris larvae (Balanus amphitrite Darwin) revealed by light and electron microscopy. Biol Bull Mar (Woods Hole) 197:144–158

    Google Scholar 

  • Høeg JT (1985) Cypris settlement, kentrogon formation and host invasion in the parasitic barnacle Lernaeodiscus porcellanae (Müller) (Crustacea: Cirripedia: Rhizocephala). Acta Zool (Stockh) 66:1–45

    Google Scholar 

  • Høeg JT (1987a) Male cypris metamorphosis and a new male larval form, the trichogon, in the parasitic barnacle Sacculina carcini (Crustacea: Cirripedia: Rhizocephala). Philos Trans R Soc Lond 317B:47–63

    Google Scholar 

  • Høeg JT (1987b) The relation between cypris ultrastructure and metamorphosis in male and female Sacculina carcini (Crustacea, Cirripedia). Zoomorphology 107:299–311

    Google Scholar 

  • Høeg JT (1992) The phylogenetic position of the Rhizocephala: are they truly barnacles? Acta Zool (Stockh) 73:323–326

    Google Scholar 

  • Høeg JT, Karnick L, Frølander A (1994) Scanning electron microscopy of mouth appendages in six species of barnacles (Crustacea Cirripedia Thoracica Balanomorpha). Acta Zool 75:337–357

    Google Scholar 

  • Høeg JT, Kolbasov GA (2002) Lattice organs in y-cyprids of the Facetotecta and their significance in the phylogeny of the Crustacea Thecostraca. Acta Zool (Stockh) 83:67–79

    Google Scholar 

  • Høeg JT, Møller OS (2006) When similar beginnings lead to different ends: constraints and diversity in cirripede larval development. Invertebr Reprod Dev 49:125–142

    Google Scholar 

  • Høeg JT, Lagersson NC, Glenner H (2004) The complete cypris larva and its significance in thecostracan phylogeny. In: Scholtz G (ed) Evolutionary and developmental biology of Crustacea, crustacean, vol 15. AA Balkema/Lisse, Abingdon, pp 197–215

    Google Scholar 

  • Høeg JT, Glenner H, Shields J (2005) Cirripedia Thoracica and Rhizocephala (barnacles). In: Rohde K (ed) Marine parasites. CABI Publishing Wallingford UK & CSIRO Publishing, Collingwood, pp 154–165

    Google Scholar 

  • Høeg JT, Pérez-Losada M, Glenner H, Kolbasov GA, Crandall KA (2009) Evolution of morphology, ontogeny and life cycles within the Crustacea Thecostraca. Arthropod Syst Phylogeny 67:179–217

    Google Scholar 

  • Høeg JT, Maruzzo D, Okano K, Glenner H, Chan BKK (2012) Metamorphosis in balanomorphan, pedunculated and parasitic barnacles: a video based analysis. Integr Comp Biol 52(3):337–347

    PubMed Central  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed and wingless in a centipede. Dev Biol 247(1):47–61

    CAS  PubMed  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Hox genes and the evolution of the arthropod body plan. Evol Dev 4(6):459–499

    CAS  PubMed  Google Scholar 

  • Janssen R, Prpic NM, Damen WGM (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104

    CAS  PubMed  Google Scholar 

  • Kelly MW, Sanford E (2010) The evolution of mating systems in barnacles. J Exp Mar Biol Ecol 392:37–45

    Google Scholar 

  • Klepal W (1987) A review of the comparative anatomy of the males in cirripedes. Oceanogr Mar Biol Annu Rev 25:285–351

    Google Scholar 

  • Kolbasov GA, Grygier MJ, Høeg JT, Klepal W (2008) External morphology of the two cypridiform ascothoracid-larva instars of Dendrogaster: the evolutionary significance of the two-step metamorphosis and comparison of lattice organs between larvae and adult males (Crustacea, Thecostraca, Ascothoracida). Zool Anz 247:159–183

    Google Scholar 

  • Kühl H (1950) Über die normale und die durch Gifte beeinflusste Metamorphose von Balanus improvisus DARWIN. Verh Deut Zool 1949:148–157

    Google Scholar 

  • Lagersson NC (2002) The ultrastructure of two types of muscle fibre cells in the cyprid of Balanus amphitrite (Crustacea: Cirripedia). J Mar Biol Ass, UK 82:573–578

    Google Scholar 

  • Lagersson NC, Høeg JT (2002) Settlement behavior and antennulary biomechanics in cypris larvae of Balanus amphitrite (Crustacea: Thecostraca: Cirripedia). Mar Biol 141:513–526

    Google Scholar 

  • Love AC (2002) Darwin and Cirripedia prior to 1846: exploring the origins of the barnacle research. J Hist Biol 35:251–289

    Google Scholar 

  • Manzanares M, Williams TA, Marco R, Garesse R (1996) Segmentation in the crustacean Artemia: engrailed staining studied with an antibody raised against the Artemia protein. Roux Arch Dev Biol 205(7–8):424–431

    Google Scholar 

  • Martin JW, Olesen J, Høeg JT (eds) (2014) Atlas of crustacean larvae. John Hopkins University Press, Baltimore, 370 pp

    Google Scholar 

  • Maruzzo D, Conlan S, Aldred N, Clare AS, Høeg JT (2011) Video observation of antennulary sensory setae during surface exploration in cyprids of Balanus amphitrite. Biofouling 27(2):225–239

    PubMed  Google Scholar 

  • Maruzzo D, Aldred N, Clare AS, Høeg JT (2012) Metamorphosis in the cirripede crustacean Balanus amphitrite. PLoS One 7(5):e37408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno E, Morata G (1999) Caudal is the Hox gene that specifies the most posterior Drosophila segment. Nature 400(6747):873–877

    CAS  PubMed  Google Scholar 

  • Mouchel-Vielh E, Rigolot C, Gibert J-M, Deutsch JS (1998) Molecules and the body plan: the Hox genes of Cirripedes (Crustacea). Mol Phylogenet Evol 9(3):382–389

    CAS  PubMed  Google Scholar 

  • Mouchel-Vielh E, Blin M, Rigolot C, Deutsch JS (2002) Expression of a homologue of the fushi tarazu (ftz) gene in a cirripede crustacean. Evol Dev 4(2):76–85

    CAS  PubMed  Google Scholar 

  • Mourlan A, Turquier Y, Baucher M-F (1985) Recherche sur l’ontogenèse des rhizocéphales II Organisation anatomique de la cypris libre de Sacculina carcini (Thompson). Cah Biol Mar 26:281–300

    Google Scholar 

  • Moyse J (1987) Larvae of lepadomorph barnacles. In: Southward A (ed) Barnacle biology, vol 5, Crustacean issues. A.A. Balkema, Rotterdam, pp 329–362

    Google Scholar 

  • Newman WA (1991) Crustaceans. In: encyclopaedia Brittannica 15th ed., Encyclopedia Britannica Inc, London, pp 840–856

    Google Scholar 

  • Nielsen C (2001) Animal evolution interrelationships of the living phyla. Oxford University Press, Oxford

    Google Scholar 

  • Ortega-Hernandez J, Brena C (2012) Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites. PLoS One 7(12):e52623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS, Sherbon B, Grenier JK, Fallon JF, Kimble J, Walker M, Wray GA, Swalla BJ, Martindale MQ, Carroll SB (1997) The origin and evolution of animal appendages. Proc Natl Acad Sci U S A 94(10):5162–5166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    CAS  PubMed  Google Scholar 

  • Peel AD, Chipman AD, Akam M (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet 6(12):905–916

    CAS  PubMed  Google Scholar 

  • Peel AD, Telford MJ, Akam M (2006) The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution. Proc Biol Sci 273(1595):1733–1742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Losada M, Høeg JT, Crandall KA (2004) Unravelling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence. Syst Biol 53:244–254

    PubMed  Google Scholar 

  • Pérez-Losada M, Harp M, Høeg JT, Achituv Y, Jones D, Watanabe H, Crandall KA (2008) The tempo and mode of barnacle evolution. Mol Phylogenet Evol 46:328–346

    PubMed  Google Scholar 

  • Pérez-Losada M, Høeg JT, Crandall KA (2009) Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea). BMC Biol 7(200):15, 12pp

    PubMed Central  PubMed  Google Scholar 

  • Pfeiffer CJ, Lowe KJ (1989) Cirral structure of the pedunculated marine barnacle, Lepas anatifera (Crustacea: Cirripedia). I Ultrastructure of the neuromuscular apparatus. Acta Zool (Stockh) 70:243–252

    Google Scholar 

  • Pononomarenko E (2014) The embryonic development of Elminius modestus Darwin, 1854 (Thecostraca: Cirripedia) PhD thesis, Humboldt Universität, Berlin

    Google Scholar 

  • Queinnec E, Mouchel-Vielh E, Guimonneau M, Gibert J-M, Turquier Y, Deutsch JS (1999) Cloning and expression of the engrailed.a gene of the barnacle Sacculina carcini. Dev Genes Evol 209:180–185

    CAS  PubMed  Google Scholar 

  • Rabet N, Gibert JM, Queinnec E, Deutsch JS, Mouchel-Vielh E (2001) The caudal gene of the barnacle Sacculina carcini is not expressed in its vestigial abdomen. Dev Genes Evol 211:172–178

    CAS  PubMed  Google Scholar 

  • Rees DJ, Noever C, Høeg JT, Ommundsen A, Glenner H (2014) On the origin of a novel parasitic-feeding mode within suspension-feeding barnacles. Curr Biol 24:1429–1434

    CAS  PubMed  Google Scholar 

  • Ritchie LE, Høeg JT (1981) The life history of Lernaeodiscus porcellanae (Cirripedia: Rhizocephala) and co-evolution with its porcellanid host. J Crustac Biol 1:334–347

    Google Scholar 

  • Rybakov AV, Høeg JT, Jensen PG, Kolbasov GA (2003) The chemoreceptive lattice organs in cypris larvae develop from naupliar setae (Thecostraca: Cirripedia, Ascothoracida and Facetotecta). Zool Anz 242:1–20

    Google Scholar 

  • Scholtz G, Patel NH, Dohle W (1994) Serially homologous engrailed stripes are generated via different cell lineages in the germ band of amphipod crustaceans (Malacostraca, Peracarida). Int J Dev Biol 38:471–478

    Google Scholar 

  • Scholtz G, Ponomarenko E, Wolff C (2009) Cirripede cleavage patterns and the origin of the Rhizocephala (Crustacea: Thecostraca). Arthropod Syst Phylogeny 67(2):219–228

    Google Scholar 

  • Semmler H, Wanninger A, Høeg JT, Scholtz G (2008) Immunocytochemical studies on the naupliar nervous system of Balanus improvisus (Crustacea, Cirripedia, Thecostraca). Arthropod Struct Dev 37:383–395

    Google Scholar 

  • Semmler H, Høeg JT, Scholtz G, Wanninger A (2009) Three-dimensional reconstruction of the naupliar musculature and a scanning electron microscopy atlas of nauplius development of Balanus improvisus (Crustacea: Cirripedia: Thoracica). Arthropod Struct Dev 38:135–145

    PubMed  Google Scholar 

  • Spremberg U, Buhl-Mortensen L, Yusa Y, Høeg JT (2012) Cypris settlement and dwarf male formation in the barnacle Scalpellum scalpellum: a model for an androdioecious reproductive system. J Exp Mar Biol Ecol 422–423:39–47

    Google Scholar 

  • Takenaka M, Suzuki A, Yamamoto T, Yamamoto M, Yoshida M (1993) Remodeling of the nauplius eye into the adult ocelli during metamorphosis of the barnacle, Balanus amphitrite hawaiiensis. Dev Growth Differ 35:245–255

    Google Scholar 

  • Tear GAM, Martinez-Arias M (1990) Isolation of an abdominal-A gene from the locust Schistocerca gregaria and its expression during early embryogenesis. Development 110:915–926

    CAS  PubMed  Google Scholar 

  • Thompson JV (1830) On the cirripedes or barnacles, demonstrating their deceptive character; the extraordinary metamorphosis they undergo, and the class of animals to which they indisputably belong. In: zoological researches, and illustrations or, natural history of nondescript or imperfectly known animals vol 1, part 1, memoir IV:69–82 + Plates IX & X, 87–88 Cork Sherforn Fund Facsimile No 2, (1968), Society for the Bibliography of Natural History c/o the British Museum (Natural History), London

    Google Scholar 

  • Thompson JV (1836) Natural history and metamorphosis of an anomalous crustaceous parasite of Carcinus maenas, the Sacculina carcini. Entomol Mag Lond 3:452–456

    Google Scholar 

  • Turquier Y (1970) Recherches sur la biologie des Cirripèdes Acrothoraciques III La métamorphose des cypris femelles de Trypetesa nassaroides et de T lampas. Archs Zool Exp Gen 111(4):573–628

    Google Scholar 

  • Turquier Y (1971) Recherches sur la biologie des Cirripèdes Acrothoraciques IV. La métamorphose des cypris mâles de Trypetesa nassaroides Turquier et de Trypetesa lampas. Archs Zool Exp Gen 112(2):301–348

    Google Scholar 

  • Turquier Y (1972) Contribution à la connaissance des Cirripèdes Acrothoraciques. Archs Zool exp gen 113:499–551

    Google Scholar 

  • van Wyhe J (2008) Darwin The story of the man and his theories of evolution. Andre Deutsch Ltd, National Geographic

    Google Scholar 

  • Walker G (1970) The histology, histochemistry and ultrastructure of the cement apparatus of three adult sessile barnacles, Elminius modestus, Balanus balanoides and Balanus hameri. Mar Biol 7:239–248

    Google Scholar 

  • Walker G (1971) A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides. Mar Biol 9:205–212

    Google Scholar 

  • Walker G (1973a) Frontal horns and associated gland cells of the nauplii of the barnacles Balanus hameri, Balanus balanoides and Elminius modestus (Crustacea Cirripedia). J Mar Biol Assoc U K 53:455–463

    Google Scholar 

  • Walker G (1973b) The early development of the cement apparatus in the barnacle species, Balanus balanoides (L) (Crustacea: Cirripedia). J Exp Mar Biol Ecol 12:305–314

    Google Scholar 

  • Walker G (1974) The fine structure of the frontal filament complex of barnacle larvae (Crustacea: Cirripedia). Cell Tissue Res 152:449–455

    CAS  PubMed  Google Scholar 

  • Walker G (1992) Cirripedia. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, vol 9, Crustacea. Wiley-Liss, New York, pp 249–311

    Google Scholar 

  • Walley LJ (1969) Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Phil Trans R Soc Lond 256B:237–280

    Google Scholar 

  • Walossek D, Høeg JT, Shirley TC (1996) Larval development of the rhizocephalan cirripede Briarosaccus tenellus (Maxillopoda: Thecostraca) reared in the laboratory: a scanning electron microscopy study. Hydrobiologia 328:9–47

    Google Scholar 

  • Yamamoto H, Kawaii S, Yoshimura E, Tachiba A, Fusetani N (1997a) 20-hydroxyecdysone regulates larval metamorphosis of the barnacle, Balanus Amphitrite. Zool Sci 14(6):887–892

    CAS  Google Scholar 

  • Yamamoto H, Okino T, Yoshimura E, Tachibana A, Shimizu K, Fusetani N (1997b) Methyl farnesoate induces larval metamorphosis of the barnacle, Balanus amphitrite via protein kinase C activation. J Exp Zool 278(6):349–355

    CAS  Google Scholar 

  • Yan Y, Chan BKK (2001) Larval development of Chthamalus malayensis (Cirripedia: Thoracica) reared in the laboratory. J Mar Biol Assoc UK 81:623–632

    Google Scholar 

  • Yan Y, Chan BKK (2004) Larval morphology of the newly identified barnacle Chthamalus neglectus (Cirripedia: Thoracica: Chthamalidae) in Hong Kong. J Crustac Biol 24:519–528

    Google Scholar 

  • Yorisue T, Kado R, Watanabe H, Høeg JT, Inoue K, Kojima K, Chan BKK (2012) Influence of water temperature on the larval development of Neoverruca sp. and Ashinkailepas seepiophila – implications for larval dispersal and settlement in the vent and seep environments. Deep Sea Res 171:33–37

    Google Scholar 

  • Yusa Y, Yoshikawa Y, Kitaura J, Kawane M, Ozaki Y, Yamato S, Høeg JT (2012) Adaptive evolution of sexual systems in pedunculate barnacles. Proc R Soc Lond B 279(1730):959–966

    Google Scholar 

Download references

Acknowledgements

The first author (JTH) is grateful for the immense support provided by my friends and coauthors. JTH also acknowledges the financial support of the Carlsberg Foundation and The Danish Council for Independent Research (FNU). The authors thank Dr. Marilyne Blin for her kind sharing of her work on Sacculina naupliar horns and Fig. 5.8A. JD thanks Dr. Emmanuèle Mouchel-Viehl and Dr. Jean-Michel Gibert for their comments on a previous version of this text. JTH also thanks his friend, Prof. Dr. scient. Andreas Wanninger, for the friendship and a truly dynamic scientific relationship during several years in Copenhagen and Prof. Dr. phil. Claus Nielsen for the unerring support of morphological research in Copenhagen. Finally, the authors thank Miss Freja Hundsen who provided invaluable advice and support when writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens T. Høeg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Høeg, J.T., Deutsch, J., Chan, B.K.K., Semmler Le, H. (2015). “Crustacea”: Cirripedia. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1853-5_5

Download citation

Publish with us

Policies and ethics