Skip to main content

Höhensimulation: Technik und Bedeutung für Medizin, Training und Forschung

  • Chapter
  • First Online:
Alpin- und Höhenmedizin
  • 5106 Accesses

Zusammenfassung

Die Entwicklung und Verbreitung der Hypoxiekammertechnologie hat in den letzten Jahrzehnten den Zugang zur Hypoxieforschung, aber auch zu Hypoxietraining und Präakklimatisation in Vorbereitung auf Aufenthalte in Großen Höhen wesentlich vereinfacht. Heute werden bereits von vielen Institutionen Höhensimulationen in Hypoxie- bzw. Klimakammern angeboten. Die Zahl experimenteller Studien stieg in den vergangenen Jahren signifikant an und die Expertise in der Höhenmedizin konnte durch zahlreiche kontrollierte Studien wesentlich verbessert werden. Die meisten Hypoxiekammern basieren auf einer Generation normobarer Hypoxie (NHX), d. h. Sauerstoff wird prozentual durch Stickstoff ersetzt, der Gesamtluftdruck in der Hypoxiekammer bleibt jedoch gegenüber der Außenatmosphäre unverändert. Seltener und technisch sehr viel aufwändiger sind Einrichtungen auf Basis hypobarer Hypoxie (HHX, Unterdruckkammern), die eine bestimmte Höhe auch druckmäßig simulieren können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • American Conference of Governmental Industrial Hygienists, ACGIH (1992) www.atsds.cds.gov/toxprofiles/tp103-c8.pdf Zugegriffen 29.September 2014

  • Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler D, Stulz D, Staab JE, Skrinar GS, Lewis SF, Sawka MN (2004) Intermittent altitude exposures reduce acute mountain sickness at 4300 m. Clin Sci(Lond) 106: 321–328

    Google Scholar 

  • Bonetti DL, Hoplins WG (2009) Sea-level exercise performance following adapation to hypoxia: a meta-analysis. Sports Med 39: 107–127

    Article  PubMed  Google Scholar 

  • Burtscher M (2010) Effects of altitude exposure: which altitude can be tolerated? Wien Med Wochenschr 160 (13–14): 352–371

    Google Scholar 

  • Ciulla MM, Cortiana M, Silvestris I, Matteucci E, Ridolfi E, Giofrè F, Zanardelli M, Paliotti R, Cortelezzi A, Pierini A, Magrini F, Desiderio MA (2007) Effects of simulated altitude (normobaric hypoxia) on cardiorespiratory parameters and circulating endothelial precursors in healthy subjects. Respir Res 8(1): 58

    Article  PubMed Central  PubMed  Google Scholar 

  • Conkin J, Wessel JH (2008) Critique of the equivalent air altitude model. In: Aviat Space Environ Med 79(10): 975–982

    Article  PubMed  Google Scholar 

  • Degache F, Larghi G, Faiss R, Olivier D, Millet G (2012) Hypobaric versus normobaric hypoxia: same effects on postural stability? High Alt Med Biol 13(1): 40–45

    Article  PubMed  Google Scholar 

  • Faulhaber M, Gatterer H, Haider T, Patterson C, Burtscher M (2010) Intermittent hypoxia does not affect endurance performance at moderate altitude in well-trained athletes. J Sports Sci 28(5): 513–519

    Article  PubMed  Google Scholar 

  • Fulco CS, Beidleman BA, Muza SR (2013) Effectiveness of pre-acclimatization strategies for high altitude exposure. Exerc Sport Sci Rev 41(1): 55–63

    Article  PubMed  Google Scholar 

  • Hashim SM, Mohamed AR, Bhatia S (2010) Current status of ceramic-based membranes for oxygen separation from air. Adv Colloid Interface Sci 160(1–2): 88–100

    Article  CAS  PubMed  Google Scholar 

  • Hemmingsson T, Linnarsson D (2009) Lower exhaled nitiric oxide in hypobaric than in normobaric acute hypoxia. Respir Physiol Neurobiol 169: 74–77

    Article  CAS  PubMed  Google Scholar 

  • Kayser B (2009) Disentangling hypoxia and hypobaria. Respir Physiol Neurobiol 169: 338–339

    Article  PubMed  Google Scholar 

  • Kolb JC, Farran P, Norris SR, Smith D, Mester J (2004) Validation of pulse oximetry during progressive normobaric hypoxia utilizing a portable chamber. Can J Appl Physiol 29(1): 3–15

    Article  PubMed  Google Scholar 

  • Levine BD, Kubo K, Kobayashi T, Fukushima M, Shibamoto T, Ueda G (1988) Role of barometric pressure in pulmonary fluid balance and oxygen transport. J Appl Physiol 64: 419–428

    Article  CAS  PubMed  Google Scholar 

  • Loeppky JA, Icenogle M, Scotto P, Robergs R, Hinghofer-Szalkay H, Roach RC (1997) Ventilation during simulated altitude, normobaric hypoxia and normoxic hypobaria. Respir Physiol 107: 231–238

    Article  CAS  PubMed  Google Scholar 

  • Loeppky JA, Roach RC, Maes D, Hinghofer-Szalkay H, Roessler A, Gates L, Fletcher ER, Icenogle MV (2005) Role of hypobaria in fluid balance response to hypoxia. High Alt Med Biol 5: 50–71

    Google Scholar 

  • Lyamina NP, Lyamina SV, Senchiknin VN, Mallet RT, Downey HF, Manukhina EB (2011) Normobaric hypoxia conditioning reduces blood pressure and normalizes nitric oxide synthesis in patients with arterial hypertension. J Hypertens 29(11): 2265–2272

    Article  CAS  PubMed  Google Scholar 

  • Macinnis MJ, Carter EA, Koehle MS, Rupert JL (2012) Exhaled nitric oxide is associated with acute mountain sickness susceptibility during exposure to normobaric hypoxia. Respir Physiol Neurobiol 180(1): 40–44

    Article  CAS  PubMed  Google Scholar 

  • McLean SR, Kolb JC, Norris SR, Smith DJ (2006) Diurnal normobaric moderate hypoxia raises serum erythropoietin concentration but does not stimulate accelerated erythrocyte production. Eur J Appl Physiol 96(6): 651–658 (Epub 2006)

    Article  PubMed  Google Scholar 

  • Millet GP, Faiss R, Pialoux V (2012) Last word on point: Counterpoint – „hypobaric hypoxia induces different responses from normobaric hypoxia“. J Appl Physiol 112(10): 1795

    Article  PubMed  Google Scholar 

  • Mounier R, Brugniaux JV (2012) Counterpoint: Hypobaric hypoxia does not induce different responses from normobaric hypoxia. J Appl Physiol 112(10): 1784–1786

    Article  PubMed  Google Scholar 

  • Muza S, Fulco C, Beidleman B, Staab J, Tapia M, Elliot S, Elliot L, Money A, Cymerman A (2006) Normobaric intermittent hypoxic exposures decrease AMS at 4,300 m altitude. High Alt Med Biol 4: 338

    Google Scholar 

  • OSHA, Occupational Safety and Health Administration (2013) http://www.osha.gov/SLTC/healthguidelines/nitrogen/recognition.html. Zugegriffen am 3. April.2013

  • Pedlar CR, Howatson G, Whyte GP, Godfrey RJ, Macutkiewicz D (2005) Simulating moderate altitude using normobaric hypoxia with commercially available hypoxic gas generation. High Alt Med Biol 6: 346–347

    Article  PubMed  Google Scholar 

  • Roach RC, Loeppky JA, Icenogl MV (1996) Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia. J Appl Physiol 81: 1908–1910

    CAS  PubMed  Google Scholar 

  • Rodway GW, Hoffmann LA, Tasota FJ, Sethi JM, Choi AM, Ryter SW, Sanders MH (2008) Inducing hypoxemia in healthy humans: a method for intermittently lowering arterial blood oxygenation during physiological studies. Wild Environ Med 19(23): 218–220

    Article  Google Scholar 

  • Rozhanchuk VN, Pukh NN, Samsonova IS, Osokina VK (1992) Membrane technology as a basis for creation of treatment and prophylactic equipment for inhalation therapy and normobaric hypoxia. Fiziol Zh 38(5): 91–94

    CAS  PubMed  Google Scholar 

  • Savourey G, Launay JC, Besnard Y, Guinet A, Travers S (2003) Normo- and hypobaric hypoxia: are there any physiological differences? Eur J Appl Physiol Occup Physiol 89: 122–126

    Article  Google Scholar 

  • Schommer K, Wiesegart N, Menold E, Haas U, Lahr K, Buhl H, Bärtsch P, Dehnert C (2011) Training in normobaric hypoxia and its effects on acute mountain sickness after rapid ascent to 3449 m. High Alt Med Biol 11: 19–25

    Article  Google Scholar 

  • Self DA, Mandella JG, Prinzo OV, Forster EM, Shaffstall RM (2011) Physiological equivalence of nromobaric and hypobaric exposures of humans to 25.000 feet (7620 m). Aviat Space Environ Med 82(2): 97–102

    Article  PubMed  Google Scholar 

  • Tucker A, Reeves JT, Robertshaw D, Grover RF (1983) Cardiopulmonary response to acute altitude exposure: water loading and denitrogenation. Respir Physiol 54: 363–380

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Domej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Domej, W. (2015). Höhensimulation: Technik und Bedeutung für Medizin, Training und Forschung. In: Berghold, F., et al. Alpin- und Höhenmedizin. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1833-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1833-7_34

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1832-0

  • Online ISBN: 978-3-7091-1833-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics