Skip to main content

Posttranslational Modifications of Small G Proteins

  • Chapter
  • First Online:

Abstract

The numerous biological functions of Ras superfamily small GTPases are highly dependent upon specific posttranslational modifications that guide their subcellular localization and interaction with regulators and effectors. Canonical modifications of their carboxyl termini include prenylation by farnesyl or geranylgeranyl isoprenoid lipids (Ras, Rho, Rab families). These serve as important components of their membrane targeting motifs and promote membrane binding, analogously to the cotranslational amino-terminal myristoylation of Arf family proteins. Reversible carboxymethylation of the prenylated cysteines and reversible acylation by one or more nearby palmitates promote dynamic membrane interactions to complement the permanent lipid modifications. Small GTPases are also regulated in both normal and disease states by several dynamic non-lipid posttranslational modifications. For example, many Ras and Rho family members are phosphorylated in an isoform-specific manner, largely by a select group of serine/threonine kinases such as protein kinase Cα or protein kinase A. Such phosphorylation events, as well as other modifications such as nitrosylation, mono- and di-ubiquitination, peptidyl-prolyl isomerization, acetylation, and oxidation, typically alter small GTPase location and/or interaction with regulatory molecules. By contrast, several distinct E3 ligases posttranslationally regulate small GTPase abundance and function at distinct cellular sites by promoting polyubiquitination and subsequent proteasomal degradation. Finally, numerous pathogenic bacterial toxins disrupt or enhance small GTPase function by a wide variety of posttranslational modifications including ADP ribosylation for which the Arf proteins are named. Here we summarize the rapidly evolving understanding of this fascinating area of small G protein regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamson P, Marshall CJ, Hall A, Tilbrook PA (1992) Post-translational modifications of p21rho proteins. J Biol Chem 267(28):20033–20038

    PubMed  CAS  Google Scholar 

  • Aghajanian A, Wittchen ES, Campbell SL, Burridge K (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4(11):e8045. doi:10.1371/journal.pone.0008045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahearn IM, Tsai FD, Court H, Zhou M, Jennings BC, Ahmed M, Fehrenbacher N, Linder ME, Philips MR (2011) FKBP12 binds to acylated H-ras and promotes depalmitoylation. Mol Cell 41(2):173–185. doi:10.1016/j.molcel.2011.01.001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ahearn IM, Haigis K, Bar-Sagi D, Philips MR (2012) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13(1):39–51. doi:10.1038/nrm3255

    Article  CAS  Google Scholar 

  • Aikawa Y, Lee S (2013) Role of Rabex-5 in the sorting of ubiquitinated cargo at an early stage in the endocytic pathway. Commun Integr Biol 6(4):e24463. doi:10.4161/cib.24463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9(7):487–498. doi:10.1038/nrmicro2592

    Article  PubMed  CAS  Google Scholar 

  • Alan JK, Lundquist EA (2013) Mutationally activated Rho GTPases in cancer. Small GTPases 4(3):159–163. doi:10.4161/sgtp.26530

    Article  PubMed  PubMed Central  Google Scholar 

  • Alan JK, Berzat AC, Dewar BJ, Graves LM, Cox AD (2010) Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src. Mol Cell Biol 30(17):4324–4338. doi:10.1128/MCB.01646-09, MCB.01646-09 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alexandrov K, Horiuchi H, Steele-Mortimer O, Seabra MC, Zerial M (1994) Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J 13(22):5262–5273

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alvarez-Moya B, Lopez-Alcala C, Drosten M, Bachs O, Agell N (2010) K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function. Oncogene 29(44):5911–5922. doi:10.1038/onc.2010.298, onc2010298 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Andres DA, Seabra MC, Brown MS, Armstrong SA, Smeland TE, Cremers FP, Goldstein JL (1993) cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell 73(6):1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Antonny B, Beraud-Dufour S, Chardin P, Chabre M (1997) N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36(15):4675–4684. doi:10.1021/bi962252b

    Article  PubMed  CAS  Google Scholar 

  • Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P (2006) Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat Cell Biol 8(5):485–491. doi:10.1038/ncb1400

    Article  PubMed  CAS  Google Scholar 

  • Ayad N, Hull M, Mellman I (1997) Mitotic phosphorylation of rab4 prevents binding to a specific receptor on endosome membranes. EMBO J 16(15):4497–4507. doi:10.1093/emboj/16.15.4497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Backlund PS Jr (1997) Post-translational processing of RhoA. Carboxyl methylation of the carboxyl-terminal prenylcysteine increases the half-life of Rhoa. J Biol Chem 272(52):33175–33180

    Article  PubMed  CAS  Google Scholar 

  • Baker TL, Zheng H, Walker J, Coloff JL, Buss JE (2003) Distinct rates of palmitate turnover on membrane-bound cellular and oncogenic H-ras. J Biol Chem 278(21):19292–19300. doi:10.1074/jbc.M206956200

    Article  PubMed  CAS  Google Scholar 

  • Baker R, Lewis SM, Sasaki AT, Wilkerson EM, Locasale JW, Cantley LC, Kuhlman B, Dohlman HG, Campbell SL (2013a) Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nat Struct Mol Biol 20(1):46–52. doi:10.1038/nsmb.2430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baker R, Wilkerson EM, Sumita K, Isom DG, Sasaki AT, Dohlman HG, Campbell SL (2013b) Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination. J Biol Chem 288(52):36856–36862. doi:10.1074/jbc.C113.525691

    Article  PubMed  CAS  Google Scholar 

  • Ballester R, Furth ME, Rosen OM (1987) Phorbol ester- and protein kinase C-mediated phosphorylation of the cellular Kirsten ras gene product. J Biol Chem 262(6):2688–2695

    PubMed  CAS  Google Scholar 

  • Beranger F, Goud B, Tavitian A, de Gunzburg J (1991) Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc Natl Acad Sci USA 88(5):1606–1610

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berg TJ, Gastonguay AJ, Lorimer EL, Kuhnmuench JR, Li R, Fields AP, Williams CL (2010) Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J Biol Chem 285(46):35255–35266. doi:10.1074/jbc.M110.129916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bergo MO, Leung GK, Ambroziak P, Otto JC, Casey PJ, Gomes AQ, Seabra MC, Young SG (2001) Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J Biol Chem 276(8):5841–5845. doi:10.1074/jbc.C000831200

    Article  PubMed  CAS  Google Scholar 

  • Bergo MO, Lieu HD, Gavino BJ, Ambroziak P, Otto JC, Casey PJ, Walker QM, Young SG (2004) On the physiological importance of endoproteolysis of CAAX proteins: heart-specific RCE1 knockout mice develop a lethal cardiomyopathy. J Biol Chem 279(6):4729–4736. doi:10.1074/jbc.M310081200

    Article  PubMed  CAS  Google Scholar 

  • Berzat AC, Buss JE, Chenette EJ, Weinbaum CA, Shutes A, Der CJ, Minden A, Cox AD (2005) Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J Biol Chem 280(38):33055–33065. doi:10.1074/jbc.M507362200, M507362200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A, Miura J, Wiener HH, Wright L, Saba SG, Yim D, Fein A, Perez de Castro I, Li C, Thompson CB, Cox AD, Philips MR (2006) PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 21(4):481–493. doi:10.1016/j.molcel.2006.01.012, S1097-2765(06)00032-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, Camonis JH, Yeaman C, Levine B, White MA (2011) RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144(2):253–267. doi:10.1016/j.cell.2010.12.018, S0092-8674(10)01436-4 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boettner B, Van Aelst L (2009) Control of cell adhesion dynamics by Rap1 signaling. Curr Opin Cell Biol 21(5):684–693. doi:10.1016/j.ceb.2009.06.004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N (2010) Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 190(5):807–822. doi:10.1083/jcb.200912056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bos JL (2005) Linking Rap to cell adhesion. Curr Opin Cell Biol 17(2):123–128. doi:10.1016/j.ceb.2005.02.009, S0955-0674(05)00022-0 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Boulter E, Estrach S, Garcia-Mata R, Feral CC (2012) Off the beaten paths: alternative and crosstalk regulation of Rho GTPases. FASEB J 26(2):469–479. doi:10.1096/fj.11-192252

    Article  PubMed  CAS  Google Scholar 

  • Brady DC, Alan JK, Madigan JP, Fanning AS, Cox AD (2009) The transforming Rho family GTPase Wrch-1 disrupts epithelial cell tight junctions and epithelial morphogenesis. Mol Cell Biol 29(4):1035–1049. doi:10.1128/MCB.00336-08, MCB.00336-08 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brandes V, Schelle I, Brinkmann S, Schulz F, Schwarz J, Gerhard R, Genth H (2012) Protection from Clostridium difficile toxin B-catalysed Rac1/Cdc42 glucosylation by tauroursodeoxycholic acid-induced Rac1/Cdc42 phosphorylation. Biol Chem 393(1–2):77–84. doi:10.1515/BC-2011-198

    PubMed  CAS  Google Scholar 

  • Buckner FS, Bahia MT, Suryadevara PK, White KL, Shackleford DM, Chennamaneni NK, Hulverson MA, Laydbak JU, Chatelain E, Scandale I, Verlinde CL, Charman SA, Lepesheva GI, Gelb MH (2012) Pharmacological characterization, structural studies, and in vivo activities of anti-Chagas disease lead compounds derived from tipifarnib. Antimicrob Agents Chemother 56(9):4914–4921. doi:10.1128/AAC.06244-11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burgoyne JR, Haeussler DJ, Kumar V, Ji Y, Pimental DR, Zee RS, Costello CE, Lin C, McComb ME, Cohen RA, Bachschmid MM (2012) Oxidation of HRas cysteine thiols by metabolic stress prevents palmitoylation in vivo and contributes to endothelial cell apoptosis. FASEB J 26(2):832–841. doi:10.1096/fj.11-189415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buss JE, Sefton BM (1986) Direct identification of palmitic acid as the lipid attached to p21ras. Mol Cell Biol 6(1):116–122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Camonis JH, White MA (2005) Ral GTPases: corrupting the exocyst in cancer cells. Trends Cell Biol 15(6):327–332. doi:10.1016/j.tcb.2005.04.002, S0962-8924(05)00101-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Casey PJ, Solski PA, Der CJ, Buss JE (1989) p21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 86(21):8323–8327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12(5):767–778. doi:10.1016/j.devcel.2007.03.004

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT, Malliri A (2010) SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol 12(11):1078–1085. doi:10.1038/ncb2112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Castillo-Lluva S, Tan CT, Daugaard M, Sorensen PH, Malliri A (2013) The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation. Oncogene 32(13):1735–1742. doi:10.1038/onc.2012.189

    Article  PubMed  CAS  Google Scholar 

  • Cevik S, Hori Y, Kaplan OI, Kida K, Toivenon T, Foley-Fisher C, Cottell D, Katada T, Kontani K, Blacque OE (2010) Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J Cell Biol 188(6):953–969. doi:10.1083/jcb.200908133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chang F, Lemmon C, Lietha D, Eck M, Romer L (2011) Tyrosine phosphorylation of Rac1: a role in regulation of cell spreading. PLoS One 6(12):e28587. doi:10.1371/journal.pone.0028587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chardin P, Tavitian A (1986) The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J 5(9):2203–2208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chenette EJ, Abo A, Der CJ (2005) Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J Biol Chem 280(14):13784–13792. doi:10.1074/jbc.M411300200

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Yin K, Lu D, Li B, Zhu D, Chen Y, Zhang H, Xu S, Chai J, Gu L (2012) Structural insights into a unique Legionella pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state. PLoS Pathog 8(3):e1002528. doi:10.1371/journal.ppat.1002528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93(1):269–309. doi:10.1152/physrev.00003.2012

    Article  PubMed  CAS  Google Scholar 

  • Chiariello M, Bruni CB, Bucci C (1999) The small GTPases Rab5a, Rab5b and Rab5c are differentially phosphorylated in vitro. FEBS Lett 453(1–2):20–24

    Article  PubMed  CAS  Google Scholar 

  • Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D, Ivanov IE, Philips MR (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98(1):69–80. doi:10.1016/S0092-8674(00)80607-8

    Article  PubMed  CAS  Google Scholar 

  • Colicelli J (2004) Human RAS superfamily proteins and related GTPases. Sci STKE 2004(250):RE13. doi:10.1126/stke.2502004re13

    PubMed  PubMed Central  Google Scholar 

  • Cox AD (2010) Protein localization: can too much lipid glue stop Ras? Nat Chem Biol 6(7):483–485. doi:10.1038/nchembio.399

    Article  PubMed  CAS  Google Scholar 

  • Cox AD, Der CJ (1997) Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim Biophys Acta 1333(1):F51–71

    PubMed  CAS  Google Scholar 

  • Cox AD, Der CJ (2010) Ras history: the saga continues. Small GTPases 1(1):2–27. doi:10.4161/sgtp.1.1.12178

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable Ras: mission possible? Nat Rev Drug Discov. In press

    Google Scholar 

  • Crose LE, Hilder TL, Sciaky N, Johnson GL (2009) Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 284(20):13301–13305. doi:10.1074/jbc.C900009200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crowther GJ, Napuli AJ, Gilligan JH, Gagaring K, Borboa R, Francek C, Chen Z, Dagostino EF, Stockmyer JB, Wang Y, Rodenbough PP, Castaneda LJ, Leibly DJ, Bhandari J, Gelb MH, Brinker A, Engels IH, Taylor J, Chatterjee AK, Fantauzzi P, Glynne RJ, Van Voorhis WC, Kuhen KL (2011) Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Mol Biochem Parasitol 175(1):21–29. doi:10.1016/j.molbiopara.2010.08.005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dai Q, Choy E, Chiu V, Romano J, Slivka SR, Steitz SA, Michaelis S, Philips MR (1998) Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J Biol Chem 273(24):15030–15034

    Article  PubMed  CAS  Google Scholar 

  • Daugaard M, Nitsch R, Razaghi B, McDonald L, Jarrar A, Torrino S, Castillo-Lluva S, Rotblat B, Li L, Malliri A, Lemichez E, Mettouchi A, Berman JN, Penninger JM, Sorensen PH (2013) Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes. Nat Commun 4:2180. doi:10.1038/ncomms3180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeGeer J, Lamarche-Vane N (2013) Rho GTPases in neurodegeneration diseases. Exp Cell Res 319(15):2384–2394. doi:10.1016/j.yexcr.2013.06.016

    Article  PubMed  CAS  Google Scholar 

  • Dekker FJ, Rocks O, Vartak N, Menninger S, Hedberg C, Balamurugan R, Wetzel S, Renner S, Gerauer M, Scholermann B, Rusch M, Kramer JW, Rauh D, Coates GW, Brunsveld L, Bastiaens PI, Waldmann H (2010) Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 6(6):449–456. doi:10.1038/nchembio.362

    Article  PubMed  CAS  Google Scholar 

  • Deretic D (2013) Crosstalk of Arf and Rab GTPases en route to cilia. Small GTPases 4(2):70–77. doi:10.4161/sgtp.24396

    Article  PubMed  PubMed Central  Google Scholar 

  • Didsbury JR, Uhing RJ, Snyderman R (1990) Isoprenylation of the low molecular mass GTP-binding proteins rac 1 and rac 2: possible role in membrane localization. Biochem Biophys Res Commun 171(2):804–812

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Soule G, Overmeyer JH, Maltese WA (2003) Tyrosine phosphorylation of the Rab24 GTPase in cultured mammalian cells. Biochem Biophys Res Commun 312(3):670–675. doi:10.1016/j.bbrc.2003.10.171

    Article  PubMed  CAS  Google Scholar 

  • Dong JM, Leung T, Manser E, Lim L (1998) cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKalpha. J Biol Chem 273(35):22554–22562

    Article  PubMed  CAS  Google Scholar 

  • Duncan JA, Gilman AG (2002) Characterization of Saccharomyces cerevisiae acyl-protein thioesterase 1, the enzyme responsible for G protein alpha subunit deacylation in vivo. J Biol Chem 277(35):31740–31752. doi:10.1074/jbc.M202505200

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg S, Laude AJ, Beckett AJ, Mageean CJ, Aran V, Hernandez-Valladares M, Henis YI, Prior IA (2013) The role of palmitoylation in regulating Ras localization and function. Biochem Soc Trans 41(1):79–83. doi:10.1042/BST20120268

    Article  PubMed  CAS  Google Scholar 

  • Elad G, Paz A, Haklai R, Marciano D, Cox A, Kloog Y (1999) Targeting of K-Ras 4B by S-trans, trans-farnesyl thiosalicylic acid. Biochim Biophys Acta 1452(3):228–242

    Article  PubMed  CAS  Google Scholar 

  • Ellerbroek SM, Wennerberg K, Burridge K (2003) Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278(21):19023–19031. doi:10.1074/jbc.M213066200, M213066200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Erdman RA, Shellenberger KE, Overmeyer JH, Maltese WA (2000) Rab24 is an atypical member of the Rab GTPase family. Deficient GTPase activity, GDP dissociation inhibitor interaction, and prenylation of Rab24 expressed in cultured cells. J Biol Chem 275(6):3848–3856

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA (1994) Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A. Proc Natl Acad Sci USA 91(25):11963–11967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finegold AA, Johnson DI, Farnsworth CC, Gelb MH, Judd SR, Glomset JA, Tamanoi F (1991) Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product but not the DPR1 gene product. Proc Natl Acad Sci USA 88(10):4448–4452

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Forget MA, Desrosiers RR, Gingras D, Beliveau R (2002) Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem J 361(Pt 2):243–254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Foster R, Hu KQ, Lu Y, Nolan KM, Thissen J, Settleman J (1996) Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 16(6):2689–2699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gayard M, Guilluy C, Rousselle A, Viollet B, Henrion D, Pacaud P, Loirand G, Rolli-Derkinderen M (2011) AMPK alpha 1-induced RhoA phosphorylation mediates vasoprotective effect of estradiol. Arterioscler Thromb Vasc Biol 31(11):2634–2642. doi:10.1161/ATVBAHA.111.228304

    Article  PubMed  CAS  Google Scholar 

  • Gelb MH, Brunsveld L, Hrycyna CA, Michaelis S, Tamanoi F, Van Voorhis WC, Waldmann H (2006) Therapeutic intervention based on protein prenylation and associated modifications. Nat Chem Biol 2(10):518–528. doi:10.1038/nchembio818

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gerez L, Mohrmann K, van Raak M, Jongeneelen M, Zhou XZ, Lu KP, van Der Sluijs P (2000) Accumulation of rab4GTP in the cytoplasm and association with the peptidyl-prolyl isomerase pin1 during mitosis. Mol Biol Cell 11(7):2201–2211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gloerich M, Bos JL (2011) Regulating Rap small G-proteins in time and space. Trends Cell Biol 21(10):615–623. doi:10.1016/j.tcb.2011.07.001

    Article  PubMed  CAS  Google Scholar 

  • Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Philips MR, Kenworthy AK (2005) Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 170(2):261–272. doi:10.1083/jcb.200502063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, Fligor B, Bishop WR, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich NJ, Nazarian A, Liang MG, Huh SY, Schwartzman A, Kieran MW (2012) Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 109(41):16666–16671. doi:10.1073/pnas.1202529109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guilluy C, Rolli-Derkinderen M, Loufrani L, Bourge A, Henrion D, Sabourin L, Loirand G, Pacaud P (2008) Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II Type 2 receptor activation. Circ Res 102(10):1265–1274. doi:10.1161/CIRCRESAHA.107.164764, CIRCRESAHA.107.164764 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Magee AI, Marshall CJ, Hancock JF (1989) Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J 8(4):1093–1098

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hancock JF, Magee AI, Childs JE, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57(7):1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63(1):133–139

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF, Cadwallader K, Paterson H, Marshall CJ (1991) A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 10(13):4033–4039

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hata Y, Kaibuchi K, Kawamura S, Hiroyoshi M, Shirataki H, Takai Y (1991) Enhancement of the actions of smg p21 GDP/GTP exchange protein by the protein kinase A-catalyzed phosphorylation of smg p21. J Biol Chem 266(10):6571–6577

    PubMed  CAS  Google Scholar 

  • Haun RS, Tsai SC, Adamik R, Moss J, Vaughan M (1993) Effect of myristoylation on GTP-dependent binding of ADP-ribosylation factor to Golgi. J Biol Chem 268(10):7064–7068

    PubMed  CAS  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701. doi:10.1038/nrm2476

    Article  PubMed  CAS  Google Scholar 

  • Heger CD, Wrann CD, Collins RN (2011) Phosphorylation provides a negative mode of regulation for the yeast Rab GTPase Sec4p. PLoS One 6(9):e24332. doi:10.1371/journal.pone.0024332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hiroyoshi M, Kaibuchi K, Kawamura S, Hata Y, Takai Y (1991) Role of the C-terminal region of smg p21, a ras p21-like small GTP-binding protein, in membrane and smg p21 GDP/GTP exchange protein interactions. J Biol Chem 266(5):2962–2969

    PubMed  CAS  Google Scholar 

  • Hobbs GA, Zhou B, Cox AD, Campbell SL (2014) Rho GTPases, oxidation, and cell redox control. Small GTPases 8(5):e28579

    Google Scholar 

  • Hofmann I, Munro S (2006) An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J Cell Sci 119(Pt 8):1494–1503. doi:10.1242/jcs.02958

    Article  PubMed  CAS  Google Scholar 

  • Hoshijima M, Kikuchi A, Kawata M, Ohmori T, Hashimoto E, Yamamura H, Takai Y (1988) Phosphorylation by cyclic AMP-dependent protein kinase of a human platelet Mr 22,000 GTP-binding protein (smg p21) having the same putative effector domain as the ras gene products. Biochem Biophys Res Commun 157(3):851–860, S0006-291X(88)80953-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jeyaraj SC, Unger NT, Chotani MA (2011) Rap1 GTPases: an emerging role in the cardiovasculature. Life Sci 88(15–16):645–652. doi:10.1016/j.lfs.2011.01.023, S0024-3205(11)00058-0 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson DS, Chen YH (2012) Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 12(4):458–463. doi:10.1016/j.coph.2012.02.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jones MC, Caswell PT, Norman JC (2006) Endocytic recycling pathways: emerging regulators of cell migration. Curr Opin Cell Biol 18(5):549–557. doi:10.1016/j.ceb.2006.08.003

    Article  PubMed  CAS  Google Scholar 

  • Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D (2006) Differential modification of Ras proteins by ubiquitination. Mol Cell 21(5):679–687. doi:10.1016/j.molcel.2006.02.011

    Article  PubMed  CAS  Google Scholar 

  • Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR III, Davis NG, El-Husseini A (2008) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456(7224):904–909. doi:10.1038/nature07605

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karniguian A, Zahraoui A, Tavitian A (1993) Identification of small GTP-binding rab proteins in human platelets: thrombin-induced phosphorylation of rab3B, rab6, and rab8 proteins. Proc Natl Acad Sci USA 90(16):7647–7651

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531. doi:10.1038/nrm2438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kashatus DF (2013) Ral GTPases in tumorigenesis: emerging from the shadows. Exp Cell Res 319(15):2337–2342. doi:10.1016/j.yexcr.2013.06.020

    Article  PubMed  CAS  Google Scholar 

  • Kashatus DF, Lim KH, Brady DC, Pershing NL, Cox AD, Counter CM (2011) RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 13(9):1108–1115. doi:10.1038/ncb2310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ (1992) Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 89(14):6403–6407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kawamura S, Kaibuchi K, Hiroyoshi M, Hata Y, Takai Y (1991) Stoichiometric interaction of smg p21 with its GDP/GTP exchange protein and its novel action to regulate the translocation of smg p21 between membrane and cytoplasm. Biochem Biophys Res Commun 174(3):1095–1102, 0006-291X(91)91533-I [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kawata M, Kikuchi A, Hoshijima M, Yamamoto K, Hashimoto E, Yamamura H, Takai Y (1989) Phosphorylation of smg p21, a ras p21-like GTP-binding protein, by cyclic AMP-dependent protein kinase in a cell-free system and in response to prostaglandin E1 in intact human platelets. J Biol Chem 264(26):15688–15695

    PubMed  CAS  Google Scholar 

  • Khosravi-Far R, Lutz RJ, Cox AD, Conroy L, Bourne JR, Sinensky M, Balch WE, Buss JE, Der CJ (1991) Isoprenoid modification of rab proteins terminating in CC or CXC motifs. Proc Natl Acad Sci USA 88(14):6264–6268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khosravi-Far R, Clark GJ, Abe K, Cox AD, McLain T, Lutz RJ, Sinensky M, Der CJ (1992) Ras (CXXX) and Rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J Biol Chem 267(34):24363–24368

    PubMed  CAS  Google Scholar 

  • Kinsella BT, Maltese WA (1992) rab GTP-binding proteins with three different carboxyl-terminal cysteine motifs are modified in vivo by 20-carbon isoprenoids. J Biol Chem 267(6):3940–3945

    PubMed  CAS  Google Scholar 

  • Kinsella BT, Erdman RA, Maltese WA (1991a) Carboxyl-terminal isoprenylation of ras-related GTP-binding proteins encoded by rac1, rac2, and ralA. J Biol Chem 266(15):9786–9794

    PubMed  CAS  Google Scholar 

  • Kinsella BT, Erdman RA, Maltese WA (1991b) Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid. Proc Natl Acad Sci USA 88(20):8934–8938

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jaattela M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7(11):1273–1294. doi:10.4161/auto.7.11.17661

    Article  PubMed  PubMed Central  Google Scholar 

  • Komander D, Garg R, Wan PT, Ridley AJ, Barford D (2008) Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure. EMBO J 27(23):3175–3185. doi:10.1038/emboj.2008.226, emboj2008226 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kwon T, Kwon DY, Chun J, Kim JH, Kang SS (2000) Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem 275(1):423–428

    Article  PubMed  CAS  Google Scholar 

  • Lampson BL, Kendall SD, Ancrile BB, Morrison MM, Shealy MJ, Barrientos KS, Crowe MS, Kashatus DF, White RR, Gurley SB, Cardona DM, Counter CM (2012) Targeting eNOS in pancreatic cancer. Cancer Res 72(17):4472–4482. doi:10.1158/0008-5472.CAN-12-0057

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lander HM, Ogiste JS, Teng KK, Novogrodsky A (1995) p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 270(36):21195–21198

    Article  PubMed  CAS  Google Scholar 

  • Lander HM, Milbank AJ, Tauras JM, Hajjar DP, Hempstead BL, Schwartz GD, Kraemer RT, Mirza UA, Chait BT, Burk SC, Quilliam LA (1996) Redox regulation of cell signalling. Nature 381(6581):380–381. doi:10.1038/381380a0

    Article  PubMed  CAS  Google Scholar 

  • Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA (1997) A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272(7):4323–4326

    Article  PubMed  CAS  Google Scholar 

  • Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J (1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15(3):510–519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lapetina EG, Lacal JC, Reep BR, Molina y Vedia L (1989) A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci USA 86(9):3131–3134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Laude AJ, Prior IA (2008) Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain. J Cell Sci 121(Pt 4):421–427. doi:10.1242/jcs.020107

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319(15):2329–2336. doi:10.1016/j.yexcr.2013.04.021

    Article  PubMed  CAS  Google Scholar 

  • Lerosey I, Pizon V, Tavitian A, de Gunzburg J (1991) The cAMP-dependent protein kinase phosphorylates the rap1 protein in vitro as well as in intact fibroblasts, but not the closely related rap2 protein. Biochem Biophys Res Commun 175(2):430–436

    Article  PubMed  CAS  Google Scholar 

  • Leung KF, Baron R, Seabra MC (2006) Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. J Lipid Res 47(3):467–475. doi:10.1194/jlr.R500017-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Leung KF, Baron R, Ali BR, Magee AI, Seabra MC (2007) Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem 282(2):1487–1497. doi:10.1074/jbc.M605557200

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hu J (2011) Small GTPases and cilia. Protein Cell 2(1):13–25. doi:10.1007/s13238-011-1004-7

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhang Q, Wei Q, Zhang Y, Ling K, Hu J (2012) SUMOylation of the small GTPase ARL-13 promotes ciliary targeting of sensory receptors. J Cell Biol 199(4):589–598. doi:10.1083/jcb.201203150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, Der CJ, Counter CM (2005) Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7(6):533–545. doi:10.1016/j.ccr.2005.04.030, S1535-6108(05)00157-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lim KH, Ancrile BB, Kashatus DF, Counter CM (2008) Tumour maintenance is mediated by eNOS. Nature 452(7187):646–649. doi:10.1038/nature06778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lim KH, Brady DC, Kashatus DF, Ancrile BB, Der CJ, Cox AD, Counter CM (2010) Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Mol Cell Biol 30(2):508–523. doi:10.1128/MCB.00916-08, MCB.00916-08 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lim YS, Chua CE, Tang BL (2011) Rabs and other small GTPases in ciliary transport. Biol Cell 103(5):209–221. doi:10.1042/BC20100150

    Article  PubMed  CAS  Google Scholar 

  • Linder ME, Jennings BC (2013) Mechanism and function of DHHC S-acyltransferases. Biochem Soc Trans 41(1):29–34. doi:10.1042/BST20120328

    Article  PubMed  CAS  Google Scholar 

  • Lobo S, Greentree WK, Linder ME, Deschenes RJ (2002) Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 277(43):41268–41273. doi:10.1074/jbc.M206573200

    Article  PubMed  CAS  Google Scholar 

  • Loirand G, Guilluy C, Pacaud P (2006) Regulation of Rho proteins by phosphorylation in the cardiovascular system. Trends Cardiovasc Med 16(6):199–204. doi:10.1016/j.tcm.2006.03.010, S1050-1738(06)00053-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Loirand G, Sauzeau V, Pacaud P (2013) Small G proteins in the cardiovascular system: physiological and pathological aspects. Physiol Rev 93(4):1659–1720. doi:10.1152/physrev.00021.2012

    Article  PubMed  CAS  Google Scholar 

  • Madigan JP, Bodemann BO, Brady DC, Dewar BJ, Keller PJ, Leitges M, Philips MR, Ridley AJ, Der CJ, Cox AD (2009) Regulation of Rnd3 localization and function by protein kinase C alpha-mediated phosphorylation. Biochem J 424(1):153–161. doi:10.1042/BJ20082377, BJ20082377 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Magee AI, Gutierrez L, McKay IA, Marshall CJ, Hall A (1987) Dynamic fatty acylation of p21N-ras. EMBO J 6(11):3353–3357

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mallis RJ, Buss JE, Thomas JA (2001) Oxidative modification of H-ras: S-thiolation and S-nitrosylation of reactive cysteines. Biochem J 355(Pt 1):145–153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin TD, Mitin N, Cox AD, Yeh JJ, Der CJ (2012) Phosphorylation by protein kinase Calpha regulates RalB small GTPase protein activation, subcellular localization, and effector utilization. J Biol Chem 287(18):14827–14836. doi:10.1074/jbc.M112.344986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McLaughlin S, Aderem A (1995) The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci 20(7):272–276

    Article  PubMed  CAS  Google Scholar 

  • McLeod SJ, Shum AJ, Lee RL, Takei F, Gold MR (2004) The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem 279(13):12009–12019. doi:10.1074/jbc.M313098200, M313098200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Mettouchi A, Lemichez E (2012) Ubiquitylation of active Rac1 by the E3 ubiquitin-ligase HACE1. Small GTPases 3(2):102–106. doi:10.4161/sgtp.19221

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaelson D, Ali W, Chiu VK, Bergo M, Silletti J, Wright L, Young SG, Philips M (2005) Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases. Mol Biol Cell 16(4):1606–1616. doi:10.1091/mbc.E04-11-0960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Militello RD, Munafo DB, Beron W, Lopez LA, Monier S, Goud B, Colombo MI (2013) Rab24 is required for normal cell division. Traffic 14(5):502–518. doi:10.1111/tra.12057

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Farh L, Marshall TK, Deschenes RJ (1994) A polybasic domain allows nonprenylated Ras proteins to function in Saccharomyces cerevisiae. J Biol Chem 269(34):21540–21546

    PubMed  CAS  Google Scholar 

  • Mitchell L, Hobbs GA, Aghajanian A, Campbell SL (2013) Redox regulation of Ras and Rho GTPases: mechanism and function. Antioxid Redox Signal 18(3):250–258. doi:10.1089/ars.2012.4687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moores SL, Schaber MD, Mosser SD, Rands E, O’Hara MB, Garsky VM, Marshall MS, Pompliano DL, Gibbs JB (1991) Sequence dependence of protein isoprenylation. J Biol Chem 266(22):14603–14610

    PubMed  CAS  Google Scholar 

  • Nishimura A, Linder ME (2013) Identification of a novel prenyl and palmitoyl modification at the CaaX motif of Cdc42 that regulates RhoGDI binding. Mol Cell Biol 33(7):1417–1429. doi:10.1128/MCB.01398-12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nomura K, Kanemura H, Satoh T, Kataoka T (2004) Identification of a novel domain of Ras and Rap1 that directs their differential subcellular localizations. J Biol Chem 279(21):22664–22673. doi:10.1074/jbc.M314169200, M314169200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ntantie E, Gonyo P, Lorimer EL, Hauser AD, Schuld N, McAllister D, Kalyanaraman B, Dwinell MB, Auchampach JA, Williams CL (2013) An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal 6(277):ra39. doi:10.1126/scisignal.2003374

    PubMed  Google Scholar 

  • Nusser N, Gosmanova E, Makarova N, Fujiwara Y, Yang L, Guo F, Luo Y, Zheng Y, Tigyi G (2006) Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth. Cell Signal 18(5):704–714. doi:10.1016/j.cellsig.2005.06.010, S0898-6568(05)00155-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Oesterlin LK, Goody RS, Itzen A (2012) Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor. Proc Natl Acad Sci USA 109(15):5621–5626. doi:10.1073/pnas.1121161109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okada S, Yamada E, Saito T, Ohshima K, Hashimoto K, Yamada M, Uehara Y, Tsuchiya T, Shimizu H, Tatei K, Izumi T, Yamauchi K, Hisanaga S, Pessin JE, Mori M (2008) CDK5-dependent phosphorylation of the Rho family GTPase TC10(alpha) regulates insulin-stimulated GLUT4 translocation. J Biol Chem 283(51):35455–35463. doi:10.1074/jbc.M806531200, M806531200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Pannekoek WJ, Kooistra MR, Zwartkruis FJ, Bos JL (2009) Cell-cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta 1788(4):790–796. doi:10.1016/j.bbamem.2008.12.010

    Article  PubMed  CAS  Google Scholar 

  • Pavarotti M, Capmany A, Vitale N, Colombo MI, Damiani MT (2012) Rab11 is phosphorylated by classical and novel protein kinase C isoenzymes upon sustained phorbol ester activation. Biol Cell 104(2):102–115. doi:10.1111/boc.201100062

    Article  PubMed  CAS  Google Scholar 

  • Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20(51):7486–7493. doi:10.1038/sj.onc.1204950

    Article  PubMed  CAS  Google Scholar 

  • Plowman SJ, Ariotti N, Goodall A, Parton RG, Hancock JF (2008) Electrostatic interactions positively regulate K-Ras nanocluster formation and function. Mol Cell Biol 28(13):4377–4385. doi:10.1128/MCB.00050-08, MCB.00050-08 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prior IA, Hancock JF (2012) Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 23(2):145–153. doi:10.1016/j.semcdb.2011.09.002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quilliam LA, Mueller H, Bohl BP, Prossnitz V, Sklar LA, Der CJ, Bokoch GM (1991) Rap1A is a substrate for cyclic AMP-dependent protein kinase in human neutrophils. J Immunol 147(5):1628–1635

    PubMed  CAS  Google Scholar 

  • Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA (1995) The myristoylated amino terminus of ADP-ribosylation factor 1 is a phospholipid- and GTP-sensitive switch. J Biol Chem 270(24):14809–14815

    Article  PubMed  CAS  Google Scholar 

  • Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369. doi:10.1146/annurev-genom-091212-153523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reid TS, Terry KL, Casey PJ, Beese LS (2004) Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol 343(2):417–433. doi:10.1016/j.jmb.2004.08.056

    Article  PubMed  CAS  Google Scholar 

  • Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL (1991) Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase. Proc Natl Acad Sci USA 88(3):732–736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Riento K, Totty N, Villalonga P, Garg R, Guasch R, Ridley AJ (2005) RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J 24(6):1170–1180. doi:10.1038/sj.emboj.7600612, 7600612 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Riou P, Kjaer S, Garg R, Purkiss A, George R, Cain RJ, Bineva G, Reymond N, McColl B, Thompson AJ, O’Reilly N, McDonald NQ, Parker PJ, Ridley AJ (2013) 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins. Cell 153(3):640–653. doi:10.1016/j.cell.2013.03.044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roberts PJ, Mitin N, Keller PJ, Chenette EJ, Madigan JP, Currin RO, Cox AD, Wilson O, Kirschmeier P, Der CJ (2008) Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283(37):25150–25163. doi:10.1074/jbc.M800882200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307(5716):1746–1752. doi:10.1126/science.1105654

    Article  PubMed  CAS  Google Scholar 

  • Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141(3):458–471. doi:10.1016/j.cell.2010.04.007

    Article  PubMed  CAS  Google Scholar 

  • Rolli-Derkinderen M, Sauzeau V, Boyer L, Lemichez E, Baron C, Henrion D, Loirand G, Pacaud P (2005) Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ Res 96(11):1152–1160. doi:10.1161/01.RES.0000170084.88780.ea, 01.RES.0000170084.88780.ea [pii]

    Article  PubMed  CAS  Google Scholar 

  • Rosse C, Hatzoglou A, Parrini MC, White MA, Chavrier P, Camonis J (2006) RalB mobilizes the exocyst to drive cell migration. Mol Cell Biol 26(2):727–734. doi:10.1128/MCB.26.2.727-734.2006, 26/2/727 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM (1997) Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 272(22):14093–14097

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Plowman S, Rotblat B, Prior IA, Muncke C, Grainger S, Parton RG, Henis YI, Kloog Y, Hancock JF (2005) Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol Cell Biol 25(15):6722–6733. doi:10.1128/MCB.25.15.6722-6733.2005, 25/15/6722 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE, DeCaprio JA, Hahn WC (2007) The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell 129(5):969–982. doi:10.1016/j.cell.2007.03.047, S0092-8674(07)00516-8 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sahai E, Garcia-Medina R, Pouyssegur J, Vial E (2007) Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol 176(1):35–42. doi:10.1083/jcb.200605135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, Haviv S, Asara JM, Pandolfi PP, Cantley LC (2011) Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 4(163):ra13. doi:10.1126/scisignal.2001518

    PubMed  PubMed Central  Google Scholar 

  • Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 275(28):21722–21729. doi:10.1074/jbc.M000753200, M000753200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WK, Tam A, Fujimura-Kamada K, Michaelis S (1998) Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci USA 95(19):11175–11180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schoentaube J, Olling A, Tatge H, Just I, Gerhard R (2009) Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A. Cell Microbiol 11(12):1816–1826. doi:10.1111/j.1462-5822.2009.01373.x

    Article  PubMed  CAS  Google Scholar 

  • Schwamborn JC, Muller M, Becker AH, Puschel AW (2007) Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J 26(5):1410–1422. doi:10.1038/sj.emboj.7601580

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwarz J, Proff J, Havemeier A, Ladwein M, Rottner K, Barlag B, Pich A, Tatge H, Just I, Gerhard R (2012) Serine-71 phosphorylation of Rac1 modulates downstream signaling. PLoS One 7(9):e44358. doi:10.1371/journal.pone.0044358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seabra MC, Goldstein JL, Sudhof TC, Brown MS (1992) Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 267(20):14497–14503

    PubMed  CAS  Google Scholar 

  • Seixas E, Barros M, Seabra MC, Barral DC (2013) Rab and Arf proteins in genetic diseases. Traffic 14(8):871–885. doi:10.1111/tra.12072

    Article  PubMed  CAS  Google Scholar 

  • Shalom-Feuerstein R, Plowman SJ, Rotblat B, Ariotti N, Tian T, Hancock JF, Kloog Y (2008) K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res 68(16):6608–6616. doi:10.1158/0008-5472.CAN-08-1117, 68/16/6608 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shi GX, Cai W, Andres DA (2013) Rit subfamily small GTPases: regulators in neuronal differentiation and survival. Cell Signal 25(10):2060–2068. doi:10.1016/j.cellsig.2013.06.002

    Article  PubMed  CAS  Google Scholar 

  • Shipitsin M, Feig LA (2004) RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells. Mol Cell Biol 24(13):5746–5756. doi:10.1128/MCB.24.13.5746-5756.2004, 24/13/5746 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Siess W, Winegar DA, Lapetina EG (1990) Rap1-B is phosphorylated by protein kinase A in intact human platelets. Biochem Biophys Res Commun 170(2):944–950, 0006-291X(90)92182-Y [pii]

    Article  PubMed  CAS  Google Scholar 

  • Silvius JR, Bhagatji P, Leventis R, Terrone D (2006) K-ras4B and prenylated proteins lacking “second signals” associate dynamically with cellular membranes. Mol Biol Cell 17(1):192–202. doi:10.1091/mbc.E05-05-0408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K, Ohta Y (2002) The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4(1):73–78. doi:10.1038/ncb720, ncb720 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Sung PJ, Tsai FD, Vais H, Court H, Yang J, Fehrenbacher N, Foskett JK, Philips MR (2013) Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors. Proc Natl Acad Sci USA 110(51):20593–20598. doi:10.1073/pnas.1306431110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK, Deschenes RJ, Linder ME (2005) DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem 280(35):31141–31148. doi:10.1074/jbc.M504113200

    Article  PubMed  CAS  Google Scholar 

  • Tamanoi F, Hsueh EC, Goodman LE, Cobitz AR, Detrick RJ, Brown WR, Fujiyama A (1988) Posttranslational modification of ras proteins: detection of a modification prior to fatty acid acylation and cloning of a gene responsible for the modification. J Cell Biochem 36(3):261–273. doi:10.1002/jcb.240360307

    Article  PubMed  CAS  Google Scholar 

  • Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal W, Valenti G (2003) cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci 116(Pt 8):1519–1525

    Article  PubMed  CAS  Google Scholar 

  • Thumkeo D, Watanabe S, Narumiya S (2013) Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol 92(10–11):303–315. doi:10.1016/j.ejcb.2013.09.002

    Article  PubMed  CAS  Google Scholar 

  • Tu S, Wu WJ, Wang J, Cerione RA (2003) Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J Biol Chem 278(49):49293–49300. doi:10.1074/jbc.M307021200, M307021200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • van Dam EM, Robinson PJ (2006) Ral: mediator of membrane trafficking. Int J Biochem Cell Biol 38(11):1841–1847. doi:10.1016/j.biocel.2006.04.006, S1357-2725(06)00148-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • van der Hoeven D, Cho KJ, Ma X, Chigurupati S, Parton RG, Hancock JF (2013) Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission. Mol Cell Biol 33(2):237–251. doi:10.1128/MCB.00884-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Sluijs P, Hull M, Huber LA, Male P, Goud B, Mellman I (1992) Reversible phosphorylation–dephosphorylation determines the localization of rab4 during the cell cycle. EMBO J 11(12):4379–4389

    PubMed  PubMed Central  Google Scholar 

  • Villalonga P, Lopez-Alcala C, Chiloeches A, Gil J, Marais R, Bachs O, Agell N (2002) Calmodulin prevents activation of Ras by PKC in 3T3 fibroblasts. J Biol Chem 277(40):37929–37935. doi:10.1074/jbc.M202245200, M202245200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wahlstrom AM, Cutts BA, Karlsson C, Andersson KM, Liu M, Sjogren AK, Swolin B, Young SG, Bergo MO (2007) Rce1 deficiency accelerates the development of K-RAS-induced myeloproliferative disease. Blood 109(2):763–768. doi:10.1182/blood-2006-05-024752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wahlstrom AM, Cutts BA, Liu M, Lindskog A, Karlsson C, Sjogren AK, Andersson KM, Young SG, Bergo MO (2008) Inactivating Icmt ameliorates K-RAS-induced myeloproliferative disease. Blood 112(4):1357–1365. doi:10.1182/blood-2007-06-094060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL (2003) Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302(5651):1775–1779. doi:10.1126/science.1090772

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Owens C, Chandra N, Conaway MR, Brautigan DL, Theodorescu D (2010) Phosphorylation of RalB is important for bladder cancer cell growth and metastasis. Cancer Res 70(21):8760–8769. doi:10.1158/0008-5472.CAN-10-0952, 0008-5472.CAN-10-0952 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wei J, Mialki RK, Dong S, Khoo A, Mallampalli RK, Zhao Y, Zhao J (2013) A new mechanism of RhoA ubiquitination and degradation: roles of SCF(FBXL19) E3 ligase and Erk2. Biochim Biophys Acta 1833(12):2757–2764. doi:10.1016/j.bbamcr.2013.07.005

    Article  PubMed  CAS  Google Scholar 

  • Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846. doi:10.1242/jcs.01660, 118/5/843 [pii]

    Article  PubMed  CAS  Google Scholar 

  • White E (2013) Exploiting the bad eating habits of Ras-driven cancers. Genes Dev 27(19):2065–2071. doi:10.1101/gad.228122.113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272(22):14459–14464

    Article  PubMed  CAS  Google Scholar 

  • Willumsen BM, Christensen A, Hubbert NL, Papageorge AG, Lowy DR (1984a) The p21 ras C-terminus is required for transformation and membrane association. Nature 310(5978):583–586

    Article  PubMed  CAS  Google Scholar 

  • Willumsen BM, Norris K, Papageorge AG, Hubbert NL, Lowy DR (1984b) Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J 3(11):2581–2585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Willumsen BM, Cox AD, Solski PA, Der CJ, Buss JE (1996) Novel determinants of H-Ras plasma membrane localization and transformation. Oncogene 13(9):1901–1909

    PubMed  CAS  Google Scholar 

  • Wright LP, Philips MR (2006) Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47(5):883–891. doi:10.1194/jlr.R600004-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Wu JC, Chen TY, Yu CT, Tsai SJ, Hsu JM, Tang MJ, Chou CK, Lin WJ, Yuan CJ, Huang CY (2005) Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J Biol Chem 280(10):9013–9022. doi:10.1074/jbc.M411068200, M411068200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wu YW, Tan KT, Waldmann H, Goody RS, Alexandrov K (2007) Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proc Natl Acad Sci USA 104(30):12294–12299. doi:10.1073/pnas.0701817104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu L, Lubkov V, Taylor LJ, Bar-Sagi D (2010) Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr Biol 20(15):1372–1377. doi:10.1016/j.cub.2010.06.051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu J, Hedberg C, Dekker FJ, Li Q, Haigis KM, Hwang E, Waldmann H, Shannon K (2012) Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras. Blood 119(4):1032–1035. doi:10.1182/blood-2011-06-358960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang MH, Nickerson S, Kim ET, Liot C, Laurent G, Spang R, Philips MR, Shan Y, Shaw DE, Bar-Sagi D, Haigis MC, Haigis KM (2012) Regulation of RAS oncogenicity by acetylation. Proc Natl Acad Sci USA 109(27):10843–10848. doi:10.1073/pnas.1201487109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang MH, Laurent G, Bause AS, Spang R, German N, Haigis MC, Haigis KM (2013) HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS. Mol Cancer Res 11(9):1072–1077. doi:10.1158/1541-7786.MCR-13-0040-T

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yokoyama H, Gruss OJ (2013) New Mitotic Regulators Released from Chromatin. Front Oncol 3:308. doi:10.3389/fonc.2013.00308

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokoyama K, Goodwin GW, Ghomashchi F, Glomset JA, Gelb MH (1991) A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci USA 88(12):5302–5306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshida Y, Kawata M, Katayama M, Horiuchi H, Kita Y, Takai Y (1991) A geranylgeranyltransferase for rhoA p21 distinct from the farnesyltransferase for ras p21S. Biochem Biophys Res Commun 175(2):720–728

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Tschantz WR, Casey PJ (1997) Isolation and characterization of a prenylcysteine lyase from bovine brain. J Biol Chem 272(37):23354–23359

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Mialki RK, Wei J, Coon TA, Zou C, Chen BB, Mallampalli RK, Zhao Y (2013) SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J 27(7):2611–2619. doi:10.1096/fj.12-223099

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou J, Vos CC, Gjyrezi A, Yoshida M, Khuri FR, Tamanoi F, Giannakakou P (2009) The protein farnesyltransferase regulates HDAC6 activity in a microtubule-dependent manner. J Biol Chem 284(15):9648–9655. doi:10.1074/jbc.M808708200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PI, Waldmann H (2013) Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature 497(7451):638–642. doi:10.1038/nature12205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne D. Cox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Zhou, B., Cox, A.D. (2014). Posttranslational Modifications of Small G Proteins. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1806-1_5

Download citation

Publish with us

Policies and ethics