Skip to main content

“Crustacea”: Comparative Aspects of Early Development

  • Chapter
Evolutionary Developmental Biology of Invertebrates 4

Abstract

“Crustacea” – like Hexapoda, Chelicerata, and Myriapoda – are Arthropoda, but as we have seen in the previous chapter, they are not recognized as monophyletic in most recent phylogenetic analyses (Fig. 2.1; see Chap. XX and Dunn et al. 2008). Instead, “Crustacea” is a paraphyletic group and part of Pancrustacea/Tetraconata that include “Crustacea” as well as Hexapoda. Although this means that the model organism Drosophila is more closely related to the “Crustacea” than to the Chelicerata and Myriapoda, EvoDevo studies traditionally treat insect and crustacean development as independent and unrelated. Depending on the observer and the criteria used, the diversity and specialization of forms in adult as well as embryonic crustaceans is considered at least as high as in Hexapoda, Chelicerata, and Myriapoda (cf. Chaps. XX, YY, and ZZ). The diversity of a group can be explored without searching for general evolutionary forces that generate diversity, as it is fascinating in itself, and can be appreciated without further research program. Darwin changed the way diversity is understood when he convincingly argued that diversity of adults and embryos is the product of evolution. He introduced the idea of “nested relatedness” of taxa and used comparison as method to detect homologies and to prove shared evolutionary history. The research program of EvoDevo is to delineate the evolutionary processes of the past and the present that generate the diversity among the developmental modes found today.

Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alwes F, Scholtz G (2004) Cleavage and gastrulation of the euphausiacean Meganyctiphanes norvegica (Crustacea, Malacostraca). Zoomorphology 123:125–137

    Article  Google Scholar 

  • Alwes F, Scholtz G (2014) The early development of the onychopod cladoceran Bythotrephes longimanus (Crustacea, Branchiopoda). Front Zool 11:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Alwes F, Hinchen B, Extavour CG (2011) Patterns of cell lineage, movement, and migration from germ layer specification to gastrulation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 359:110–123

    Article  CAS  PubMed  Google Scholar 

  • Amma K (1911) Ueber die Differenzierung der Keimbahnzellen bei den Copepoden. Arch Zellforsch Leipzig 6:497–576

    Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford

    Google Scholar 

  • Benesch R (1969) Zur Ontogenie und Morphologie von Artemia salina L. Zool Jb Anat 86:307–458

    Google Scholar 

  • Bergh RS (1893) Beiträge zur Embryologie der Crustaceen – Zur Bildungsgeschichte des Keimstreifens von Mysis. Zool Anz 15:492–528

    Google Scholar 

  • Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115:615–627

    Article  CAS  PubMed  Google Scholar 

  • Biffis C, Alwes F, Scholtz G (2009) Cleavage and gastrulation of the dendrobranchiate shrimp Penaeus monodon (Crustacea, Malacostraca, Decapoda). Arthropod Struct Dev 38:527–540

    Article  PubMed  Google Scholar 

  • Bigelow MA (1902) The early development of Lepas. A study of cell lineage and germ layers. Bull Mus Comp Zool Harvard 40:61–144

    Google Scholar 

  • Browne W, Price A, Gerberding M, Patel N (2005) Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42:124–149

    Article  PubMed  Google Scholar 

  • Davis GK, Patel NH (2002) Short, long and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47:669–699

    Article  CAS  PubMed  Google Scholar 

  • Delsman HC (1917) Die Embryonalentwicklung von Balanus balanoides Linn. Tijdschr Ned Dierk 15:419–520

    Google Scholar 

  • Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, Von Ehrenstein G (1978) Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 75:376–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dohle W (1970) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea): I. Die Bildung der Teloblasten und ihrer Derivate. Z Morphol Tiere 67:307–392

    Article  Google Scholar 

  • Dohle W (1972) Über die Bildung und Differenzierung des postnauplialen Keimstreifs von Leptochelia spec. (Crustacea, Tanaidacea). Zool Jb Anat 89:505–566

    Google Scholar 

  • Dohle W (1976) Die Bildung und Differenzierung des postnauplialen Keimstreifs von Diastylis rathkei (Crustacea, Cumacea). II. Die Differenzierung und Musterbildung des Ektoderms. Zoomorphologie 84:235–277

    Article  Google Scholar 

  • Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Dev Suppl 104:147–160

    Google Scholar 

  • Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Sem Cell Dev Biol 8:379–390

    Article  CAS  Google Scholar 

  • Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of crustacea, vol 15, Crustacean issues. A.A.Balkema Publishers, Lisse

    Google Scholar 

  • Domazet-Loso T, Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468:815–818

    Article  CAS  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG (2005) The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 277:387–402

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Fischer AHL, Pabst T, Scholtz G (2010) Germ band differentiation in the stomatopod Gonodactylaceus falcatus and the origin of the stereotyped cell division pattern in Malacostraca (Crustacea). Arthropod Struct Dev 39:411–422

    Article  PubMed  Google Scholar 

  • Freeman G (2007) A developmental basis for the Cambrian radiation. Zool Sci 24:113–122

    Article  PubMed  Google Scholar 

  • Fuchs K (1914) Die Keimbahnentwicklung von Cyclops viridis JURINE. Zool Jb Anat Tiere 38:103–156

    Google Scholar 

  • Gerberding M, Patel NH (2004) Gastrulation in crustaceans: germ layers and cell lineages. In: Stern CD (ed) Gastrulation: from cells to embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 79–89

    Google Scholar 

  • Gerberding M, Scholtz G (1999) Cell lineage of the midline cells in the amphipod crustacean Orchestia cavimana (Crustacea, Malacostraca) during formation and separation of the germ band. Dev Genes Evol 209:91–102

    Article  CAS  PubMed  Google Scholar 

  • Gerberding M, Browne WE, Patel NH (2002) Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 129:5789–5801

    Article  CAS  PubMed  Google Scholar 

  • Goldstein B, Freeman G (1997) Axis specification in animal development. Bioessays 19:105–116

    Article  CAS  PubMed  Google Scholar 

  • Grattan RM, McCulloch RJ, Sellars MJ, Hertzler PL (2013) Ultrastructure of putative germ granules in the penaeid shrimp Marsupenaeus japonicus. Arthropod Struct Dev 42:153–164

    Article  CAS  PubMed  Google Scholar 

  • Grobben C (1879) Die Entwicklungsgeschichte der Moina rectirostris. Zugleich ein Beitrag zur Kenntnis der Anatomie der Phyllopoden. Arb Zool Inst Wien 2:203–268

    Google Scholar 

  • Gupta T, Extavour C (2013) Identification of a putative germ plasm in the amphipod Parhyale hawaiensis. EvoDevo 4:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Hannibal RL, Price AL, Patel NH (2012) The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis. Dev Biol 361:427–438

    Article  CAS  PubMed  Google Scholar 

  • Hay B, Jan LY, Jan YN (1988) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55:577–587

    Article  CAS  PubMed  Google Scholar 

  • Hejnol A, Scholtz G (2004) Clonal analysis of Distal-less and engrailed expression patterns during early morphogenesis of uniramous and biramous crustacean limbs. Dev Genes Evol 214:473–485

    CAS  PubMed  Google Scholar 

  • Hertzler PL (2002) Development of the mesendoderm in the dendrobranchiate shrimp Sicyonia ingentis. Arthropod Struct Dev 31:33–49

    Article  PubMed  Google Scholar 

  • Hertzler PL (2005) Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus) vannamei (Malacostraca, Decapoda, Dendrobranchiata). Arthropod Struct Dev 34:455–469

    Article  Google Scholar 

  • Hertzler PL, Clark WHJ (1992) Cleavage and gastrulation in the shrimp Sicyonia ingentis: invagination is accompanied by oriented cell division. Development 116:127–140

    CAS  PubMed  Google Scholar 

  • Hunnekuhl V, Wolff C (2012) Reconstruction of cell lineage and spatiotemporal pattern formation of the mesoderm in the amphipod crustacean Orchestia cavimana. Dev Dyn 241:697–717

    Article  PubMed  Google Scholar 

  • Kajishima T (1952) Experimental studies on the embryonic development of the isopod crustacean, Megaligia exotica Roux. Annat Zool Japan 25:172–181

    Google Scholar 

  • Kalinka AT, Tomancak P (2012) The evolution of early animal embryos: conservation or divergence? Trends Ecol Evol 27:385–393

    Article  PubMed  Google Scholar 

  • Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–818

    Article  CAS  PubMed  Google Scholar 

  • Klann M, Scholtz G (2014) Early embryonic development of the freshwater shrimp Caridina multidentata (Crustacea, Decapoda, Atyidae). Zoomorphology 133:295–306

    Article  Google Scholar 

  • Kojima T (2004) The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Differ 46:115–129

    Article  CAS  PubMed  Google Scholar 

  • Kühn A (1913) Die Sonderung der Keimesbezirke in der Entwicklung der Sommereier von Polyphemus pediculus De Geer. Zool Jb Anat 35:243–340

    Google Scholar 

  • Lambert JD, Nagy LM (2002) Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 420:682–686

    Article  CAS  PubMed  Google Scholar 

  • Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187

    Article  CAS  PubMed  Google Scholar 

  • Mahowald A, Illmensee K, Turner F (1976) Interspecific transplantation of polar plasm between Drosophila embryos. J Cell Biol 70:358–373

    Article  CAS  PubMed  Google Scholar 

  • Manton SM (1928) On the embryology of a mysid crustacean, Hemimysis lamornae. Phil Trans Roy Soc Lond 216:363–463

    Article  Google Scholar 

  • Mello CC, Draper BW, Priess JR (1994) The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell 77:95–106

    Article  CAS  PubMed  Google Scholar 

  • Mittmann B, Ungerer P, Klann M, Stollewerk A, Wolff C (2014) Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based on morphological landmarks. EvoDevo 5:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Nestorov P, Battke F, Levesque MP, Gerberding M (2013) The maternal transcriptome of the crustacean Parhyale hawaiensis is inherited asymmetrically to invariant cell lineages of the ectoderm and mesoderm. PLoS ONE 8:e56049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nieuwkoop PD, Sutasurya LA (1981) Primordial germ cells in the invertebrates: from epigenesis to preformation. Cambridge University Press, Cambridge

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  • Oishi S (1959) Studies on the teloblasts in the decapod embryo. I Origin of teloblasts in Heptacarpus rectirostris (Stimpson). Embryologia 4:283–309

    Article  Google Scholar 

  • Özhan-Kizil G, Havemann J, Gerberding M (2009) Germ cells in the crustacean Parhyale hawaiensis depend on Vasa protein for their maintenance but not for their formation. Dev Biol 327:230–239

    Article  PubMed  Google Scholar 

  • Papillon D, Telford MJ (2007) Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex. Dev Genes Evol 217:315–322

    Article  CAS  PubMed  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989a) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968

    Article  CAS  PubMed  Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989b) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    CAS  PubMed  Google Scholar 

  • Pawlak JB, Sellars MJ, Wood A, Hertzler PL (2010) Cleavage and gastrulation in the Kuruma shrimp Penaeus (Marsupenaeus) japonicus (Bate): a revised cell lineage and identification of a presumptive germ cell marker. Dev Growth Differ 52:677–692

    Article  CAS  PubMed  Google Scholar 

  • Price AL, Modrell MS, Hannibal RL, Patel NH (2010) Mesoderm and ectoderm lineages in the crustacean Parhyale hawaiensis display intra-germ layer compensation. Dev Biol 341:256–266

    Article  CAS  PubMed  Google Scholar 

  • Qiu GF, Chen Y, Cui Z, Zhu XL (2013) Localization of germline marker vasa homolog RNA to a single blastomere at early cleavage stages in the oriental river prawn Macrobrachium nipponense: evidence for germ cell specification by preformation. Gene 513:53–62

    Article  CAS  PubMed  Google Scholar 

  • Rehm EJ, Hannibal RL, Chaw RC, Vargas-Vila MA, Patel NH (2009) The crustacean Parhyale hawaiensis: a new model for arthropod development. Cold Spring Harb Protoc 2009:pdb emo114

    Google Scholar 

  • Renault AD, Kunwar PS, Lehmann R (2010) Lipid phosphate phosphatase activity regulates dispersal and bilateral sorting of embryonic germ cells in Drosophila. Development 137:1815–1823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136

    Article  Google Scholar 

  • Rocheleau CE, Downs WD, Lin RL, Wittmann C, Bei YX, Cha YH, Ali M, Priess JR, Mello CC (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716

    Article  CAS  PubMed  Google Scholar 

  • Rothbacher U, Bertrand V, Lamy C, Lemaire P (2007) A combinatorial code of maternal GATA, Ets and beta-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 134:4023–4032

    Article  CAS  PubMed  Google Scholar 

  • Sagawa K, Yamagata H, Shiga Y (2005) Exploring embryonic germ line development in the water flea, Daphnia magna, by zinc-finger-containing vasa as a marker. Gene Expr Patterns 5:669–678

    Article  CAS  PubMed  Google Scholar 

  • Samter M (1900) Studien zur Entwicklungsgeschichte der Leptodora hyalina Lillj. Z Wiss Zool 68:169–260

    Google Scholar 

  • Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CC (eds) Development and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Schnabel R (1997) Why does a nematode have an invariant cell lineage? Sem Cell Dev Biol 8:341–349

    Article  CAS  Google Scholar 

  • Scholtz G (1984) Untersuchungen zur Bildung und Differenzierung des postnauplialen Keimstreifs von Neomysis integer Leach (Crustacea, Malacostraca, Peracarida). Zool Jb Anat 112:295–349

    Google Scholar 

  • Scholtz G (1990) The formation, differentiation and segmentation of the post-naupliar germ band of the amphipod Gammarus pulex (L.) (Crustacea, Malacostraca, Peracarida). Proc Roy Soc Lond B 239:163–211

    Article  Google Scholar 

  • Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux’s Archiv Dev Biol 202:36–48

    Article  Google Scholar 

  • Scholtz G (2002) The Articulata hypothesis – or what is a segment? Org Divers Evol 2:197–215

    Article  Google Scholar 

  • Scholtz G (2005) Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosci 124:121–143

    Article  PubMed  Google Scholar 

  • Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos – a comparative approach. Int J Dev Biol 40:211–220

    CAS  PubMed  Google Scholar 

  • Scholtz G, Wolff C (2002) Cleavage, gastrulation, and germ disc formation of the amphipod crustacean Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Contrib Zool 71:9–28

    Google Scholar 

  • Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution – molecules, development, morphology. Springer Press, Berlin, pp 63–89

    Chapter  Google Scholar 

  • Scholtz G, Dohle W, Sandeman RE, Richter S (1993) Expression of engrailed can be lost and regained in cells of one clone in crustacean embryos. Int J Dev Biol 37:299–304

    CAS  PubMed  Google Scholar 

  • Scholtz G, Patel NH, Dohle W (1994) Serially homologous engrailed stripes are generated via different cell lineages in the germ band of amphipod crustaceans (Malacostraca, Peracarida). Int J Dev Biol 38:471–478

    CAS  PubMed  Google Scholar 

  • Shiino SM (1957) Crustacea. In: Kume M, Dan K (eds) Invertebrate embryology. Bai Fu Kan Press, Tokyo, pp 333–388 [English Translation (1968) New York: Garland]

    Google Scholar 

  • Tautz D (2004) Segmentation. Dev Cell 7:301–312

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Schmid KJ (1998) From genes to individuals: developmental genes and the generation of the phenotype. Phil Trans Roy Soc Lond B 353:231–240

    Article  CAS  Google Scholar 

  • Technau GM, Campos-Ortega JA (1986) Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster III. Commitment and proliferative capabilities of pole cells and midgut progenitors. Roux’s Arch Dev Biol 195:489–498

    Article  Google Scholar 

  • Vargas-Vila MA, Hannibal RL, Parchem RJ, Liu PZ, Patel NH (2010) A prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensis. Development 137:3469–3476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang SW, Griffin FJ, Clark WHJ (1997) Cell-cell association directed mitotic spindle orientation in the early development of the marine shrimp Sicyonia ingentis. Development 124:773–780

    CAS  PubMed  Google Scholar 

  • Weygoldt P (1958) Die Embryonalentwicklung des Amphipoden Gammarus pulex pulex (L). Zool Jb Anat 77:51–110

    Google Scholar 

  • Williamson A, Lehmann R (1996) Germ cell development in Drosophila. Annu Rev Cell Dev Biol 12:365–391

    Article  CAS  PubMed  Google Scholar 

  • Wolff C (2009) The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219:545–564

    Article  PubMed  Google Scholar 

  • Wolff C, Scholtz G (2002) Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana. Dev Biol 250:44–58

    Article  CAS  PubMed  Google Scholar 

  • Wolff C, Scholtz G (2006) Cell lineage analysis of the mandibular segment of the amphipod Orchestia cavimana reveals that the crustacean paragnaths are sternal outgrowths and not limbs. Front Zool 3:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolff C, Scholtz G (2008) The clonal composition of biramous and uniramous arthropod limbs. Proc Roy Soc B 275:1023–1028

    Article  Google Scholar 

  • Zilch R (1978) Embryologische Untersuchungen an der holoblastischen Ontogenese von Penaeus trisulcatus Leach (Crustacea, Decapoda). Zoomorphologie 90:67–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Gerberding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Wolff, C., Gerberding, M. (2015). “Crustacea”: Comparative Aspects of Early Development. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1853-5_2

Download citation

Publish with us

Policies and ethics