Skip to main content

Intermittierende Hypoxie: Höhentraining und Präakklimatisation

  • Chapter
  • First Online:
Alpin- und Höhenmedizin
  • 5253 Accesses

Zusammenfassung

Intermittierende Hypoxie (IH) ist definiert als wiederholte Sauerstoffmangelexpositionen, welche durch Phasen mit normalem Sauerstoffangebot unterbrochen sind. Im Bereich des Höhentrainings kann IH über eine Erhöhung der Sauerstofftransportkapazität des Blutes oder über eine Verbesserung der Bewegungsökonomie zur Optimierung der Ausdauerleistung in Tallage führen. Eine generelle Empfehlung für die Gestaltung des Höhentrainings kann basierend auf den wissenschaftlichen Ergebnissen nicht gegeben werden. Für die Anwendung von IH zur Präakklimatisation können Nächtigungen in Höhen über 2000 m oder möglichst häufige Tagesaufenthalte bis über 3000 m empfohlen werden. Ebenso dürften Nächtigungen in normobarer Hypoxie und wiederholte 3- bis 4-stündige Expositionen über 4000 m simulierter Höhe Präakklimatisationseffekte hervorrufen. Für IH-Protokolle mit Hypoxieexpositionen von ca. 1 Stunde ist die AMS-Prophylaxe fraglich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Bärtsch P, Swenson ER (2013) Clinical practice: Acute high-altitude illnesses. N Engl J Med 368:2294–302

    Article  PubMed  Google Scholar 

  • Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler D, Stulz D, Staab JE, Skrinar GS, Lewis SF, Sawka MN (2004) Intermittent altitude exposures reduce acute mountain sickness at 4300 m. Clin Sci 106, S 321–328

    Google Scholar 

  • Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler D, Stulz D, Staab JE, Robinson S, Skrinar GS, Lewis SF, Sawka MN (2003) Intermittent altitude exposures improve muscular performance at 4300m. J Appl Physiol 95:1824–1832

    Article  PubMed  Google Scholar 

  • Burtscher M, Brandstätter E, Gatterer H (2008) Preacclimatization in simulated altitudes. Sleep Breath 12: 109–114

    Article  CAS  PubMed  Google Scholar 

  • Burtscher M (2005) Intermittierende Hypoxie: Höhenvorbereitung, Training, Therapie. Schweiz Zeitschr Sportmed Sporttraum 52: 61–67

    Google Scholar 

  • Burtscher M, Haider T, Domej W, Linser T, Gatterer H, Faulhaber M, Pocecco E, Ehrenburg I, Tkatchuk E, Koch R, Bernardi L (2009) Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD. Respir Physiol Neurobiol 165: 97–103

    Article  CAS  PubMed  Google Scholar 

  • Burtscher M, Pachinger O, Ehrenbourg I, Mitterbauer G, Faulhaber M, Pühringer R, Tkatchouk E (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96: 247–254

    Article  PubMed  Google Scholar 

  • Burtscher M, Gatterer H, Faulhaber M, Gerstgrasser W, Schenk K (2010) Effects of intermittent hypoxia on running economy. Int J Sports Med 31: 644–650

    Article  CAS  PubMed  Google Scholar 

  • Coyle EF (2007) Physiological regulation of marathon performance. Sports Med 37: 306–311

    Article  PubMed  Google Scholar 

  • Dehnert C, Boehm A, Menold E, Grigoriev I, Bärtsch P (2009) Simulated altitude during the night reduces severity of acute mountain sickness. Med Sci Sports Exerc 41: 175

    Article  Google Scholar 

  • Foster C, Lucia A (2007) Running economy: the forgotten factor in elite performance. Sports Med 37: 316–319

    Article  PubMed  Google Scholar 

  • Fulco CS, Muza SR, Beidleman BA, Demes R, Staab JE, Jones JE, Cymerman A (2011) Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude. Am J Physiol Regul Integr Comp Physiol 300: R 428–436

    Google Scholar 

  • Gore CJ, Rodríguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Levine BD (2006) Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4,000-5,500 m). J Appl Physiol 101: 1386–1393

    Article  CAS  PubMed  Google Scholar 

  • Hackett P, Roach RC (2001) High altitude illness. N Engl J Med 345: 107–114

    Article  CAS  PubMed  Google Scholar 

  • Humberstone-Gough CE, Saunders PU, Bonetti DL, Stephens S, Bullock N, Anson JM, Gore CJ (2013) Comparison of live high: train low altitude and intermittent hypoxic exposure. J Sports Sci Med 2: 394–401

    Google Scholar 

  • Jones J, Muza SR, Fulco CS, Beidleman BA, Tapia M, Lammi E, Elliott L, Cymerman A (2006) Normobaric intermittent hypoxic exposure improve foot march performance at 4300 m. High Alt Med Biol 4: 333

    Google Scholar 

  • Katayama K (2009) Effect of intermittent hypoxia on hypoxic ventilatory response. In: Xi L und Serebrovskaya TV (Hrsg) Intermittent hypoxia: from molecular mechanisms to clinical applications. Nova Science Publishers, New York: 245–259

    Google Scholar 

  • Katayama K, Sato K, Matsuo H, Ishida K, Iwasaki K, Miyamura M (2004) Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur J Appl Physiol 92: 75–83

    Article  PubMed  Google Scholar 

  • Katayama K, Sato Y, Morotome Y, Shima N, Ishida K, Mori S, Miyamura M (2001) Intermittent hypoxia increases ventilation and SaO2 during hypoxic exercise and hypoxic chemosensitivity. J Appl Physiol 90: 1431–1440

    CAS  PubMed  Google Scholar 

  • Kolb J, Ainslie P, Ide K, Poulin M (2004) Effects of five consecutive nocturnal hypoxic exposures on the cerebrovascular responses to acute hypoxia and hypercapnia in humans. J Appl Physiol 96: 1745–1754

    Article  PubMed  Google Scholar 

  • Levine BD, Stray-Gundersen J (1997) „Living high – training low“: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83: 102–112

    CAS  PubMed  Google Scholar 

  • Luks AM (2012) Clinician’s corner: what do we know about safe ascent rates at high altidue? High Alt Med Biol 13:147–152

    Article  PubMed  Google Scholar 

  • Luks AM, Swenson ER (2008) Medication and dosage considerations in the prophylaxis and treatment of high-altitude illness. Chest 133: 744–755

    Article  PubMed  Google Scholar 

  • Maggiorini M, Bühler B, Walter M, Oelz O (1990) Prevalence of acute mountain sickness in the Swiss Alps. BMJ 301: 853–855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mairer K, Wille M, Bucher T, Burtscher M (2009) Prevalence of acute mountian sickness in the Eastern Alps. In: High Alt Med Biol 10: 239–245

    Article  PubMed  Google Scholar 

  • Millet GP, Faiss R, Pialoux V (2012) Point: Hypobaric hypoxia induces different physiological responses from normobaric hypoxia. J Appl Physiol 112: 1783–1784

    Article  PubMed  Google Scholar 

  • Mounier R, Brugniaux JV (2012) Counterpoint: Hypobaric hypoxia does not induce different responses from normobaric hypoxia. J Appl Physiol 112: 1784–1786

    Article  PubMed  Google Scholar 

  • Muza SR, Beidleman BA, Fulco CS (2010) Altitude preexposure recommendations for inducing acclimatization. High Alt Med Biol 11: 87–92

    Article  PubMed  Google Scholar 

  • Muza SR, Fulco CS, Beidleman BA, Staab JE, Tapia M, Elliott S, Elliott L, Money A, Cymerman A (2006) Normobaric intermittent hypoxic exposures decrease AMS at 4300 m altitude. High Alt Med Biol 4: 338

    Google Scholar 

  • Netzer N, Strohl K, Faulhaber M, Gatterer H, Burtscher M (2013) Hypoxia-related altitude illnesses. J Travel Med 20: 247–255

    Article  PubMed  Google Scholar 

  • Nagasaka T, Satake T (1969) Changes of pulmonary and cardiovascular functions in subjects confined intermittently in a low-pressure chamber for 3 consecutive days. Fed Proc 28: 1312–1315

    CAS  PubMed  Google Scholar 

  • Neubauer JA (2001) Physiological and pathophysiological responses to intermittent hypoxia. J Appl Physiol 90: 1593–1599

    CAS  PubMed  Google Scholar 

  • Rasmussen P, Siebenmann C, Díaz V, Lundby C (2013) Red Cell Volume Expansion at Altitude: A Meta-analysis and Monte Carlo Simulation. Med Sci Sports Exerc 45: 1767–1772

    Article  PubMed  Google Scholar 

  • Richalet JP, Bittel J, Herry JP, Savourey G, Le Trong JL, Auvert JF, Janin C (1992) Use of a hypobaric chamber for preacclimatization before climbing Mount Everest. Int J Sports Med 13 (Suppl 1): 216–220

    Article  Google Scholar 

  • Roach RC, Maes D, Sandoval D, Robergs RA, Icenogle M, Hinghofer-Szalkay H, Lium D, Loeppky JA (2000) Exercise exacerbates acute mountain sickness at simulated high altitude. J Appl Physiol 88: 581–585

    CAS  PubMed  Google Scholar 

  • Robach P, Schmitt L, Brugniaux JV, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006a) Living high-training low: effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers. Eur J Appl Physiol 97: 695–705

    Article  PubMed  Google Scholar 

  • Robach P, Schmitt L, Brugniaux JV, Roels B, Millet G, Hellard P, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006b) Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. Eur J Appl Physiol 96: 423–433

    Article  PubMed  Google Scholar 

  • Robach P, Lundby C (2012) Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports 22: 303–305

    Article  CAS  PubMed  Google Scholar 

  • Robertson EY, Saunders PU, Pyne DB, Aughey RJ, Anson JM, Gore CJ (2010) Reproducibility of performance changes to simulated live high/train low altitude. Med Sci Sports Exerc 42: 394–401

    Article  PubMed  Google Scholar 

  • Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, Hawley JA (2004) Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol 96: 931–937

    Article  CAS  PubMed  Google Scholar 

  • Schneider M, Bernasch D, Weymann J, Holle R, Bärtsch P (2002) Acute mountain sickness: influence of susceptibility, preexposure, and ascent rate. Med Sci Sports Exerc 34: 1886–1891

    Article  PubMed  Google Scholar 

  • Schommer K, Wiesegart N, Menold E, Haas U, Lahr K, Buhl H, Bärtsch P, Dehnert C (2010) Training in normobaric hypoxia and its effects on acute mountain sickness after rapid ascent to 4559 m. High Alt Med Biol 11: 19–25

    Article  PubMed  Google Scholar 

  • Siebenmann C, Robach P, Jacobs RA, Rasmussen P, Nordsborg N, Diaz V, Christ A, Olsen NV, Maggiorini M, Lundby C (2012) „Live high-train low“ using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol 112: 106–117

    Article  PubMed  Google Scholar 

  • Truijens MJ, Rodríguez FA, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD (2008) The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. J Appl Physiol 104: 328–837

    Article  PubMed  Google Scholar 

  • Wehrlin JP, Zuest P, Hallen J, Marti B (2006) Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol 100: 1938–1945

    Article  CAS  PubMed  Google Scholar 

  • Wilber RL, Stray-Gundersen J, Levine BD (2007) Effect of hypoxic „dose“ on physiological responses and sea level performance. JMed Sci Sports Exerc 39: 1590–1599

    Article  Google Scholar 

  • Wille M, Gatterer H, Mairer K, Philippe M, Schwarzenbacher H, Faulhaber M, Burtscher M (2012) Short-term intermittent hypoxia reduces the severity of acute mountain sickness. Scan J Med Sci Sports 22: e 79–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Faulhaber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Faulhaber, M., Wille, M. (2015). Intermittierende Hypoxie: Höhentraining und Präakklimatisation. In: Berghold, F., et al. Alpin- und Höhenmedizin. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1833-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1833-7_35

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1832-0

  • Online ISBN: 978-3-7091-1833-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics