Skip to main content

The Structure of the G Domain of the Ras Superfamily

  • Chapter
  • First Online:

Abstract

Since the first three-dimensional structure of H-Ras has been determined in 1990, the number of solved structures of small GTP-binding proteins has increased tremendously. As of February 2014, 555 structures of Ras-superfamily proteins have been deposited in the protein databank (PDB), either in uncomplexed form or bound to effectors or other regulatory proteins. The 751 chains contain either GTP or a GTP analogue (431 chains) and GDP (320 chains), respectively. This chapter summarizes the most important structural features of single-domain GTP-binding proteins of the Ras superfamily and focuses on the comparison of the solved structures, especially the switch loops, i.e., the regions that change conformation upon nucleotide exchange from GTP to GDP. In particular, the pitfalls of the crystal structure interpretation will be emphasized since flexible protein segments like the switch regions of the G domain are especially prone to crystallization artifacts. Regions that are mobile in solution are commonly “frozen out” into relatively arbitrary conformations that often are dictated by the specifics of the packing against neighboring molecules in the crystals. It requires very careful analysis to decide if the conformations populated in the crystals have any physiological relevance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Araki M et al (2011) Solution structure of the state 1 conformer of GTP-bound H-Ras protein and distinct dynamic properties between the state 1 and state 2 conformers. J Biol Chem 286(45):39644–39653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bergbrede T et al (2005) Structure of the extremely slow GTPase Rab6A in the GTP bound form at 1.8A resolution. J Struct Biol 152(3):235–238

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR et al (1995) Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 14(4):705–715

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brucker S, Gerwert K, Kötting C (2010) Tyr39 of Ran preserves the Ran.GTP gradient by inhibiting GTP hydrolysis. J Mol Biol 401(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Buhrman G, Wink G, Mattos C (2007) Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf. Structure/Fold Des 15(12):1618–1629

    Article  CAS  Google Scholar 

  • Bunney TD et al (2009) Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2. Mol Cell 34(2):223–233

    Article  PubMed  CAS  Google Scholar 

  • Clabecq A, Henry JP, Darchen F (2000) Biochemical characterization of Rab3-GTPase-activating protein reveals a mechanism similar to that of Ras-GAP. J Biol Chem 275(41):31786–31791

    Article  PubMed  CAS  Google Scholar 

  • Colicelli J (2004) Human RAS superfamily proteins and related GTPases. Sci Signal 2004(250):re13

    Google Scholar 

  • Dias SMG, Cerione RA (2007) X-ray crystal structures reveal two activated states for RhoC. Biochemistry 46(22):6547–6558

    Article  PubMed  CAS  Google Scholar 

  • Dong N et al (2012) Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150(5):1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Eathiraj S et al (2005) Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 436(7049):415–419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feltham JL et al (1997) Definition of the switch surface in the solution structure of Cdc42Hs. Biochemistry 36(29):8755–8766

    Article  PubMed  CAS  Google Scholar 

  • Fiegen D et al (2004) Alternative splicing of Rac1 generates Rac1b, a self-activating GTPase. J Biol Chem 279(6):4743–4749

    Article  PubMed  CAS  Google Scholar 

  • Filchtinski D et al (2010) What Makes Ras an Efficient Molecular Switch: A Computational, Biophysical, and Structural Study of Ras-GDP Interactions with Mutants of Raf. J Mol Biol 399(3):422–435

    Article  PubMed  CAS  Google Scholar 

  • Forwood JK et al (2008) Kap95p binding induces the switch loops of RanGDP to adopt the GTP-bound conformation: implications for nuclear import complex assembly dynamics. J Mol Biol 383(4):772–782

    Article  PubMed  CAS  Google Scholar 

  • Fraser JS et al (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108(39):16247–16252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frech M et al (1994) Role of glutamine-61 in the hydrolysis of GTP by p21H-ras: an experimental and theoretical study. Biochemistry 33(11):3237–3244

    Article  PubMed  CAS  Google Scholar 

  • Gasper R, Sot B, Wittinghofer A (2010) GTPase activity of Di-Ras proteins is stimulated by Rap1GAP proteins. Small GTPases 1(3):133–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyer M et al (1996) Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 35:10308–10320

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A et al (2006) How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nat Cell Biol 440(7080):101–104

    CAS  Google Scholar 

  • Goitre L et al (2014) The Ras superfamily of small GTPases: the unlocked secrets. Methods Mol Biol 1120:1–18

    Article  PubMed  Google Scholar 

  • Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95(2):237–248

    Article  PubMed  CAS  Google Scholar 

  • Gorlich D et al (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15(20):5584–5594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Halle B (2004) Biomolecular cryocrystallography: structural changes during flash-cooling. Proc Natl Acad Sci U S A 101(14):4793–4798

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hemsath L et al (2005) An electrostatic steering mechanism of Cdc42 recognition by Wiskott-Aldrich syndrome proteins. Mol Cell 20(2):313–324

    Article  PubMed  CAS  Google Scholar 

  • Herrmann C, Martin GA, Wittinghofer A (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem 270(7):2901–2905

    Article  PubMed  CAS  Google Scholar 

  • Huang M et al (2001) Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol 155(6):937–948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huber SK, Scheidig AJ (2005) High resolution crystal structures of human Rab4a in its active and inactive conformations. FEBS Lett 579(13):2821–2829

    Article  PubMed  CAS  Google Scholar 

  • Jobichen C, Pal K, Swaminathan K (2012) Crystal structure of mouse RhoA:GTPγS complex in a centered lattice. J Struct Funct Genomics 13(4):241–245

    Article  PubMed  CAS  Google Scholar 

  • John J et al (1990) Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29(25):6058–6065

    Article  PubMed  CAS  Google Scholar 

  • Juers DH, Matthews BW (2004) Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization. Q Rev Biophys 37(2):105–119

    Article  PubMed  CAS  Google Scholar 

  • Kahn RA et al (2006) Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol 172(5):645–650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kessel A, Ben-Tal N (2012) Introduction to proteins. CRC Press, Boca Raton, FL

    Google Scholar 

  • Key MD et al (2006) Characterization of RERG: an estrogen-regulated tumor suppressor gene. Methods Enzymol 407:513–527

    Article  PubMed  CAS  Google Scholar 

  • Klebe C et al (1995) Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34(2):639–647

    Article  PubMed  CAS  Google Scholar 

  • Kraulis PJ et al (1994) Solution structure and dynamics of ras p21.GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 33(12):3515–3531

    Article  PubMed  CAS  Google Scholar 

  • Leipe DD et al (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317(1):41–72

    Article  PubMed  CAS  Google Scholar 

  • Liao J et al (2008) Two conformational states of Ras GTPase exhibit differential GTP-binding kinetics. Biochem Biophys Res Commun 369(2):327–332

    Article  PubMed  CAS  Google Scholar 

  • Long D et al (2013) A comparative CEST NMR study of slow conformational dynamics of small GTPases complexed with GTP and GTP analogues. Angewandte Chemie (International ed. in English) 52:10771–10774

    Google Scholar 

  • Mazhab-Jafari MT et al (2012) An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Structure 20:1528–1539

    Article  PubMed  CAS  Google Scholar 

  • Miertzschke M et al (2014) Structural insights into the small G-protein Arl13B and implications for Joubert syndrome. Biochem J 457(2):301–311

    Article  PubMed  CAS  Google Scholar 

  • Muraoka S et al (2012) Crystal structures of the state 1 conformations of the GTP-bound H-Ras protein and its oncogenic G12V and Q61L mutants. FEBS Lett 586(12):1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Nassar N et al (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375(6532):554–560

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF (2010) Bayesian classification of residues associated with protein functional divergence: Arf and Arf-like GTPases. Biol Direct 5:66

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Opatowsky Y et al (2006) Structure-function studies of the G-domain from human gem, a novel small G-protein. FEBS Lett 580(25):5959–5964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pai EF et al (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J 9(8):2351–2359

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pan X et al (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442(7100):303–306

    Article  PubMed  CAS  Google Scholar 

  • Pasqualato S, Renault L, Cherfils J (2002) Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for “front-back” communication. EMBO Rep 3(11):1035–1041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Phillips MJ et al (2008) Effector proteins exert an important influence on the signaling-active state of the small GTPase Cdc42. J Biol Chem 283(20):14153–14164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reymond P et al (2012) Structure of the GDP-bound G domain of the RGK protein Rem2. Acta Crystallogr Sect F Struct Biol Cryst Commun 68(Pt 6):626–631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop–a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15(11):430–434

    Article  PubMed  Google Scholar 

  • Sasson Y et al (2011) RGK family G-domain: GTP analog complex structures and nucleotide-binding properties. J Mol Biol 413(2):372–389

    Article  PubMed  CAS  Google Scholar 

  • Scheidig AJ, Burmester C, Goody RS (1999) The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure/Fold Des 7(11):1311–1324

    Article  CAS  Google Scholar 

  • Seewald MJ et al (2002) RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415(6872):662–666

    Article  PubMed  CAS  Google Scholar 

  • Shima F et al (2010) Structural Basis for Conformational Dynamics of GTP-bound Ras Protein. J Biol Chem 285(29):22696–22705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith MJ, Neel BG, Ikura M (2013) NMR-based functional profiling of RASopathies and oncogenic RAS mutations. Proc Natl Acad Sci U S A 110(12):4574–4579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Splingard A et al (2007) Biochemical and structural characterization of the gem GTPase. J Biol Chem 282(3):1905–1915

    Article  PubMed  CAS  Google Scholar 

  • Spoerner M et al (2001) Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc Natl Acad Sci U S A 98(9):4944–4949

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spoerner M et al (2010) Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem 285(51):39768–39778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stewart M, Kent HM, McCoy AJ (1998) The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2). J Mol Biol 284(5):1517–1527

    Article  PubMed  CAS  Google Scholar 

  • Stroupe C, Brunger AT (2000) Crystal structures of a Rab protein in its inactive and active conformations. J Mol Biol 304(4):585–598

    Article  PubMed  CAS  Google Scholar 

  • Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140(1):1–22

    Article  PubMed  CAS  Google Scholar 

  • van Dam TJP, Bos JL, Snel B (2011) Evolution of the Ras-like small GTPases and their regulators. Small GTPases 2(1):4–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetter IR, Wittinghofer A (1999) Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q Rev Biophys 32(1):1–56

    Article  PubMed  CAS  Google Scholar 

  • Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304

    Article  PubMed  CAS  Google Scholar 

  • Vetter IR et al (1999) Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398(6722):39–46

    Article  PubMed  CAS  Google Scholar 

  • Wennerberg K (2005) The Ras superfamily at a glance. J Cell Sci 118(5):843–846

    Article  PubMed  CAS  Google Scholar 

  • Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971

    Article  PubMed  CAS  Google Scholar 

  • Wolf YI et al (1999) Distribution of protein folds in the three superkingdoms of life. Genome Res 9(1):17–26

    PubMed  CAS  Google Scholar 

  • Ye M et al (2005) Crystal structure of M-Ras reveals a GTP-bound “off” state conformation of Ras family small GTPases. J Biol Chem 280(35):31267–31275

    Article  PubMed  CAS  Google Scholar 

  • Yu Y et al (2005) Structural basis for the unique biological function of small GTPase RHEB. J Biol Chem 280(17):17093–17100

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Wang ZX, Zheng Y (1997) Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains. J Biol Chem 272(35):21999–22007

    Article  PubMed  CAS  Google Scholar 

  • Zhang W et al (2012) Crystal structure of inactive form of Rab3B. Biochem Biophys Res Commun 418:841–844

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid R. Vetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Vetter, I.R. (2014). The Structure of the G Domain of the Ras Superfamily. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1806-1_2

Download citation

Publish with us

Policies and ethics