Mechanisms of Fish Sound Production

  • Michael L. FineEmail author
  • Eric Parmentier
Part of the Animal Signals and Communication book series (ANISIGCOM, volume 4)


Fishes have evolved multiple mechanisms for sound production, many of which utilize sonic muscles that vibrate the swimbladder or the rubbing of bony elements. Sonic muscles are among the fastest muscles in vertebrates and typically drive the swimbladder to produce one sound cycle per contraction. These muscles may be extrinsic , typically extending from the head to the swimbladder, or intrinsic , likely a more-derived condition, in which muscles attach exclusively to the bladder wall. Recently discovered in Ophidiiform fishes, slow muscles stretch the swimbladder and associated tendons, allowing sound production by rebound (cock and release). In glaucosomatids , fast muscles produce a weak sound followed by a louder one, again produced by rebound, which may reflect an intermediate in the evolution of slow to superfast sonic muscles. Historically, the swimbladder has been modeled as an underwater resonant bubble . We provide evidence for an alternative hypothesis, namely that bladder sounds are driven as a forced rather than a resonant response, thus accounting for broad tuning, rapid damping, and directionality of fish sounds. Cases of sounds that damp slowly, an indication of resonance, are associated with tendons or bones that continue to vibrate and hence drive multiple cycles of swimbladder sound. Stridulation sounds, best studied in catfishes and damselfishes, are produced, respectively, as a series of quick jerks causing rubbing of a ribbed process against a rough surface or rapid jaw closing mediated by a specialized tendon. A cladogram of sonic fishes suggests that fish sound production has arisen independently multiple times.


Acoustic communication Behavior Evolution Sound production Striated muscle Hearing 


  1. Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3082PubMedGoogle Scholar
  2. Akster AH (1981) Ultrastructure of muscles fibres in head and axial muscles of the perch (Perca fluviatilis L.). Cell Tissue Res 219:111–131PubMedGoogle Scholar
  3. Akster AH, Osse JWM (1978) Muscle fibre types in head muscles of the perch Perca fluviatilis (L), Teleostei. A histochemical and electromyographical study. Neth J Zool 28:94–110Google Scholar
  4. Alexander RM (1966) Physical aspects of swimbladder function. Biol Rev 41:141–176PubMedGoogle Scholar
  5. Alexander RM (1981) The chordates. Cambridge University Press, CambridgeGoogle Scholar
  6. Amorim MCP, Vasconcelos RO (2008) Variability in the mating calls of the Lusitanian toadfish Halobatrachus didactylus: cues for potential individual recognition. J Fish Biol 73:1267–1283. doi: 10.1111/j.1095-8649.2008.01974 Google Scholar
  7. Amorim MCP, McCracken ML, Fine ML (2002) Metabolic costs of sound production in the oyster toadfish, Opsanus tau. Can J Zool 80:830–838Google Scholar
  8. Amorim MCP, Vasconcelos RO, Parreira B (2009) Variability in the sonic muscles of the Lusitanian toadfish (Halobatrachus didactylus): acoustic signals may reflect individual quality. Can J Zool 87:718–725Google Scholar
  9. Amorim MCP, Simoes JM, Mendonca N, Bandarra NM, Almada VC, Fonseca PJ (2010) Lusitanian toadfish song reflects male quality. J Exp Biol 213:2997–3004. doi: 10.1242/jeb.044586 PubMedGoogle Scholar
  10. Appelt D, Shen V, Franzini-Armstrong C (1991) Quantitation of Ca ATPase, feet and mitochondria in superfast muscle fibres from the toadfish, Opsanus tau. J Muscle Res Cell Motil 12:543–552. doi: 10.1007/bf01738442 PubMedGoogle Scholar
  11. Au WWL, Hastings MC (2008) Principles of marine bioacoustics. Springer, New YorkGoogle Scholar
  12. Barber SB, Mowbray HM (1956) Mechanism of sound production in the sculpin. Science 124:219–220PubMedGoogle Scholar
  13. Barimo JF, Fine ML (1998) Relationship of swim-bladder shape to the directionality pattern of underwater sound in the oyster toadfish. Can J Zool 76:134–143Google Scholar
  14. Bass AH (1985) Sonic pathways in teleost fisher: a comparative HRP study. Brain Behav Evol 27:115–131PubMedGoogle Scholar
  15. Bass AH, Chagnaud BP (2012) Shared developmental and evolutionary origins for neural basis of vocal–acoustic and pectoral–gestural signaling. Proc Natl Acad Sci 109:10677–10684. doi: 10.1073/pnas.1201886109 PubMedCentralPubMedGoogle Scholar
  16. Bass AH, Marchaterre MA (1989) Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism in the ultrastructure of myofibrils. J Comp Neurol 286:141–153PubMedGoogle Scholar
  17. Bass AH, Gilland EH, Baker R (2008) Evolutionary origins for social vocalization in a vertebrate hindbrain–spinal compartment. Science 321:417–421. doi: 10.1126/science.1157632 PubMedCentralPubMedGoogle Scholar
  18. Batzler WE, Pickwell GV (1970) Resonant acoustic scattering from gasbladder fishes. In: Farquhar GB (ed) Proceedings of an international symposium on biological sound scattering in the ocean. U.S. Government Printing Office, Washington, DC, pp 168–179Google Scholar
  19. Bertucci F, Ruppé L, van Wassenbergh S, Compère P, Parmentier E (2014) New insights into the role of the pharyngeal jaw apparatus in the sound-producing mechanism of Haemulon flavolineatum (Haemulidae). J Exp Biol 217:3862–3869Google Scholar
  20. Betancur-R R et al. (2013) The tree of life and a new classification of bony fishes, edn 1. PLOS currents tree of lifeGoogle Scholar
  21. Birindelli JLO, Sousa LM, Sabaj Perez MH (2009) Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae). Proc Acad Nat Sci Phila 158:261–296Google Scholar
  22. Borie A, Mok HK, Chao NL, Fine ML (2014) Spatiotemporal variability and sound characterization in Silver Croaker Plagioscion squamosissimus (Sciaenidae) in the Central Amazon. PLOS1 9:1–8Google Scholar
  23. Bosher B, Newton S, Fine M (2006) The spine of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: an experimental study. Ethology 112:188–195Google Scholar
  24. Boyle KS, Tricas TC (2010) Pulse sound generation, anterior swim bladder buckling and associated muscle activity in the pyramid butterflyfish (Hemitaurichthys polylepis). J Exp Biol 213:3881–3893. doi: 10.1242/jeb.048710
  25. Boyle KS, Tricas TC (2011) Sound production in the longnose butterflyfishes (genus Forcipiger): cranial kinematics, muscle activity and honest signals. J Exp Biol 214:3829–3842. doi: 10.1242/jeb.062554 PubMedGoogle Scholar
  26. Boyle KS, Dewan AK, Tricas TC (2013) Fast drum strokes: novel and convergent features of sonic muscle ultrastructure, innervation, and motor neuron organization in the pyramid butterflyfish (Hemitaurichthys polylepis). J Morphol 247:377–394. doi: 10.1002/jmor.20096
  27. Bradbury J, Vehrencamp S (1998) Principles of animal communication. Sinauer Associates Inc, SunderlandGoogle Scholar
  28. Brantley R, Tseng J, Bass A (1993) The ontogeny of inter- and intrasexual vocal muscle dimorphisms in a sound producing fish. Brain Behav Evol 42:336–349PubMedGoogle Scholar
  29. Breedlove SM, Arnold AP (1980) Hormone accumulation in a sexually dimorphic nucleus of the rat spinal cord. Science 210:564–566PubMedGoogle Scholar
  30. Burkenroad MD (1930) Sound production in the Haemulidae. Copeia 1930:17–18Google Scholar
  31. Burkenroad MD (1931) Notes on the marine sound-producing fish of Louisiana. Copeia 1931:20–28Google Scholar
  32. Butler A, Saidel W (2000) Defining sameness: historical, biological, and generative homology. BioEssays 22:846–853PubMedGoogle Scholar
  33. Carlson B, Bass A (2000) Sonic/vocal motor pathways in squirrelfish (Teleostei, Holocentridae). Brain Behav Evol 56:14–28PubMedGoogle Scholar
  34. Casadevall M, Matallanas J, Carrasson M, Munoz M (1996) Morphometric, meristic and anatomical differences between Ophidion barbatum L., 1758 and O. rochei Muller, 1845 (Pisces, Ophidiidae). Publ Especiales Inst Esp Oceanogr 21:45–61Google Scholar
  35. Chagnaud BP, Baker R, Bass AH (2011) Vocalization frequency and duration are coded in separate hindbrain nuclei. Nat Commun 2:346PubMedCentralPubMedGoogle Scholar
  36. Chagnaud BP, Zee MC, Baker R, Bass AH (2012) Innovations in motoneuron synchrony drive rapid temporal modulations in vertebrate acoustic signaling. J Neurophysiol 107:3528–3542. doi: 10.1152/jn.00030.2012 PubMedCentralPubMedGoogle Scholar
  37. Chardon M (1968) Anatomie comparée de l’appareil de Weber et des structures connexes chez les Siluriformes. Ann Mus R Afr Centr 169:1–273Google Scholar
  38. Chen SF, Huang BQ, Chien YY (1998) Histochemical characteristics of sonic muscle fibers in Tigerperch, Terapon jarbua. Zool Stud 37:56–62Google Scholar
  39. Chiu K-H, Hsieh F-M, Chen Y-Y, Huang H-W, Shiea J, Mok H-K (2013) Parvalbumin characteristics in the sonic muscle of a freshwater ornamental grunting toadfish (Allenbatrachus grunniens). Fish Physiol Biochem 39:107–119. doi: 10.1007/s10695-012-9683-4 PubMedGoogle Scholar
  40. Coffin AB, Zeddies DG, Fay RR et al (2014) Use of the swim bladder and lateral line in near-field sound source localization by fish. J Exp Biol 217:2078–2088Google Scholar
  41. Cohen M, Winn H (1967) Electrophysiological observations on hearing and sound production in the fish, Porichthys notatus. J Exp Biol 165:355–370Google Scholar
  42. Colleye O, Frederich B, Vandewalle P, Casadevall M, Parmentier E (2009) Agonistic sounds in the skunk clownfish Amphiprion akallopisos: size-related variation in acoustic features. J Fish Biol 75:908–916. doi: 10.1111/j.1095-8649.2009.02316.x PubMedGoogle Scholar
  43. Colleye O, Vandewalle P, Lanterbecq D, Lecchini D, Parmentier E (2011) Interspecific variation of calls in clownfishes: degree of similarity in closely related species. BMC Evol Biol 11:365PubMedCentralPubMedGoogle Scholar
  44. Colleye O, Nakamura M, Frédérich B, Parmentier E (2012) Further insight into the sound-producing mechanism of clownfishes: what structure is involved in sound radiation? J Exp Biol 215:2192–2202. doi: 10.1242/jeb.067124 PubMedGoogle Scholar
  45. Colson D, Patek S, Brainerd E, Lewis S (1998) Sound production during feeding in Hippocampus seahorses (Syngnathidae). Environ Biol Fishes 51:221–229. doi: 10.1023/a:1007434714122
  46. Connaughton MA (2004) Sound generation in the searobin (Prionotus carolinus), a fish with alternate sonic muscle contraction. J Exp Biol 207:1643–1654. doi: 10.1242/jeb.00928 PubMedGoogle Scholar
  47. Connaughton MA, Taylor MH (1995) Seasonal and daily cycles in sound production associated with spawning in weakfish, Cynoscion regalis. Environ Biol Fishes 42:233–240Google Scholar
  48. Connaughton MA, Fine ML, Taylor MH (1997) The effect of seasonal hypertrophy and atrophy of fiber morphology, metabolic substrate concentration and sound characteristics of the weakfish sonic muscle. J Exp Biol 200:2449–2457PubMedGoogle Scholar
  49. Connaughton MA, Fine ML, Taylor MH (2002) Weakfish sonic muscle: influence of size, temperature and season. J Exp Biol 205:2183–2188PubMedGoogle Scholar
  50. Coombs S, Popper AN (1979) Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol A 132:203–207. doi: 10.1007/bf00614491 Google Scholar
  51. Courtenay W (1971) Sexual dimorphism of the sound producing mechanism of the striped cusk eel, Rissola marginata (Pisces: Ophidiidae). Copeia 2:259–268Google Scholar
  52. Crockford T, Johnston IA (1993) Developmental changes in the composition of myofibrillar proteins in the swimming muscles of Atlantic herring, Clupea harengus. Mar Biol 115:15–22. doi: 10.1007/bf00349381 Google Scholar
  53. De Jong K, Bouton N, Slabbekoorn H (2007) Azorean rock-pool blennies produce size-dependent calls in a courtship context. Anim Behav 74:1285–1292Google Scholar
  54. de Pinna MCC (1996) A phylogenetic analysis of the Asian catfish families Sisoridae, Akysidae, and Amblycipitidae, with a hypothesis on the relationships of the neotropical Aspredinidae (Teleostei, Ostariophysi). Fieldiana Zool 1996:1–83Google Scholar
  55. Demski LS, Gerald JW (1972) Sound production evoked by electrical stimulation of the brain in toadfish (Opsanus beta). Anim Behav 20:504–513Google Scholar
  56. Demski LS, Gerald JW (1974) Sound production and other behavioral effects of midbrain stimulation in the free-swimming toadfish, Opsanus beta. Brain Behav Evol 9:41–59PubMedGoogle Scholar
  57. Demski LS, Gerald JW, Popper AN (1973) Central and peripheral mechanisms of teleost sound production. Am Zool 13:1141–1167Google Scholar
  58. Devincenti CV, Diaz AO, Goldenberg AL (2000) Characterization of the swimming muscle of the anchovy Engraulis anchoita (Hubbs and Martini 1935). Anat Histol Embryol 29:197–202PubMedGoogle Scholar
  59. Eichelberg H (1976) The fine structure of the drum muscles of the tigerfish Therapon jarbua, as compared with the trunk musculature. Cell Tissue Res 174:453–463PubMedGoogle Scholar
  60. Eichelberg H (1977) Fine structure of the drum muscles of the piranha (Serrasalminae, Characidae). Cell Tissue Res 185:547–555. doi: 10.1007/bf00220658 PubMedGoogle Scholar
  61. Evans RR (1973) The swimbladder and associated structures in Western Atlantic sea robins (Triglidae). Copeia 1973:315–321Google Scholar
  62. Fänge R, Wittenberg JB (1958) The swimbladder of the toadfish (Opsanus tau L.). Biol Bull 115:172–179Google Scholar
  63. Fawcett DW, Revel JP (1961) The sarcoplasmic reticulum of a fast-acting fish muscle. J Biophys Biochem Cytol 10:89–109PubMedCentralPubMedGoogle Scholar
  64. Feher J, Waybright T, Fine M (1998) Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle. J Muscle Res Cell Motil 19:661–674. doi: 10.1023/a:1005333215172 PubMedGoogle Scholar
  65. Feuillade C, Nero RW (1998) A visco-elastic swimbladder model for describing enhanced-frequency resonance scattering from fish. J Acoust Soc Am 103:3245–3255. doi: 10.1121/1.423076
  66. Fine ML (1978a) Geographical variation in sound production evoked by brain stimulation in the oyster toadfish. Naturwissenschaften 65:493. doi: 10.1007/bf00702846 Google Scholar
  67. Fine ML (1978b) Seasonal and geographical variation of the mating call of the oyster toadfish Opsanus tau L. Oecologia 36:45–57Google Scholar
  68. Fine ML (1997) Endocrinology of sound production in fishes. Mar Freshw Behav Physiol 29:23–45Google Scholar
  69. Fine ML (2012) Swimbladder sound production: the forced response versus the resonant bubble. Bioacoustics 21:5–7Google Scholar
  70. Fine ML, Ladich F (2003) Sound production, spine locking and related adaptations. In: Kapoor BG, Arratia G, Chardon M, Diogo R (eds) Catfishes. Science Publishers, Enfield, pp 248–290Google Scholar
  71. Fine ML, Lenhardt ML (1983) Shallow-water propagation of the toadfish mating call. Comp Biochem Physiol A Physiol 76:225–231 doi: 10.1016/0300-9629(83)90319-5
  72. Fine ML, Pennypacker KR (1988) Histochemical typing of sonic muscle from the oyster toadfish. Copeia 1988:130–134Google Scholar
  73. Fine ML, Winn HE, Joest L, Perkins PJ (1977a) Temporal aspects of calling behavior in the oyster toadfish, Opsanus tau. Fish Bull 75:871–874Google Scholar
  74. Fine ML, Winn HE, Olla BL (1977b) Communication in fishes. In: Sebeok T (ed) How animals communicate. Indiana University Press, Bloomington, pp 472–518Google Scholar
  75. Fine ML, Keefer D, Leichnetz GR (1982) Testosterone uptake in the brainstem of a sound-producing fish. Science 215:1265–1267PubMedGoogle Scholar
  76. Fine ML, Economos D, Radtke R, McClung JR (1984) Ontogeny and sexual dimorphism of the sonic motor nucleus in the oyster toadfish. J Comp Neurol 225:105–110. doi: 10.1002/cne.902250111 PubMedGoogle Scholar
  77. Fine M, Burns N, Harris T (1990) Ontogeny and sexual dimorphism of sonic muscle in the oyster toadfish. Can J Zool 68:1374–1381Google Scholar
  78. Fine ML, Bernard B, Harris TM (1993) Functional morphology of toadfish sonic muscle fibers: relationship to possible fiber division. Can J Zool 71:2262–2274. doi: 10.1139/z93-318
  79. Fine ML, McKnight JW Jr, Blem CR (1995) Effect of size and sex on buoyancy in the oyster toadfish. Mar Biol 123:401–409. doi: 10.1007/bf00349218 Google Scholar
  80. Fine ML, McElroy D, Rafi J, King CB, Loesser KE, Newton S (1996) Lateralization of pectoral stridulation sound production in the channel catfish. Physiol Behav 60:753–757. doi: 10.1016/0031-9384(96)00092-3 PubMedGoogle Scholar
  81. Fine ML, Friel J, McElroy D, King C, Loesser K, Newton S (1997) Pectoral spine locking and sound production in the channel catfish Ictalurus punctatus. Copeia 1997:777–790Google Scholar
  82. Fine ML, King C, Friel J, Loesser K, Newton S (1999) Sound production and locking of the pectoral spine of the channel catfish. Am Fish Soc Symp 24:105–114Google Scholar
  83. Fine ML, Malloy KL, King CB, Mitchell SL, Cameron TM (2001) Movement and sound generation by toadfish swimbladder. J Comp Physiol A 187:371–379PubMedGoogle Scholar
  84. Fine ML, Schrinel J, Cameron TM (2004) The effect of loading on disturbance sounds of the Atlantic croaker Micropogonius undulatus: air versus water. J Acoust Soc Am 116:1271–1275PubMedGoogle Scholar
  85. Fine ML, Lin H, Nguyen BB, Rountree RA, Cameron TM, Parmentier E (2007) Functional morphology of the sonic apparatus in the fawn cusk-eel Lepophidium profundorum (Gill 1863). J Morphol 268:953–966. doi: 10.1002/jmor.10551 PubMedGoogle Scholar
  86. Fine ML, King CB, Cameron TM (2009) Acoustical properties of the swimbladder in the oyster toadfish Opsanus tau. J Exp Biol 212:3542–3552. doi: 10.1242/jeb.033423 PubMedCentralPubMedGoogle Scholar
  87. Fine ML et al (2011) A primer on functional morphology and behavioural ecology of the pectoral spine of the channel catfish. Am Fish Soc Symp 77:745–753Google Scholar
  88. Fine ML, Lahiri S, Sullivan ADH, Mayo M, Newton SH, Sismour EN (2014) Reduction of the pectoral spine and girdle in domesticated channel catfish is likely caused by changes in selection pressure. Evolution 68:2102–2107. doi: 10.1111/evo.12379 PubMedGoogle Scholar
  89. Finger TE, Kalil K (1985) Organization of motoneuronal pools in the rostral spinal cord of the sea robin, Prionotus carolinus. J Comp Neurol 239:384–390PubMedGoogle Scholar
  90. Fish MP (1953) The production of underwater sounds by the northern seahorse, Hippocampus hudsonius. Copeia 1953:98–99Google Scholar
  91. Fish MP (1954) The character and significance of sound production among fishes of the Western North Atlantic Ocean. Bull Bingham Oceanogr Col 14:1–109Google Scholar
  92. Fish JF (1972) The effect of sound playback on the toadfish. In: Winn HE, Olla BL (eds) Behavior of marine animals, vol 2. Plenum Press, New York, pp 386–434Google Scholar
  93. Fish MP, Mowbray HM (1970) Sounds of Western North Atlantic fishes. The Johns Hopkins Press, BaltimoreGoogle Scholar
  94. Fletcher LB, Crawford JD (2001) Acoustic detection by sound-producing fishes (Mormyridae): the role of gas-filled tympanic bladders. J Exp Biol 204:175–183Google Scholar
  95. Focant B, Huriaux F, Vandewalle P, Castelli M, Goessens G (1992) Myosin, parvalbumin and myofibril expression in barbel (Barbus barbus L.) lateral white muscle during development. Fish Physiol Biochem 10:133–143. doi: 10.1007/bf00004524 PubMedGoogle Scholar
  96. Focant B, Vandewalle P, Huriaux F (2003) Expression of myofibrillar proteins and parvalbumin isoforms during the development of a flatfish, the common sole Solea solea: comparison with the turbot Scophthalmus maximus. Comp Biochem Physiol Part B Biochem Mol Biol 135:493–502. doi: 10.1016/S1096-4959(03)00116-7
  97. Francis DTI, Foote KG (2003) Depth-dependent target strengths of gadoids by the boundary-element method. J Acoust Soc Am 114:3136–3146. doi: 10.1121/1.1619982
  98. Gainer H (1969) Multiple innervation of fish skeletal muscle. In: Kerkut GA (ed) Experiments in physiology and biochemistry, vol 2. Academic Press, New York, pp 191–208Google Scholar
  99. Gerday C (1982) Soluble calcium-binding proteins from fish and invertebrate muscle. Mol Physiol 2:63–87Google Scholar
  100. Gill T (1905) The life history of the sea-horses (hippocampids). Proc US Natl Mus 28:805–814Google Scholar
  101. Gilland E, Baker R (1993) Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat 148:110–123PubMedGoogle Scholar
  102. Gkenas C, Malavasi S, Georgalas V, Leonardos ID, Torricelli P (2010) The reproductive behavior of Economidichthys pygmaeus: secondary loss of sound production within the sand goby group? Environ Biol Fishes 87:299–307Google Scholar
  103. Gray GA, Winn HE (1961) Reproductive ecology and sound production of the toadfish, Opsanus tau. Ecology 42:274–282Google Scholar
  104. Guest WC, Lasswell JL (1978) A note on courtship behavior and sound production of red drum. Copeia 1978:337–338Google Scholar
  105. Hamoir G, Focant B (1981) Proteinic differences between the sarcoplasmic reticulum of the superfast swimbladder and the fast skeletal muscles of the toadfish Opsanus tau. Mol Physiol 1:353–359Google Scholar
  106. Hamoir G, Gerardin-Otthiers N, Focant B (1980) Protein differentiation of the superfast swimbladder muscle of the toadfish Opsanus tau. J Mol Biol 143:155–160. doi: 10.1016/0022-2836(80)90129-1
  107. Harris GG (1964) Considerations on the physics of sound production by fishes. In: Tavolga WN (ed) Marine bio-acoustics, vol 1. Pergamon Press, New-York, pp 233–247Google Scholar
  108. Hawkins AD (1993) Underwater sound and fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes, 2nd edn. Chapman & Hall, London, pp 129–169Google Scholar
  109. Heyd A, Pfeiffer W (2000) Über die Lauterzeugung der Welse (Siluroidei, Ostariophysi, Teleostei) und ihren Zusammenhang mit der Phylogenese und der Schreckreaktion. Rev Suisse Zool 107:165–211Google Scholar
  110. Hirsch JE, Bigbee JW, Fine ML (1998) Continuous adult development of multiple innervation in toadfish sonic muscle. J Neurobiol 36:348–356PubMedGoogle Scholar
  111. Horch K, Salmon M (1973) Adaptations to the acoustic environment by the squirrelfish Myripristis violaceus and M. pralinius. Mar Behav Physiol 2:121–139Google Scholar
  112. Howes G (1992) Notes on the anatomy and classification of Ophidiiform fishes with particular reference to the abyssal genus Acanthonus Günther, 1878. Bull Br Mus Nat Hist 58:95–131Google Scholar
  113. Hubbs CL, Hibbard CW (1951) Ictalurus lambda, a new catfish, based on a pectoral spine from the lower Pliocene of Kansas. Copeia 1951:8–14Google Scholar
  114. Huriaux F, Baras E, Vandewalle P, Focant B (2003) Expression of myofibrillar proteins and parvalbumin isoforms in white muscle of dorada during development. J Fish Biol 62:774–792. doi: 10.1046/j.1095-8649.2003.00064.x Google Scholar
  115. Johnston CE, Johnson DL (2000a) Sound production during the spawning season in cavity-nesting darters of the subgenus Catonotus (Percidae: Etheostoma). Copeia 2000:475–481Google Scholar
  116. Johnston IA (1981) Structure and function of fish muscles. Symp Zool Soc Lond 48:71–113Google Scholar
  117. Johnston CE, Johnson DL (2000b) Sound production in Pimephales notatus (Rafinesque) (Cyprinidae). Copeia 2000:567–571Google Scholar
  118. Johnston C, Vives S (2003) Sound production in Codoma ornata (Girard) (Cyprinidae). Environ Biol Fishes 68:81–85. doi: 10.1023/a:1026067913329
  119. Johnston IA, Patterson S, Ward PS, Goldspink G (1974) The histochemical demonstration of myofibrillar adenosine triphosphatase activity in fish muscle. Can J Zool 52:871–877PubMedGoogle Scholar
  120. Jordão JM, Fonseca PJ, Amorim MCP (2012) Chorusing behaviour in the Lusitanian toadfish: should I match my neighbours’ calling rate? Ethology 118:885–895. doi: 10.1111/j.1439-0310.2012.02078.x Google Scholar
  121. Josephson R (2006) Comparative physiology of insect flight muscle. In: Nature’s versatile engine: insect flight muscle inside and out. Molecular biology intelligence unit. Springer, Berlin, pp 34–43. doi: 10.1007/0-387-31213-7_3
  122. Kaatz IM, Stewart DJ (1997) The evolutionary origin and functional divergence of sound production in catfishes: stridulation mechanisms. J Morphol 232:272Google Scholar
  123. Kaatz IM, Stewart DJ (2012) Bioacoustic variation of swimbladder disturbance sounds in neotropical doradoid catfishes (Siluriformes: Doradidae, Auchenipteridae): potential morphological correlates. Curr Zool 58:171–188Google Scholar
  124. Kaatz IM, Stewart DJ, Rice AN, Lobel PS (2010) Differences in pectoral fin spine morphology between vocal and silent clades of catfish (order Siluriformes): ecomorphological implications. Curr Zool 56:73–89Google Scholar
  125. Kastberger G (1981a) Economy of sound production in piranhas (Serrasalminae, Characidae): I. Functional properties of sonic muscles. Zool Jahrb Physiol 85:113–125Google Scholar
  126. Kastberger G (1981b) Economy of sound production in piranhas (Serrasalminae, Characidae): II Functional properties of sound emitter. Zool Jahrb Physiol 85:393–411Google Scholar
  127. Kasumyan AO (2008) Sounds and sound production in fishes. J Ichthyol 48:981–1030Google Scholar
  128. Kéver L, Boyle K, Dragicevic B, Dulcic J, Casadevall M, Parmentier E (2012a) Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae): first evidence of a tight relationship between morphology and sound characteristics in Ophidiidae. Front Zool 9:34PubMedCentralPubMedGoogle Scholar
  129. Kéver L, Boyle KS, Dragičević B, Dulčić J, Casadevall M, Parmentier E (2012b) Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae): first evidence of a tight relationship between morphology and sound characteristics in Ophidiidae. Front Zool 9:1–16Google Scholar
  130. Kéver L, Boyle KS, Bolen G, Dragičević B, Dulčić J, Parmentier E (2014) Modifications in call characteristics and sonic apparatus morphology during puberty in Ophidion rochei (actinopterygii: Ophidiidae). J Morphol 275:650–660. doi: 10.1002/jmor.20245 PubMedGoogle Scholar
  131. Klug GA, Leberer E, Leisner E, Simoneau J, Pette D (1988) Relationship between parvalbumin content and the speed of relaxation in chronically stimulated rabbit fast-twitch muscle. Pflugers Arch 411:126–131PubMedGoogle Scholar
  132. Knight L, Ladich F (2014) Distress sounds of thorny catfishes emitted underwater and in air: characteristics and potential significance. J Exp Biol 217:4068–4078Google Scholar
  133. Korneliussen H, Dahl HA, Paulsen JE (1978) Histochemical definition of muscle fibre types in trunk musculature of a teleost fish (cod, Gadus morhua, L.). Histochem Cell Biol 55:1–16Google Scholar
  134. Kratochvil H (1978) Der Bau des Lautapparates vom Knurrenden Gurami (Trichopsis vittatus Cuvier & Valenciennes) (Anabantidae, Belontiidae). Zoomorphologie 91:91–99Google Scholar
  135. Kratochvil H (1985) Beiträge zur Lautbiologie der Anabantoidei—Bau, Funktion und Entwicklung von lauterzeugenden Systeme. Zool Jahrb Physiol 89:203–255Google Scholar
  136. Ladich F (1988) Sound production by the gudgeon, Gobio gobio L., a common European freshwater fish (Cyprinidae, Teleostei). J Fish Biol 32:707–715. doi: 10.1111/j.1095-8649.1988.tb05411.x Google Scholar
  137. Ladich F (1997) Comparative analysis of swimbladder (drumming) and pectoral (stridulation) sounds in three families of catfishes. Bioacoustics 8:185–208Google Scholar
  138. Ladich F (2001) Sound-generating and -detecting motor system in catfish: design of swimbladder muscles in doradids and pimelodids. Anat Rec 263:297–306PubMedGoogle Scholar
  139. Ladich F (2013) Effects of noise on sound detection and acoustic communication in fishes. In: Brumm H (ed) Animal communication and noise. Springer, Berlin, pp 65–90Google Scholar
  140. Ladich F (2014) Diversity in hearing in fishes: ecoacoustical, communicative, and developmental constraints. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer handbook of auditory research, vol 49. Springer, New York, pp 289–321Google Scholar
  141. Ladich F, Bass AH (1996) Sonic/vocal acousticolateralis pathways in teleost fishes: a transneuronal biocytin study in mochokid catfish. J Comp Neurol 374:493–505Google Scholar
  142. Ladich F, Bass AH (2005) Sonic motor pathways in piranhas with a reassessment of phylogenetic patterns of sonic mechanisms among teleosts. Brain Behav Evol 66:167–176PubMedGoogle Scholar
  143. Ladich F, Fine ML (1994) Localization of swim bladder and pectoral motoneurons involved in sound production in pimelodid catfish. Brain Behav Evol 44:86–100PubMedGoogle Scholar
  144. Ladich F, Fine M (2006) Sound-generating mechanisms in fishes: a unique diversty in vertebrates. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 3–34Google Scholar
  145. Ladich F, Myrberg AAJ (2006) Agonistic behavior and acoustic communication. In: Ladich F, Collin S, Moller P, Kapoor B (eds) Communication in fishes. Science Publishers, Enfield, pp 122–148Google Scholar
  146. Ladich F, Wysocki LE (2003) How does tripus extirpation affect auditory sensitivity in goldfish? Hear Res 182:119–129PubMedGoogle Scholar
  147. Ladich F, Bischof C, Schleinzer G, Fuchs A (1992) Intra- and interspecific differences in agonistic vocalization in croaking gouramis (Genus: Trichopsis, Anabantoidei, Teleostei). Bioacoustics 4:131–141Google Scholar
  148. Lagardère JP, Mariani A (2006) Spawning sounds in meagre Argyrosomus regius recorded in the Gironde estuary. Fr J Fish Biol 69:1697–1708Google Scholar
  149. Lagardère JP, Mallekh R, Mariani A (2004) Acoustic characteristics of two feeding modes used by brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and turbot (Scophthalmus maximus). Aquaculture 240:607–614Google Scholar
  150. Lechner W, Ladich F (2008) Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes. J Exp Biol 211:1681–1689PubMedGoogle Scholar
  151. Lewis MK, Nahirney PC, Chen V, Adikari BB, Wright J, Bass AH, Wang K (2003) Concentric intermediate filament lattice links to specialized Z band-junctional complexes in sonic muscle fibers of the type I male midshipman fish. J Struct Biol 143:56–71Google Scholar
  152. Lindstedt SL, McGlothlin T, Percy E, Pifer J (1998) Task-specific design of skeletal muscle: balancing muscle structural composition. Comp Biochem Physiol Part B Biochem Mol Biol 120:35–40. doi: 10.1016/S0305-0491(98)00021-2
  153. Lobel PS (2001) Acoustic behaviour of cichlid fishes. J Aquaric Aquat Sci 9:167–186Google Scholar
  154. Lobel PS, Mann DA (1995) Spawning sounds of the damselfish, Dascyllus albisella (Pomacentridae), and relationship to male size. Bioacoustics 6:187–198Google Scholar
  155. Lobel PS, Kaatz I, Rice AN (2010) Acoustical behavior of reef fishes. In: Cole KS (ed) Reproduction and sexuality in marine fishes: patterns and processes. University of California Press, Berkeley, pp 307–387Google Scholar
  156. Locascio JV, Mann DA (2005) Effects of Hurricane Charley on fish chorusing. Biol LetT 1:362–365. doi: 10.1098/rsbl.2005.0309 PubMedCentralPubMedGoogle Scholar
  157. Locascio JV, Mann DA (2011) Diel and seasonal timing of sound production by black drum (Pogonias cromis). Fish Bull 109:327–338Google Scholar
  158. Loesser KE, Rafi J, Fine ML (1997) Embryonic, juvenile, and adult development of the toadfish sonic muscle. Anat Rec 249:469–477PubMedGoogle Scholar
  159. Longrie N, Van Wassenbergh S, Vandewalle P, Mauguit Q, Parmentier E (2009) Potential mechanism of sound production in Oreochromis niloticus (Cichlidae). J Exp Biol 212:3395–3402. doi: 10.1242/jeb.032946 PubMedGoogle Scholar
  160. Luczkovich JJ, Sprague MW, Johnson SE, Pullinger RC (1999) Delimiting spawning areas of weakfish, Cynoscion regalis (family Sciaenidae) in Pamlico Sound, North Carolina using passive hydroacoustic surveys. Bioacoustics 10:143–160Google Scholar
  161. Lugli M (2008) Role of ambient noise as a selective factor for frequencies used in fish acoustic communication. Bioacoustics 17:40–42Google Scholar
  162. Lugli M (2010) Sounds of shallow water fishes: pitch within the quiet window of the habitat ambient noise. J Comp Physiol A 196:439–451. doi: 10.1007/s00359-010-0528-2 Google Scholar
  163. Lugli M, Fine ML (2003) Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams. J Acoust Soc Am 114:512–521PubMedGoogle Scholar
  164. Lugli M, Pavan G, Torricelli P, Bobbio L (1995) Spawning vocalisations in male freshwater gobiids (Pisces, Gobiidae). Environ Biol Fishes 43:219–231Google Scholar
  165. Lugli M, Yan HY, Fine ML (2003) Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum. J Comp Physiol A 189:309–320Google Scholar
  166. Luther PK, Munro PMG, Squire JM (1995) Muscle ultrastructure in the teleost fish. Micron 26:431–459Google Scholar
  167. Mahajan CL (1963) Sound producing apparatus in an Indian catfish Sisor rhabdophorus Hamilton. J Linn Soc Lond Zool 43:721–724Google Scholar
  168. Malavasi S, Collatuzzo S, Torricelli P (2008) Interspecific variation of acoustic signals in Mediterranean gobies (Perciformes, Gobiidae): comparative analysis and evolutionary outlook. Biol J Linn Soc 93:763–778. doi: 10.1111/j.1095-8312.2008.00947.x Google Scholar
  169. Mann DA (2006) Propagation of fish sounds. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Endfield, pp 107–120Google Scholar
  170. Mann DA, Jarvis SM (2004) Potential sound production by a deep-sea fish. J Acoust Soc Am 115:2331–2333PubMedGoogle Scholar
  171. Mann D, Lobel P (1997) Propagation of damselfish (Pomacentridae) courtship sounds. J Acoust Soc Am 101:3783–3791Google Scholar
  172. Mann D, Bowers-Altman J, Rountree R (1997) Sounds produced by the striped cusk-eel Ophidion marginatum (Ophidiidae) during courtship and spawning. Copeia 1997:610–612Google Scholar
  173. Mann DA, Locascio JV, Coleman FC, Koenig CC (2009) Goliath grouper Epinephelus itajara sound production and movement patterns on aggregation sites. Endangered Species Res 7:229–236. doi: 10.3354/esr00109 Google Scholar
  174. Markl H (1971) Schallerzeugung bei Piranhas (Serrasalminae, Characidae). J Comp Physiol A 74:39–56. doi: 10.1007/bf00297789 Google Scholar
  175. Marshall NB (1962) The biology of sound-producing fishes. Symp Zool Soc Lond 7:45–60Google Scholar
  176. Marshall NB (1967) Sound-producing mechanisms and the biology of deep-sea fishes. In: Tavolga WN (ed) Marine bio-acoustics, vol 2. Pergamon, Oxford, pp 123–133Google Scholar
  177. McCartney BS, Stubbs AR (1970) Measurement of the target strength of fish in dorsal aspect, including swimbladder resonance. In: Farquhar GB (ed) Proceedings of an international symposium on biological sound scattering in the ocean. US government printing office, Washington, DC, pp 180–211Google Scholar
  178. McKibben JR, Bass AH (1998) Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J Acoust Soc Am 104:3520–3533PubMedGoogle Scholar
  179. Meyer-Rochow VB, Ishihara Y, Ingram JR (1994) Cytochemical and histological details of muscle fibres in the southern smelt Retropinna retropinna (Pisces; Galaxioidei). Zool Sci 11:55–62Google Scholar
  180. Miano JP, Loesser-Casey KE, Fine ML (2013) Description and scaling of pectoral muscles in ictalurid catfishes. J Morphol 274:467–477PubMedGoogle Scholar
  181. Miles JG, Parsons MJG, McCauley RD, Paulus MCM, Siwabessey J (2012) In situ source levels of mulloway (Argyrosomus japonicus) calls. J Acoust Soc Amer 132:3559–3568Google Scholar
  182. Millot S, Vandewalle P, Parmentier E (2011) Sound production in red-bellied piranhas (Pygocentrus nattereri, Kner): an acoustical, behavioural and morphofunctional study. J Exp Biol 214:3613–3618. doi: 10.1242/jeb.061218 PubMedGoogle Scholar
  183. Mitchell S, Poland J, Fine ML (2008) Does muscle fatigue limit advertisement calling in the oyster toadfish Opsanus tau? Anim Behav 76:1011–1016Google Scholar
  184. Mok HK, Gilmore RG (1983) Analysis of sound production in estuarine fish aggregations of Pogoniascromis, Bairdiella chrysoura, and Cynoscion neubulosus (Sciaenidae). Bull Inst Zool Acad Sin 22:157–186Google Scholar
  185. Mok HK, Parmentier E, Chiu KH, Tsai KE, Chiu PH, Fine ML (2011) An intermediate in the evolution of superfast sonic muscles. Frontiers in Zoology 8:1–8Google Scholar
  186. Mok HK, Yu HY, Ueng JP, Wei RC (2009) Characterization of sounds of the blackspotted croaker Protonibea diacanthus (Sciaenidae) and localization of its spawning sites in esturarine coastal waters of Taiwan. Zool Stud 48:325–333Google Scholar
  187. Moyes CD, Buck LT, Hochachka PW, Suarez RK (1989) Oxidative properties of carp red and white muscle. J Exp Biol 143:321–331PubMedGoogle Scholar
  188. Moyes CD, Schulte PM, Hochachka PW (1992) Recovery metabolism of trout white muscle: role of mitochondria. Am J Physiol 262:295–304Google Scholar
  189. Munk WH (1974) Sound channel in an exponentially stratified ocean, with application to SOFAR. J Acoust Soc Am 55:220–226. doi: 10.1121/1.1914492
  190. Myrberg AA (1981) Sound communication and interception in fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 395–426Google Scholar
  191. Myrberg AA, Spires JY (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J Comp Physiol 140:135–144Google Scholar
  192. Myrberg A, Spanier E, Ha S (1978) Temporal patterning in acoustic communication. In: Reese ES, Lighter FJ (eds) Contrasts in behaviour. Wiley, New York, pp 137–177Google Scholar
  193. Myrberg AA, Ha SJ, Shamblott MJ (1993) The sounds of bicolor damselfish (Pomacentrus partitus): predictors of body size and a spectral basis for individual recognition and assessment. J Acoust Soc Am 94:3067–3070Google Scholar
  194. Nguyen TK, Lin H, Parmentier E, Fine ML (2008) Seasonal variation in sonic muscles in the fawn cusk-eel Lepophidium profundorum. Biol Lett 4:707–710. doi: 10.1098/rsbl.2008.0383
  195. Oliveira TPR, Ladich F, Abed-Navandi D, Souto AS, Rosa IL (2014) Sounds produced by the longsnout seahorse: a study of their structure and functions. J Zool 294:114–121Google Scholar
  196. Ono RD, Poss SG (1982) Structure and innervations of the swimbladder musculature in the weakfish, Cynoscion regalis (Teleostei: Sciaenidae). Can J Zool 60:1955–1967Google Scholar
  197. Onuki A, Somiya H (2007) Innervation of sonic muscles in teleosts: occipital versus spinal nerves. Brain Behav Evol 69:132–141PubMedGoogle Scholar
  198. Papes S, Ladich F (2011) Effects of temperature on sound production and auditory abilities in the striped raphael catfish Platydoras armatulus (Family Doradidae). PLoS ONE 6:1–10Google Scholar
  199. Parmentier E, Diogo R (2006) Evolutionary trends of swimbladder sound mechanisms in some teleost fishes. In: Ladich F, Collin SP, Moller P, BG K (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 45–70Google Scholar
  200. Parmentier E, Genotte V, Focant B, Goffinet G, Vandewalle P (2003a) Characterization of the primary sonic muscles in Carapus acus (Caparidae): a multidisciplinary approach. Proc R Soc Biol Sci Ser B 270:2301–2308Google Scholar
  201. Parmentier E, Vandewalle P, Lagardère JP (2003b) Sound-producing mechanisms and recordings in Carapini species (Teleostei, Pisces). J Comp Physiol A 189:283–292Google Scholar
  202. Parmentier E, Fine ML, Vandewalle P, Ducamp J-J, Lagardere J-P (2006a) Sound production in two carapids (Carapus acus and C. mourlani) and through the sea cucumber tegument. Acta Zool 87:113–119Google Scholar
  203. Parmentier E, Fontenelle N, Fine ML, Vandewalle P, Henrist C (2006b) Functional morphology of the sonic apparatus in Ophidion barbatum (Teleostei, Ophidiidae). J Morphol 267:1461–1468PubMedGoogle Scholar
  204. Parmentier E, Lagardere J-P, Braquegnier J-B, Vandewalle P, Fine ML (2006c) Sound production mechanism in carapid fish: first example with a slow sonic muscle. J Exp Biol 209:2952–2960PubMedGoogle Scholar
  205. Parmentier E, Colleye O, Fine M, Frederich B, Vandewalle P, Herrel A (2007) Sound production in the clownfish Amphiprion clarkii. Science 316:1006PubMedGoogle Scholar
  206. Parmentier E, Compere P, Casadevall M, Fontenelle N, Cloots R, Henrist C (2008a) The rocker bone: a new kind of mineralised tissue? Cell Tissue Res 334:67–79PubMedGoogle Scholar
  207. Parmentier E, Lagardère JP, Chancerelle Y, Dufrane D, Eeckhaut I (2008b) Variations in sound-producing mechanism in the pearlfish Carapini (Carapidae). J Zool 276:266–275. doi: 10.1111/j.1469-7998.2008.00486.x Google Scholar
  208. Parmentier E, Lecchini D, Frederich B, Brie C, Mann D (2009) Sound production in four damselfish (Dascyllus) species: phyletic relationships? Biol J Linn Soc 97:928–940. doi: 10.1111/j.1095-8312.2009.01260.x Google Scholar
  209. Parmentier E, Bouillac G, Dragičević B, Dulčić J, Fine M (2010a) Call properties and morphology of the sound-producing organ in Ophidion rochei (Ophidiidae). J Exp Biol 213:3230–3236. doi: 10.1242/jeb.044701 PubMedGoogle Scholar
  210. Parmentier E, Bouillac G, Dragičević B, Dulčić J, Fine ML (2010b) Call properties and morphology of the sound-producing organ in Ophidion rochei (Ophidiidae). J Exp Biol 213:3230–3236PubMedGoogle Scholar
  211. Parmentier E, Fabri G, Kaatz I, Decloux N, Planes S, Vandewalle P (2010c) Functional study of the pectoral spine stridulation mechanism in different mochokid catfishes. J Exp Biol 213:1107–1114. doi: 10.1242/jeb.039461 PubMedGoogle Scholar
  212. Parmentier E, Boyle KS, Berten L, Brié C, Lecchini D (2011a) Sound production and mechanism in Heniochus chrysostomus (Chaetodontidae). J Exp Biol 214:2702–2708. doi: 10.1242/jeb.056903 PubMedGoogle Scholar
  213. Parmentier E, Mann K, Mann D (2011b) Hearing and morphological specializations of the mojarra (Eucinostomus argenteus). J Exp Biol 214:2697–2701PubMedGoogle Scholar
  214. Parmentier E, Vandewalle P, Brie C, Dinraths L, Lecchini D (2011c) Comparative study on sound production in different Holocentridae species. Front Zool 8:12Google Scholar
  215. Parmentier E, Kéver L, Boyle K, Corbisier Y-E, Sawelew L, Malavasi S (2013) Sound production mechanism in Gobius paganellus (Gobiidae). J Exp Biol 216:3189–3199. doi: 10.1242/jeb.087205 PubMedGoogle Scholar
  216. Parmentier E, Tock J, Falguière JC, Beauchaud M (2014) Sound production in Sciaenops ocellatus: preliminary study for the development of acoustic cues in aquaculture. Aquaculture 432:204–211Google Scholar
  217. Patterson S, Johnston IA, Goldspink G (1975) A histochemical study of the lateral muscles of five teleost species. J Fish Biol 7:159–166Google Scholar
  218. Picculin M, Calcagno G, Sebastianutto L, Bonacito C, Codarin A, Costantini M, Ferrero EA (2012) Diagnostics of nocturnal calls of Sciaena umbra (L., fam. Sciaenidae) in a nearshore Miditerranean marine reserve. Bioacoustics iFirst:1–12Google Scholar
  219. Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273:25–36. doi: 10.1016/j.heares.2009.12.023
  220. Ramcharitar J, Gannon D, Popper A (2006) Bioacoustics of fishes of the family Sciaenidae (croackers and drums). Trans Am Fish Soc 135:1409–1431Google Scholar
  221. Remage-Healey L, Nowacek DP, Bass AH (2006) Dolphin foraging sounds suppress calling and elevate stress hormone levels in a prey species, the Gulf toadfish. J Exp Biol 209:4444–4451. doi: 10.1242/jeb.02525 PubMedGoogle Scholar
  222. Rice AN, Bass AH (2009) Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: insights into the diversity of the Batrachoididae. J Exp Biol 212:1377–1391. doi: 10.1242/jeb.028506 PubMedCentralPubMedGoogle Scholar
  223. Rome LC (2006) Design and function of superfast muscles: new insights into the physiology of skeletal muscle. Annu Rev Physiol 68:193–221PubMedGoogle Scholar
  224. Rome LC, Linstedt SL (1998) The quest for speed: muscles built for high-frequency contractions. News Physiol Sci 13:26–268Google Scholar
  225. Rome LC, Syme DA, Hollingworth S, Lindstedt S, Maylor SM (1996) The whistle and the rattle: the design of sound producing muscles. Proc Natl Acad Sci 93:8095–8100PubMedCentralPubMedGoogle Scholar
  226. Rome LC et al (1999) Trading force for speed: why superfast crossbridge kinetics leads to superlow forces. Proc Natl Acad Sci 95:5826–5831Google Scholar
  227. Rosenthal GG, Lobel PS (2006) Communication. In: Sloman KA, Wilson RW, Balshine S (eds) Behaviour and physiology of fish, vol 24. Fish physiology. Elsevier, New York, pp 39–78Google Scholar
  228. Salmon M (1967) Acoustical behavior of the mempachi, Myripristis berndti, in Hawaii. Pac Sci 21:364–381Google Scholar
  229. Sand O, Hawkins AD (1973) Acoustic properties of the cod swimbladder. J Exp Biol 58:797–820Google Scholar
  230. Schachner G, Schaller F (1981) Schallerzeugung and Schallreaktionen beim Antennenwels (Mandim) Rhambdia sebae sebae. Zool Beitr 27:375–392Google Scholar
  231. Schaeffer P, Conley K, Lindstedt S (1996) Structural correlates of speed and endurance in skeletal muscle: the rattlesnake tailshaker muscle. J Exp Biol 199:351–358PubMedGoogle Scholar
  232. Scholz K, Ladich F (2006) Sound production, hearing and possible interception under ambient noise conditions in the topmouth minnow Pseudorasbora parva. J Fish Biol 69:892–906. doi: 10.1111/j.1095-8649.2006.01168.x Google Scholar
  233. Schulz-Mirbach T, Heß M, Metscher B, Ladich F (2013) A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study. BMC Biol 11:75PubMedCentralPubMedGoogle Scholar
  234. Sismour EN, Nellis SC, Newton SH, Da Mays, Fine ML (2013) An experimental study of consumption of channel catfish Ictalurus punctatus by largemouth bass Micropterus salmoides when alternative prey are available. Copeia 2013:277–283. doi: 10.1643/ce-12-052 Google Scholar
  235. Sisneros JA, Forlano PM, Deitcher DL, Bass AH (2004) Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 305:404–407PubMedGoogle Scholar
  236. Skoglund C (1961) Functional analysis of swimbladder muscles engaged in sound production of the toadfish. J Biophys Biochem Cytol 10:187–200PubMedCentralPubMedGoogle Scholar
  237. Somlyo AV, Shurman H, Somlyo AP (1977) Composition of sarcoplasmic reticulum in situ by electron probe X-ray microanalysis. Nature 268:556–558PubMedGoogle Scholar
  238. Sörensen W (1895) Are the extrinsic muscles of the air-bladder in some Siluroidae and the “elastic spring” apparatus of others subordinate to the voluntary production of sounds? What is, according to our present knowledge, the function of the Weberian ossicles? J Anat Physiol 29:205–229, 399–423, 518–552Google Scholar
  239. Speares P, Johnston C (2011) Sound production in Etheostoma oophylax (Percidae) and call characteristics correlated to body size. Environ Biol Fishes 92:461–468Google Scholar
  240. Sprague MW (2000) The single sonic muscle twitch model for the sound-production mechanism in the weakfish. Cynoscion regalis J Acous Soc Am 108:2430–2437Google Scholar
  241. Sprague MW, Luczkovich JJ (2001) Do striped cusk-eels Ophidion marginatum (Ophidiidae) produce the “chatter” sound attribuated to weakfish Cynoscion regalis (Scianidae)? Copeia 2001:854–859Google Scholar
  242. Sprague MW, Luczkovich JJ, Pullinger RC, Johnson SE, Jenkins T, Daniel HJ (2000) Using spectral analysis to identify drumming sounds of some North Carolina fishes in the family Sciaenidae. J Elisha Mitchell Sci Soc 116:124–145Google Scholar
  243. Stiassny MLJ (1981) The phyletic status of the family Cichlidae (Pisces, Perciformes): a comparative anatomical investigation. Neth J Zool 31:275–314Google Scholar
  244. Stout JF (1963) The significance of sound production during the reproductive behaviour of Notropis analostanus (family cyprinidae). Anim Behav 11:83–92 doi: 10.1016/0003-3472(63)90014-9
  245. Taverne L, Aloulou-Triki A (1974) Étude anatomique, myologique et ostéologique du genre Synodontis Cuvier (Pisces: Siluriformes, Mochokidae). Annales du Museum Royal d’Afrique Centrale 210:1–69Google Scholar
  246. Tavolga WN (1964) Sonic characteristics and mechanisms in marine fishes. In: Tavolga WN (ed) Marine Bio-acoustics. Pergamon Press, Oxford, pp 195–211Google Scholar
  247. Tavolga WN (1971a) Acoustic orientation in the sea catfish, Galeichthys felis. Ann N Y Acad Sci 188:80–97. doi: 10.1111/j.1749-6632.1971.tb13091.x PubMedGoogle Scholar
  248. Tavolga WN (1971b) Sound production and detection. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. New York, pp 135–205Google Scholar
  249. Tavolga WN (1976) Acoustic obstacle detection in the sea catfish (Arius felis). In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 185–204Google Scholar
  250. Tavolga WN (1977) Mechanisms for directional hearing in the sea catfish (Arius felis). J Exp Biol 67:97–115PubMedGoogle Scholar
  251. te Kronnie G, Tatarczuch L, van Raamsdonk W, Kilarski W (1983) Muscle fibre types in the myotome of stickleback, Gasterosteus aculeatus L.: a histochemical, immunohistochemical and ultrastructural study. J Fish Biol 22:303–316Google Scholar
  252. Tellechea JS, Martinzez C, Fine ML, Norbis W (2010a) Sound production in the whitemouth croaker and relationship between fish size and call characteristics. Env Biol Fish 89:163–172Google Scholar
  253. Tellechea JS, Norbis W, Olsson D, Fine ML (2010b) Calls of the black drum (Pogonius chromis: Sciaenidae): Geographical differences in sound production between Northern and Southern Hemisphere populations. J Exp Zool 313A:1–8Google Scholar
  254. Thorson RF, Fine ML (2002a) Crepuscular changes in emission rate and parameters of the boatwhistle advertisement call of the gulf toadfish Opsanus beta. Environ Biol Fish 63:321–331Google Scholar
  255. Thorson RF, Fine ML (2002b) Acoustic competition in the gulf toadfish Opsanus beta: acoustic tagging. J Acoust Soc Am 111:2302–2307PubMedGoogle Scholar
  256. Tikunov B, Rome L (2009) Is high concentration of parvalbumin a requirement for superfast relaxation? J Muscle Res Cell Motil 30:57–65. doi: 10.1007/s10974-009-9175-z PubMedGoogle Scholar
  257. Tower RW (1908) The production of sound in the drumfishes, the searobin and the toadfish. Ann N Y Acad Sci 18:149–180Google Scholar
  258. Tracy HC (1911) The morphology of the swimbladder in teleosts. Ann N Y Acad Sci 38:600–606 and-638-649Google Scholar
  259. Tricas T, Kajiura S, Kosaki R (2006) Acoustic communication in territorial butterflyfish: test of the sound production hypothesis. J Exp Biol 209:4994–5004PubMedGoogle Scholar
  260. Urick RJ (1975) Principles of underwater sound. McGraw-Hill, New YorkGoogle Scholar
  261. van Bergeijk WA (1964) Directional and nondirectional hearing in fish. In: Tavolga WN (ed) Marine bioacoustics. Pergamon Press, New York, pp 281–299Google Scholar
  262. Vance T (2000) Variability in stridulatory sound production in the channel catfish, Ictalurus punctatus. BIOS 71:79–84Google Scholar
  263. Vance TL, Hewson JM, Modla S, Connaughton MA (2002) Variability in sonic muscle size and innervation among three sciaenids: spot, Atlantic croaker, and weakfish. Copeia 2002:1137–1143Google Scholar
  264. Vasconcelos RO, Ladich F (2008) Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. J Exp Biol 211:502–509PubMedGoogle Scholar
  265. Wall CC, Lembke C, Mann DA (2012) Shelf-scale mapping of sound production by fishes in the eastern Gulf of Mexico, using autonomous glider technology. Mar Ecol Prog Ser 449:55–64. doi: 10.3354/meps09549 Google Scholar
  266. Wall CC, Simard P, Lembke C, Mann DA (2013) Large-scale passive acoustic monitoring of fish sound production on the West Florida Shelf. Mar Ecol Prog Ser 484:173–188. doi: 10.3354/meps10268 Google Scholar
  267. Wall CC, Rountree RA, Pomerleau C, Juanes F (2014) An exploration for deep-sea fish sounds off Vancouver Island from the NEPTUNE Canada ocean observing system. Deep Sea Res Part I Oceanogr Res Pap 83:57–64. doi: 10.1016/j.dsr.2013.09.004
  268. Walsh PJ, Bedolla C, Mommsen TP (1987) Reexamination of metabolic potential in the toadfish sonic muscle. J Exp Zool 241:133–136. doi: 10.1002/jez.1402410116 PubMedGoogle Scholar
  269. Walsh PJ, Mommsen TP, Bass AH (1995) Biochemical and molecular aspects of singing in Batrachoidid fishes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, metabolic and adaptational biochemistry, vol IV. Elsevier, New York, pp 279–289Google Scholar
  270. Watkins WA (1967) The harmonic interval: fact or artifact in spectral analysis of pulse trains. In: Tavolga WN (ed) Marine bio-acoustics, vol 2. Pergamon Press, New York, pp 15–43Google Scholar
  271. Waybright TD, Kollenkirchen U, Fine ML (1990) Effect of size and sex on grunt production in the oyster toadfish. Abstr Soc Neurosci 16:578Google Scholar
  272. Weber M (1913) Die Fische der Siboga-Expedition. Siboga-Expeditie 32:1–710Google Scholar
  273. Weston D (1967) Sound propagation in the presence of bladder fish. In: Albers V (ed) Underwater acoustics, vol 2. Plenum, New York, pp 55–88Google Scholar
  274. Winn HE (1964) The biological significance of fish sounds. In: Tavolga WN (ed) Marine bio-acoustics. Pergamon Press, New York, pp 213–231Google Scholar
  275. Winn HE (1967) Vocal facilitation and the biological significance of toadfish sounds. In: Tavolga WN (ed) Marine bio-acoustics. Pergamon Press, New York, pp 283–304Google Scholar
  276. Winn HE (1972) Acoustic discrimination by the toadfish with comments on signal systems. In: Winn HE, Olla BL (eds) Behavior of Marine Animals: Current Perspectives in Research, Vol. 2. Vertebrates. Plenum Press, New York, pp. 361–385Google Scholar
  277. Winn HE, Marshall JA (1963) Sound producing organ of the squirrelfish Holocentrus rufus. Physiol Zool 36:34–44Google Scholar
  278. Winn HE, Stout JF (1960) Sound production by the satinfin shiner, Notropis analostanus and related fishes. Science 132:222–223PubMedGoogle Scholar
  279. Winn HE, Marshall JA, Hazlett B (1964) Behavior, diel activities, and stimuli that elicit sound production and reactions to sounds in the longspine squirrelfish. Copeia 1964:413–425Google Scholar
  280. Yan HY (1998) Auditory role of the suprabranchial chamber in gourami fish. J Comp Physiol A 183:325–333. doi: 10.1007/s003590050259 PubMedGoogle Scholar
  281. Yan HY, Fine ML, Horn NS, Colón WE (2000) Variability in the role of the gasbladder in fish audition. J Comp Physiol A 186:435–445. doi: 10.1007/s003590050443 PubMedGoogle Scholar
  282. Yoshimoto M, Kikuchi K, Yamamoto N, Somiya H, Ito H (1999) Sonic motor nucleus and its connections with octaval nuclei of the medulla in a rockfish, Sebasticus marmoratus. Brain Behav Evol 54:183–204PubMedGoogle Scholar
  283. Young IS, Rome LC (2001) Mutually exclusive muscle designs: the power output of the locomotory and sonic muscles of the oyster toadfish (Opsanus tau). Proc Roy Soc Lond Series B: Biol Sci 268:1965–1970. doi: 10.1098/rspb.2001.1731 Google Scholar
  284. Zelick R, Mann DA, Popper AN (1999) Acoustic communication in fishes and frogs. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp. 363–411Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of BiologyVirginia Commonwealth UniversityRichmondUSA
  2. 2.Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie B6CUniversité de LiègeLiègeBelgium

Personalised recommendations