Skip to main content

Role of the Pentose Phosphate Pathway in Tumour Metabolism

  • Chapter
Tumor Cell Metabolism

Abstract

The pentose phosphate pathway plays a pivotal role in cellular physiology. It synthesizes the nucleotide precursor ribose-5-phosphate and NADPH, required for redox homeostasis maintenance and lipogenesis. Cancer cells undergo metabolic reprogramming required to sustain proliferation and fully achieve malignant capabilities. Such metabolic reprogramming involves multiple metabolic pathways, and the pentose phosphate pathway becomes essential in tumour metabolism and biology. According to that, many changes occur in this metabolic pathway over the tumorigenic process, and the enzymes in this pathway become directly involved in the metabolism of cancer cells as well as in other important features of tumours. Also, a greater reliance on this pathway has been detected in some types of tumours. In this chapter, a detailed view of the role of the pentose phosphate pathway and its enzymes in tumour metabolism is provided. In addition, the potentiality of this pathway as therapeutic target in cancer treatment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asensio C, Levoin N, Guillaume C, Guerquin MJ, Rouguieg K, Chretien F, Chapleur Y, Netter P, Minn A, Lapicque F (2007) Irreversible inhibition of glucose-6-phosphate dehydrogenase by the coenzyme A conjugate of ketoprofen: a key to oxidative stress induced by non-steroidal anti-inflammatory drugs? Biochem Pharmacol 73(3):405–416

    CAS  PubMed  Google Scholar 

  • Au SW, Gover S, Lam VM, Adams MJ (2000) Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Structure 8(3):293–303

    CAS  PubMed  Google Scholar 

  • Banki K, Eddy RL, Shows TB, Halladay DL, Bullrich F, Croce CM, Jurecic V, Baldini A, Perl A (1997) The human transaldolase gene (TALDO1) is located on chromosome 11 at p 15.4–p15.5. Genomics 45(1):233–238

    CAS  PubMed  Google Scholar 

  • Banki K, Hutter E, Colombo E, Gonchoroff NJ, Perl A (1996) Glutathione levels and sensitivity to apoptosis are regulated by changes in transaldolase expression. J Biol Chem 271(51):32994–33001

    CAS  PubMed  Google Scholar 

  • Baomin L, Iglesias-Pedraz J, Leng-Ying C, Fei Y, Cadenas E, Sita R, Comai L (2014) Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 13:367–378

    Google Scholar 

  • Bentz S, Pesch T, Wolfram L, de Valliere C, Leucht K, Fried M, Coy JF, Hausmann M, Rogler G (2011) Lack of transketolase-like (TKTL) 1 aggravates murine experimental colitis. Am J Physiol Gastrointest Liver Physiol 300(4):G598–G607

    CAS  PubMed  Google Scholar 

  • Bentz S, Cee A, Endlicher E, Wojtal KA, Naami A, Pesch T, Lang S, Schubert P, Fried M, Weber A, Coy JF, Goelder S, Knüchel R, Hausmann M, Rogler G (2013) Hypoxia induces the expression of transketolase-like 1 in human colorectal cancer. Digestion 88(3):182–192. doi:10.1159/000355015, Epub 2013 Oct 26

    CAS  PubMed  Google Scholar 

  • Boros LG, Brandes JL, Lee WN, Cascante M, Puigjaner J, Revesz E, Bray TM, Schirmer WJ, Melvin WS (1998) Thiamine supplementation to cancer patients: a double edged sword. Anticancer Res 18(1B):595–602

    CAS  PubMed  Google Scholar 

  • Boros LG, Puigjaner J, Cascante M, Lee WN, Brandes JL, Bassilian S, Yusuf FI, Williams RD, Muscarella P, Melvin WS, Schirmer WJ (1997) Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res 57(19):4242–4248

    CAS  PubMed  Google Scholar 

  • Brocklehurst D, Champion AE, Cheek TR, Dewhurst DG (1986) The value of 6-phosphogluconate dehydrogenase (6-PGDH) activity as a marker of tumour cellularity and prognostic indicator in primary breast cancer. Tumour Biol 7(2–3):99–104

    CAS  PubMed  Google Scholar 

  • Brown NS, Bicknell R (2001) Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 3(5):323–327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butler EB, Zhao Y, Munoz-Pinedo C, Lu J, Tan M (2013) Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance. Cancer Res 73(9):2709–2717

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95. doi:10.1038/nrc2981

    CAS  PubMed  Google Scholar 

  • Cantor JR, Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2(10):881–898

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371(9606):64–74

    CAS  PubMed  Google Scholar 

  • Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20(3):243–249

    CAS  PubMed  Google Scholar 

  • Comin-Anduix B, Boren J, Martinez S, Moro C, Centelles JJ, Trebukhina R, Petushok N, Lee WN, Boros LG, Cascante M (2001) The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. Eur J Biochem 268(15):4177–4182

    CAS  PubMed  Google Scholar 

  • Coy JF, Dressler D, Wilde J, Schubert P (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab 51(5–6):257–273

    CAS  PubMed  Google Scholar 

  • Chan B, VanderLaan PA, Sukhatme VP (2013) 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met. Biochem Biophys Res Commun 439(2):247–251

    CAS  PubMed  Google Scholar 

  • Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, Becker K, Yates JR 3rd, Felding-Habermann B (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67(4):1472–1486

    CAS  PubMed  Google Scholar 

  • Cheng ML, Ho HY, Wu YH, Chiu DT (2004) Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence. Free Radic Biol Med 36(5):580–591

    CAS  PubMed  Google Scholar 

  • Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D, Butterfoss D, Xiang D, Zanation A, Yin X, Shockley WW, Weissler MC, Dressler LG, Shores CG, Yarbrough WG, Perou CM (2004) Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 5(5):489–500

    CAS  PubMed  Google Scholar 

  • Daily A, Liu S, Bhatnagar S, Karabakhtsian RG, Moscow JA (2012) Low-thiamine diet increases mammary tumor latency in FVB/N-Tg(MMTVneu) mice. Int J Vitam Nutr Res 82(4):298–302

    CAS  PubMed  Google Scholar 

  • de Atauri P, Benito A, Vizan P, Zanuy M, Mangues R, Marin S, Cascante M (2011) Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation. Biochim Biophys Acta 1807(6):746–754

    PubMed  Google Scholar 

  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475(7354):106–109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz-Moralli S, Tarrado-Castellarnau M, Alenda C, Castells A, Cascante M (2011) Transketolase-like 1 expression is modulated during colorectal cancer progression and metastasis formation. PLoS One 6(9):e25323

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drabovich AP, Pavlou MP, Dimitromanolakis A, Diamandis EP (2012) Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol Cell Proteomics 11:422–434

    PubMed Central  PubMed  Google Scholar 

  • Eggleston LV, Krebs HA (1974) Regulation of the pentose phosphate cycle. Biochem J 138(3):425–435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farber S, Diamond LK (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med 238(23):787–793

    CAS  PubMed  Google Scholar 

  • Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, Iaccarino I, Filosa S (2004) Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death Differ 11(8):823–831

    CAS  PubMed  Google Scholar 

  • Foldi M, Stickeler E, Bau L, Kretz O, Watermann D, Gitsch G, Kayser G, Zur Hausen A, Coy JF (2007) Transketolase protein TKTL1 overexpression: a potential biomarker and therapeutic target in breast cancer. Oncol Rep 17(4):841–845

    PubMed  Google Scholar 

  • Frederiks WM, Vizan P, Bosch KS, Vreeling-Sindelarova H, Boren J, Cascante M (2008) Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver. Int J Exp Pathol 89(4):232–240

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao LP, Cheng ML, Chou HJ, Yang YH, Ho HY, Chiu DT (2009) Ineffective GSH regeneration enhances G6PD-knockdown Hep G2 cell sensitivity to diamide-induced oxidative damage. Free Radic Biol Med 47(5):529–535

    CAS  PubMed  Google Scholar 

  • Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prufer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Hober B, Hoffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Z, Gusic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la Rasilla M, Fortea J, Rosas A, Schmitz RW, Johnson PL, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Paabo S (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722

    CAS  PubMed  Google Scholar 

  • Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, Muhs HJ, Munz A, Nadtotschi T, Konig K, Sanger J, Feyen O, Hofmann H, Reinert S, Coy JF (2013) A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 13:569

    PubMed Central  PubMed  Google Scholar 

  • Grossman CE, Qian Y, Banki K, Perl A (2004) ZNF143 mediates basal and tissue-specific expression of human transaldolase. J Biol Chem 279(13):12190–12205. doi:10.1074/jbc.M307039200

    CAS  PubMed  Google Scholar 

  • Hackett NR, Heguy A, Harvey BG, O’Connor TP, Luettich K, Flieder DB, Kaplan R, Crystal RG (2003) Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am J Respir Cell Mol Biol 29(3 Pt 1):331–343

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  • Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179(4561):663–666

    CAS  PubMed  Google Scholar 

  • Ho HY, Cheng ML, Chiu DT (2007) Glucose-6-phosphate dehydrogenase—from oxidative stress to cellular functions and degenerative diseases. Redox Rep 12(3):109–118

    CAS  PubMed  Google Scholar 

  • Horecker BL, Gibbs M, Klenow H, Smyrniotis PZ (1954) The mechanism of pentose phosphate conversion to hexose monophosphate. I. With a liver enzyme preparation. J Biol Chem 207(1):393–403

    CAS  PubMed  Google Scholar 

  • Hu LH, Yang JH, Zhang DT, Zhang S, Wang L, Cai PC, Zheng JF, Huang JS (2007) The TKTL1 gene influences total transketolase activity and cell proliferation in human colon cancer LoVo cells. Anti-Cancer Drugs 18(4):427–433

    CAS  PubMed  Google Scholar 

  • Huang JB, Espinoza J, Romero R, Petty HR (2005) Transaldolase is part of a supramolecular complex containing glucose-6-phosphate dehydrogenase in human neutrophils that undergoes retrograde trafficking during pregnancy. Metabolism 54(8):1027–1033

    CAS  PubMed  Google Scholar 

  • Jerby L, Wolf L, Denkert C, Stein GY, Hilvo M, Oresic M, Geiger T, Ruppin E (2012) Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res 72(22):5712–5720

    CAS  PubMed  Google Scholar 

  • Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316. doi:10.1038/ncb2172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang DH (2002) Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues 13(4):540–549

    PubMed  Google Scholar 

  • Kawaguchi A, Bloch K (1974) Inhibition of glucose 6-phosphate dehydrogenase by palmitoyl coenzyme A. J Biol Chem 249(18):5793–5800

    CAS  PubMed  Google Scholar 

  • Kawanishi S, Hiraku Y, Pinlaor S, Ma N (2006) Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 387(4):365–372

    CAS  PubMed  Google Scholar 

  • Kayser G, Sienel W, Kubitz B, Mattern D, Stickeler E, Passlick B, Werner M, Zur Hausen A (2011) Poor outcome in primary non-small cell lung cancers is predicted by transketolase TKTL1 expression. Pathology 43(7):719–724

    PubMed  Google Scholar 

  • Kohrenhagen N, Voelker HU, Schmidt M, Kapp M, Krockenberger M, Frambach T, Dietl J, Kammerer U (2008) Expression of transketolase-like 1 (TKTL1) and p-Akt correlates with the progression of cervical neoplasia. J Obstet Gynaecol Res 34(3):293–300

    CAS  PubMed  Google Scholar 

  • Kolstad P, Bergsjo P, Koller O, Pihl A, Sanner T (1967) Detection of preinvasive and early invasive cancer by 6-phosphogluconate dehydrogenase determinations. Am J Obstet Gynecol 98(6):804–807

    CAS  PubMed  Google Scholar 

  • Kotaka M, Gover S, Vandeputte-Rutten L, Au SW, Lam VM, Adams MJ (2005) Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 61(Pt 5):495–504

    PubMed  Google Scholar 

  • Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, Horn E, Dietl J, Kammerer U (2007) Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer 17(1):101–106

    CAS  PubMed  Google Scholar 

  • Krockenberger M, Engel JB, Schmidt M, Kohrenhagen N, Hausler SF, Dombrowski Y, Kapp M, Dietl J, Honig A (2010) Expression of transketolase-like 1 protein (TKTL1) in human endometrial cancer. Anticancer Res 30(5):1653–1659

    CAS  PubMed  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482

    CAS  PubMed  Google Scholar 

  • Kuo W, Lin J, Tang TK (2000) Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int J Cancer 85(6):857–864

    CAS  PubMed  Google Scholar 

  • Lam CT, Tang CM, Lau KW, Lung ML (2002) Loss of heterozygosity on chromosome 11 in esophageal squamous cell carcinomas. Cancer Lett 178(1):75–81

    CAS  PubMed  Google Scholar 

  • Langbein S, Frederiks WM, Zur Hausen A, Popa J, Lehmann J, Weiss C, Alken P, Coy JF (2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer 122(11):2422–2428. doi:10.1002/ijc.23403

    CAS  PubMed  Google Scholar 

  • Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy JF (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94(4):578–585

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lange CA, Tisch-Rottensteiner J, Böhringer D, Martin G, Schwartzkopff J, Auw-Haedrich C (2012) Enhanced TKTL1 expression in malignant tumors of the ocular adnexa predicts clinical outcome. Ophthalmology 119(9):1924–1929. doi:10.1016/j.ophtha.2012.03.037, Epub 2012 Jun 1

    PubMed  Google Scholar 

  • Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, Stanton RC, Loscalzo J (2003) Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem 278(34):32100–32106

    CAS  PubMed  Google Scholar 

  • Li D, Zhu Y, Tang Q, Lu H, Li H, Yang Y, Li Z, Tong S (2009) A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress. Cancer Biother Radiopharm 24(1):81–90

    CAS  PubMed  Google Scholar 

  • Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4(4):257–262

    CAS  PubMed  Google Scholar 

  • Luzzatto L, Notaro R (2001) Malaria. Protecting against bad air. Science 293(5529):442–443

    CAS  PubMed  Google Scholar 

  • Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22(1):66–79

    CAS  PubMed  Google Scholar 

  • Obiol-Pardo C, Alcarraz-Vizan G, Cascante M, Rubio-Martinez J (2012) Diphenyl urea derivatives as inhibitors of transketolase: a structure-based virtual screening. PLoS One 7(3):e32276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paabo S (2014) The human condition—a molecular approach. Cell 157(1):216–226

    PubMed  Google Scholar 

  • Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14(21):5209–5215

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    CAS  PubMed  Google Scholar 

  • Portakal O, Ozkaya O, Erden Inal M, Bozan B, Kosan M, Sayek I (2000) Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin Biochem 33(4):279–284

    CAS  PubMed  Google Scholar 

  • Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, de Filippo C, Li H, Mallick S, Dannemann M, Fu Q, Kircher M, Kuhlwilm M, Lachmann M, Meyer M, Ongyerth M, Siebauer M, Theunert C, Tandon A, Moorjani P, Pickrell J, Mullikin JC, Vohr SH, Green RE, Hellmann I, Johnson PL, Blanche H, Cann H, Kitzman JO, Shendure J, Eichler EE, Lein ES, Bakken TE, Golovanova LV, Doronichev VB, Shunkov MV, Derevianko AP, Viola B, Slatkin M, Reich D, Kelso J, Paabo S (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505(7481):43–49

    PubMed Central  PubMed  Google Scholar 

  • Rais B, Comin B, Puigjaner J, Brandes JL, Creppy E, Saboureau D, Ennamany R, Lee WN, Boros LG, Cascante M (1999) Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich’s tumor cells through inhibition of the pentose cycle. FEBS Lett 456(1):113–118

    CAS  PubMed  Google Scholar 

  • Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, Zhang XQ, Stevenson TJ, Peshock RM, Leopold JA, Barry WH, Loscalzo J, Odelberg SJ, Benjamin IJ (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130(3):427–439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramos-Montoya A, Lee WN, Bassilian S, Lim S, Trebukhina RV, Kazhyna MV, Ciudad CJ, Noe V, Centelles JJ, Cascante M (2006) Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer. Int J Cancer 119(12):2733–2741

    CAS  PubMed  Google Scholar 

  • Rawat DK, Hecker P, Watanabe M, Chettimada S, Levy RJ, Okada T, Edwards JG, Gupte SA (2012) Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function. PLoS One 7(10):e45365

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53(3):421–436

    CAS  PubMed  Google Scholar 

  • Rolland AD, Lavigne R, Dauly C, Calvel P, Kervarrec C, Freour T, Evrard B, Rioux-Leclercq N, Auger J, Pineau C (2013) Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod 28(1):199–209

    CAS  PubMed  Google Scholar 

  • Sabate L, Franco R, Canela EI, Centelles JJ, Cascante M (1995) A model of the pentose phosphate pathway in rat liver cells. Mol Cell Biochem 142(1):9–17

    CAS  PubMed  Google Scholar 

  • Samland AK, Sprenger GA (2009) Transaldolase: from biochemistry to human disease. Int J Biochem Cell Biol 41(7):1482–1494

    CAS  PubMed  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554

    CAS  PubMed  Google Scholar 

  • Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491(7424):364–373

    CAS  PubMed  Google Scholar 

  • Schwaab J, Horisberger K, Strobel P, Bohn B, Gencer D, Kahler G, Kienle P, Post S, Wenz F, Hofmann WK, Hofheinz RD, Erben P (2011) Expression of transketolase like gene 1 (TKTL1) predicts disease-free survival in patients with locally advanced rectal cancer receiving neoadjuvant chemoradiotherapy. BMC Cancer 11(1):363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Selivanov VA, Kovina MV, Kochevova NV, Meshalkina LE, Kochetov GA (2004) Kinetic study of the H103A mutant yeast transketolase. FEBS Lett 567(2–3):270–274

    CAS  PubMed  Google Scholar 

  • Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3(10):e420

    PubMed Central  PubMed  Google Scholar 

  • Smith IM, Glazer CA, Mithani SK, Ochs MF, Sun W, Bhan S, Vostrov A, Abdullaev Z, Lobanenkov V, Gray A, Liu C, Chang SS, Ostrow KL, Westra WH, Begum S, Dhara M, Califano J (2009) Coordinated activation of candidate proto-oncogenes and cancer testes antigens via promoter demethylation in head and neck cancer and lung cancer. PLoS One 4(3):e4961. doi:10.1371/journal.pone.0004961, Epub 2009 Mar 23

    PubMed Central  PubMed  Google Scholar 

  • Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN, Minna JD, Stewart DJ, Wistuba II (2010) Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res 16(14):3743–3753

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12(1):376–390

    CAS  PubMed  Google Scholar 

  • Stanton RC, Seifter JL, Boxer DC, Zimmerman E, Cantley LC (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J Biol Chem 266(19):12442–12448

    CAS  PubMed  Google Scholar 

  • Sukhatme VP, Chan B (2012) Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett 586(16):2389–2395

    CAS  PubMed  Google Scholar 

  • Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA (2010) TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res 16(3):857–866. doi:10.1158/1078-0432.CCR-09-2604, Epub 2010 Jan 26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798

    CAS  PubMed  Google Scholar 

  • Taketa K, Pogell BM (1966) The effect of palmitoyl coenzyme A on glucose 6-phosphate dehydrogenase and other enzymes. J Biol Chem 241(3):720–726

    CAS  PubMed  Google Scholar 

  • Talukdar I, Szeszel-Fedorowicz W, Salati LM (2005) Arachidonic acid inhibits the insulin induction of glucose-6-phosphate dehydrogenase via p38 MAP kinase. J Biol Chem 280(49):40660–40667

    CAS  PubMed  Google Scholar 

  • Tian WN, Braunstein LD, Apse K, Pang J, Rose M, Tian X, Stanton RC (1999) Importance of glucose-6-phosphate dehydrogenase activity in cell death. Am J Physiol 276(5 Pt 1):C1121–C1131

    CAS  PubMed  Google Scholar 

  • Tian WN, Pignatare JN, Stanton RC (1994) Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J Biol Chem 269(20):14798–14805

    CAS  PubMed  Google Scholar 

  • Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358(1):1–3

    CAS  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    CAS  PubMed  Google Scholar 

  • Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105(8):3041–3046

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10(9):671–684

    CAS  PubMed  Google Scholar 

  • Vizan P, Boros LG, Figueras A, Capella G, Mangues R, Bassilian S, Lim S, Lee WN, Cascante M (2005) K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res 65(13):5512–5515

    CAS  PubMed  Google Scholar 

  • Völker HU, Scheich M, Schmausser B, Kämmerer U, Eck M (2007) Overexpression of transketolase TKTL1 is associated with shorter survival in laryngeal squamous cell carcinomas. Eur Arch Otorhinolaryngol 264(12):1431–1436, Epub 2007 Jul 18

    PubMed  Google Scholar 

  • Wagle A, Jivraj S, Garlock GL, Stapleton SR (1998) Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase. J Biol Chem 273(24):14968–14974

    CAS  PubMed  Google Scholar 

  • Wanka C, Steinbach JP, Rieger J (2012) Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem 287(40):33436–33446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344

    CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21(3):297–308

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Zur Hausen A, Coy JF, Löchelt M (2009) Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer 124(6):1330–1337. doi:10.1002/ijc.24078

    CAS  PubMed  Google Scholar 

  • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, Depinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan W, Wu S, Guo J, Chen Z, Ge J, Yang P, Hu B (2010) Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. Cancer Biol Ther 9(9):710–716

    CAS  PubMed  Google Scholar 

  • Zastre JA, Sweet RL, Hanberry BS, Ye S (2013) Linking vitamin B1 with cancer cell metabolism. Cancer Metab 1(1):16

    PubMed Central  PubMed  Google Scholar 

  • Zerilli M, Amato MC, Martorana A, Cabibi D, Coy JF, Cappello F, Pompei G, Russo A, Giordano C, Rodolico V (2008) Increased expression of transketolase-like-1 in papillary thyroid carcinomas smaller than 1.5 cm in diameter is associated with lymph-node metastases. Cancer 113(5):936–944. doi:10.1002/cncr.23683

    PubMed  Google Scholar 

  • Zhang S, Yang JH, Guo CK, Cai PC (2007) Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett 253(1):108–114

    CAS  PubMed  Google Scholar 

  • Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprogramming. Oncogene 29(20):2962–2972

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cascante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Benito, A., Diaz-Moralli, S., Coy, J.F., Centelles, J.J., Cascante, M. (2015). Role of the Pentose Phosphate Pathway in Tumour Metabolism. In: Mazurek, S., Shoshan, M. (eds) Tumor Cell Metabolism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1824-5_7

Download citation

Publish with us

Policies and ethics