Skip to main content

Applications

  • Chapter
  • First Online:

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

The increasing demand for higher computing power, smaller dimensions, and lower power consumption of integrated circuits leads to a pressing need to downscale semiconductor components. Moore’s law, which has continued unabated for 40 years, is the empirical observation that component density and performance of integrated circuits doubles every 2 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aksamija, Z., Knezevic, I.: Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011)

    Google Scholar 

  2. Aksamija, Z., Knezevic, I.: Thermal transport in graphene nanoribbons supported on SiO2. Phys. Rev. B 86, 165426 (2012)

    Google Scholar 

  3. Al-Jishi, R., Dresselhaus, G.: Lattice-dynamical model for graphite. Phys. Rev. B 26(8), 4514–4522 (1982)

    Google Scholar 

  4. Anderson, P., Thouless, D., Abrahams, E., Fisher, D.: New method for a scaling theory of localization. Phys. Rev. B 22(8), 3519–3526 (1980)

    MathSciNet  Google Scholar 

  5. Appenzeller, J.: Carbon nanotubes for high-performance electronics – progress and prospects. Proc. IEEE 96(2), 201–211 (2008)

    Google Scholar 

  6. Appenzeller, J., Lin, Y.M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004)

    Google Scholar 

  7. Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors – the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)

    Google Scholar 

  8. Areshkin, D., Gunlycke, D., White, C.: Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett. 7(1), 204–210 (2007)

    Google Scholar 

  9. Avouris, P., Chen, Z., Perebeinos, V.: Carbon based electronics. Nat. Nanotechnol. 2(10), 605–615 (2007)

    Google Scholar 

  10. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Google Scholar 

  11. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Google Scholar 

  12. Barone, V., Hod, O., Scuseria, G.E.: Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)

    Google Scholar 

  13. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A., Conrad, E., First, P., de Herr, W.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006)

    Google Scholar 

  14. Bolotin, K., Sikesb, K., Jianga, Z., Klimac, M., Fudenberga, G., Honec, J., Kima, P., Stormera, H.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    Google Scholar 

  15. Brey, L., Fertig, H.: Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. Lett. 73, 235411 (2006)

    Google Scholar 

  16. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)

    Google Scholar 

  17. Chen, J., Klinke, C., Afzali, A., Chan, K., Avouris, P.: Self-aligned carbon nanotube transistors with novel chemical doping. In: International Electron Devices Meeting Technical Digest, San Francisco, pp. 695–698. IEEE (2004)

    Google Scholar 

  18. Chen, Z., Lin, Y., Rooks, M., Avouris, P.: Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)

    Google Scholar 

  19. Chen, J.H., Jang, C., Xiao, S., Ishighami, M., Fuhrer, M.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3(4), 206–209 (2008)

    Google Scholar 

  20. Cho, S., Chen, Y.F., Fuhrer, M.: Gate-tunable graphene spin valve. Appl. Phys. Lett. 91, 123105 (2007)

    Google Scholar 

  21. Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010)

    Google Scholar 

  22. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, New York (1995)

    Google Scholar 

  23. Datta, S.: Quantum Transport: From Atoms to Transistors. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  24. Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)

    Google Scholar 

  25. Du, X., Skachko, I., Barker, A., Andrei, E.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)

    Google Scholar 

  26. Ertler, C., Konschuh, S., Gmitra, M., Fabian, J.: Electron spin relaxation in graphene: the role of the substrate. Phys. Rev. B 80, 041405 (2009)

    Google Scholar 

  27. Evaldsson, M., Zozoulenko, I.V., Xu, H., Heinzel, T.: Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 78, 161407(R) (2008)

    Google Scholar 

  28. Ezawa, M.: Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. Lett. 73, 045432 (2006)

    Google Scholar 

  29. Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6(11), 858–861 (2007)

    Google Scholar 

  30. Fiori, G., Bruzzone, S., Iannaccone, G.: Very large current modulation in vertical heterostructure graphene/hBN transistors. IEEE Trans. Electron Devices 60(1), 268–273 (2013)

    Google Scholar 

  31. Freitag, M.: Graphene: nanoelectronics goes flat out. Nat. Nanotechnol. 3(8), 455–457 (2008)

    MathSciNet  Google Scholar 

  32. Freitag, M., Martin, Y., Misewich, J., Martel, R., Avouris, P.: Photoconductivity of single carbon nanotubes. Nano Lett. 3(8), 1067–1071 (2003)

    Google Scholar 

  33. Freitag, M., Chen, J., Tersoff, J., Tsang, J., Fu, Q., Liu, J., Avouris, P.: Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett. 93, 076803 (2004)

    Google Scholar 

  34. Fuhrer, M.S., Lau, C.N., MacDonald, A.H.: Graphene: materially better carbon. MRS Bull. 35, 289–295 (2010)

    Google Scholar 

  35. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Google Scholar 

  36. Geringer, V., Liebmann, M., Echtermeyer, T., Runte, S., Schmidt, M.,Rückamp, R., Lemme, M.C., Morgenstern, M.: Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2. Phys. Rev. Lett. 102, 076102 (2009)

    Google Scholar 

  37. Ghobadi, N., Pourfath, M.: A comparative study of tunneling FETs based on graphene and GNR heterostructures. IEEE Trans. Electron Devices 61(1), 186–192 (2014)

    Google Scholar 

  38. Ghosh, S., Calizo, I., Teweldebrahn, D., Pokatilov, E., Nika, D., Balandin, A., Bao, W., Miao, F., Lau, C.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)

    Google Scholar 

  39. Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., Liliental, Z., Fathy, D., Krivanek, O.L.: Surface roughness at the Si(100)-SiO2 interface. Phys. Rev. B 32(12), 8171–8186 (1985)

    Google Scholar 

  40. Gunlycke, D., White, C.T.: Tight-binding energy descriptions of armchair-edge graphene nanostrips. Phys. Rev. B 77, 115116 (2008)

    Google Scholar 

  41. Gunlycke, D., Areshkin, D., White, C.: Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104 (2007)

    Google Scholar 

  42. Guo, J., Javey, A., Dai, H., Lundstrom, M.: Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. In: International Electron Devices Meeting Technical Digest, San Francisco, pp. 703–706. IEEE (2004)

    Google Scholar 

  43. Guo, Z., Zhang, D., Gong, X.G.: Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95, 163103 (2009)

    Google Scholar 

  44. Han, M., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Google Scholar 

  45. Harman, T., Taylor, P., Walsh, M., LaForge, B.: Quantum dot superlattice thermoelectric materials and devices. Science 297(5590), 2229–2232 (2002)

    Google Scholar 

  46. Harrison, W.: Elementary Electronic Structure. World Scientific, Singapore (1999)

    Google Scholar 

  47. Henrickson, L.E.: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys. 91(10), 6273–6281 (2002)

    Google Scholar 

  48. Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999)

    Google Scholar 

  49. Hsu, H., Reichl, L.E.: Selection rule for the optical absorption of graphene nanoribbons. Phys. Rev. B 76, 45418 (2007)

    Google Scholar 

  50. Huertas-Hernando, D., Guinea, F., Brataas, A.: Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006)

    Google Scholar 

  51. Huertas-Hernando, D., Guinea, F., Brataas, A.: Spin-orbit-mediated spin relaxation in graphene. Phys. Rev. Lett. 103, 146801 (2009)

    Google Scholar 

  52. Ishigami, M., Chen, J., Cullen, W., Fuhrer, M., Williams, E.: Atomic structure of graphene on SiO2. Nano Lett. 7(6), 1643–1648 (2007)

    Google Scholar 

  53. Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature (London) 424(6949), 654–657 (2003)

    Google Scholar 

  54. Jeong, C., Datta, S., Lundstrom, M.: Thermal conductivity of bulk and thin-film silicon: a Landauer approach. J. Appl. Phys. 111, 093708 (2012)

    Google Scholar 

  55. Jiang, J.W., Wang, B.S., Wang, J.S.: First principle study of the thermal conductance in graphene nanoribbon with vacancy and substitutional silicon defects. Appl. Phys. Lett. 98, 113114 (2011)

    Google Scholar 

  56. Kane, C.L., Mele, E.J.: Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Google Scholar 

  57. Karamitaheri, H., Neophytou, N., Pourfath, M., Faez, R., Kosina, H.: Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons. J. Appl. Phys. 111, 054501 (2012)

    Google Scholar 

  58. Karamitaheri, H., Pourfath, M., Faez, R., Kosina, H.: Atomistic study of the lattice thermal conductivity of rough graphene nanoribbons. IEEE Trans. Electron Devices 60(7), 2142–2147 (2013)

    Google Scholar 

  59. Katsnelson, M.I., Geim, A.K.: Electron scattering on microscopic corrugations in graphene. Philos. Trans. R. Soc. A 366(1863), 195–204 (2008)

    Google Scholar 

  60. Katsnelson, M., Novoselov, K., Geim, A.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2(9), 620–625 (2006)

    Google Scholar 

  61. Kharche, N., Nayak, S.K.: Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11(12), 5274–5278 (2011)

    Google Scholar 

  62. Klos, J.W., Shylau, A.A., Zozoulenko, I.V., Xu, H., Heinzel, T.: Transition from ballistic to diffusive behavior of graphene ribbons in the presence of warping and charged impurities. Phys. Rev. B 80, 245432 (2009)

    Google Scholar 

  63. Koenig, S.P., Boddeti, N.G., Dunn, M.L., Bunch, J.S.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6(9), 543–546 (2011)

    Google Scholar 

  64. Koskinen, P., Malola, S., Häkkinen, H.: Evidence for graphene edges beyond zigzag and armchair. Phys. Rev. B 80, 073401 (2009)

    Google Scholar 

  65. Kumar, S., Seol, G., Guo, J.: Modeling of a vertical tunneling graphene heterojunction field-effect transistor. Appl. Phys. Lett. 101, 033503 (2012)

    Google Scholar 

  66. Kusminskiy, S., Campbell, D., Neto, A.C.: Lenosky’s energy and the phonon dispersion of graphene. Phys. Rev. B 80, 035401 (2009)

    Google Scholar 

  67. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Google Scholar 

  68. Lherbier, A., Persson, M.P., Niquet, Y.M., Triozon, F., Roche, S.: Quantum transport length scales in silicon-based semiconducting nanowires: surface roughness effects. Phys. Rev. B 77, 085301 (2008)

    Google Scholar 

  69. Li, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008)

    Google Scholar 

  70. Liao, A.D., Wu, J.Z., Wang, X., Tahy, K., Jena, D., Dai, H., Pop, E.: Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 106, 256801 (2011)

    Google Scholar 

  71. Lobo, C., Martins, J.: Valence force field model for graphene and fullerenes. Z. Phys. D 39, 159–164 (1997)

    Google Scholar 

  72. Low, T., Hong, S., Appenzeller, J., Member, S., Datta, S., Lundstrom, M.S.: Conductance asymmetry of graphene p-n junction. IEEE Trans. Electron Devices 56(6), 1292–1299 (2009)

    Google Scholar 

  73. Lu, S., Panchapakesan, B.: Photoconductivity in single wall carbon nanotube sheets. Nanotechnology 17(8), 1843–1850 (2006)

    Google Scholar 

  74. Lui, C.H., Liu, L., Mak, K.F., Flynn, G.W., Heinz, T.F.: Ultraflat graphene. Nature (London) 462(7271), 339–341 (2009)

    Google Scholar 

  75. Luisier, M., Klimeck, G.: Performance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness. Appl. Phys. Lett. 94, 223505 (2009)

    Google Scholar 

  76. Luryi, S.: Quantum capacitance devices. Appl. Phys. Lett. 52(6), 501–503 (1988)

    Google Scholar 

  77. Majumdar, A.: Thermoelectric devices: helping chips to keep their cool. Nat. Nanotechnol. 4, 214–215 (2009)

    Google Scholar 

  78. Markussen, T.: Surface disordered Ge-Si core-shell nanowires as efficient thermoelectric materials. Phys. Rev. Lett. 12(9), 4698–4704 (2012)

    Google Scholar 

  79. Mehr, W., Scheytt, J.C., Dabrowski, J., Lippert, G., Xie, Y.H., Lemme, M.C., Ostling, M., Lupina, G.: Vertical graphene base transistor. IEEE Electron Device Lett. 33(5), 691–693 (2012)

    Google Scholar 

  80. Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68(16), 2512–2515 (1992)

    Google Scholar 

  81. Meyer, J., Geim, A., Katsnelson, M., Novoselov, K., Booth, T., Roth, S.: The structure of suspended graphene sheets. Nature (London) 446(7131), 60–63 (2007)

    Google Scholar 

  82. Min, H., Hill, J.E., Sinitsyn, N.A., Sahu, B.R., Kleinman, L., MacDonald, A.H.: Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006)

    Google Scholar 

  83. Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J., Geim, A.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)

    Google Scholar 

  84. Mucciolo, E.R., Neto, A.H.C., Lewenkopf, C.H.: Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B 79, 075407 (2009)

    Google Scholar 

  85. Neto, A.C., Guinea, F.: Impurity-induced spin-orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009)

    Google Scholar 

  86. Nika, D., Balandin, A.: Two-dimensional phonon transport in graphene. J. Phys. Condens. Matter 24, 233203 (2012)

    Google Scholar 

  87. Nika, D.L., Askerov, A.S., Balandin, A.A.: Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 12(6), 3238–3244 (2012)

    Google Scholar 

  88. Nolas, G., Sharp, J., Goldsmid, H.: Thermoelectrics: Basic Principles and New Materials Developments. Springer, Berlin (2001)

    Google Scholar 

  89. Novoselov, K., Geim, A., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., Firsov, A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature (London) 438(7065), 197–200 (2005)

    Google Scholar 

  90. Ogilvy, J.A., Foster, J.R.: Rough surfaces: Guassian or exponential statistics. J. Phys. D Appl. Phys. 22(9), 1243–1251 (1989)

    Google Scholar 

  91. Ouyang, Y., Guo, J.: A theoretical study on thermoelectric properties of graphene nanoribbons. Appl. Phys. Lett. 94, 263107 (2009)

    Google Scholar 

  92. Papaconstantopoulos, D.A., Mehl, M.J.: The Slater–Koster tight-binding method: a computationally efficient and accurate approach. J. Phys. Condens. Matter 15(10), R413 (2003)

    Google Scholar 

  93. Paul, A., Luisier, M., Klimeck, G.: Modified valence force field approach for phonon dispersion: from zinc-blende bulk to nanowires. J. Comput. Electron. 9, 160–172 (2010)

    Google Scholar 

  94. Pedersen, T.G., Pedersen, K., Kriestensen, T.B.: Optical matrix elements in tight-binding calculations. Phys. Rev. B 63, 201101 (2001)

    Google Scholar 

  95. Perel, V.I., Tarasenko, S.A., Yassievich, I.N., Ganichev, S.D., Belkov, V.V., Prettl, W.: Spin-dependent tunneling through a symmetric semiconductor barrier. Phys. Rev. B 67, 201304 (2003)

    Google Scholar 

  96. Ribeiro, R.M., Peres, N.M.R.: Stability of boron nitride bilayers: ground-state energies, interlayer distances, and tight-binding description. Phys. Rev. B 83(23), 235312 (2011)

    Google Scholar 

  97. Saito, R., Dresselhaus, G., Dresselhaus, M.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Google Scholar 

  98. Semiconductor Industry Association: International Technology Roadmap for Semiconductors – 2013 Edition (2013). San Jose, USA (2013) http://www.itrs.net/

  99. Sevincli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)

    Google Scholar 

  100. Slawinska, J., Zasada, I., Klusek, Z.: Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81(15), 155433 (2010)

    Google Scholar 

  101. Son, Y.W., Cohen, M., Louie, S.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Google Scholar 

  102. Son, Y.W., Cohen, M., Louie, S.: Half-metallic graphene nanoribbons. Nature (London) 444(7117), 347–349 (2006)

    Google Scholar 

  103. Stewart, D.A., Leonard, F.: Photocurrents in nanotube junctions. Phys. Rev. Lett. 93(10), 107401 (2004)

    Google Scholar 

  104. Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002)

    Google Scholar 

  105. Tapaszto, L., Lambin, P., Biro, P.: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3(7), 397–401 (2008)

    Google Scholar 

  106. Thouless, D.J.: Localization distance and mean free path in one-dimensional disordered systems. J. Phys. C Solid State Phys. 6(3), 49–51 (1973)

    Google Scholar 

  107. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H., van Wees, B.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature (London) 448(7153), 571–574 (2007)

    Google Scholar 

  108. Touski, S., Pourfath, M.: Substrate surface corrugation effects on the electronic transport in graphene nanoribbons. Appl. Phys. Lett. 113, 143506 (2013)

    Google Scholar 

  109. Varykhalov, A., Sanchez-Barriga, J., Shikin, A.M., Biswas, C., Vescovo, E., Rybkin, A., Marchenko, D., Rader, O.: Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 101, 157601 (2008)

    Google Scholar 

  110. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001)

    Google Scholar 

  111. Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Wang, H., Guo, J., Dai, H.: N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928), 768–771 (2009)

    Google Scholar 

  112. Wei, P., Bao, W., Pu, Y., Lau, C.N., Shi, J.: Anomalous thermoelectric transport of dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009)

    Google Scholar 

  113. White, C.T., Li, J., Gunlycke, D., Mintmire, J.W.: Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips. Nano Lett. 7(3), 825–830 (2007)

    Google Scholar 

  114. Wirtz, L., Rubio, A.: The phonon dispersion of graphite revisited. Solid State Commun. 131(3–4), 141–152 (2004)

    Google Scholar 

  115. Wu, J.: Simulation of non-Gaussian surfaces with FFT. Tribol. Int. 37, 339–346 (2004)

    Google Scholar 

  116. Yang, Y., Murali, R.: Impact of size effect on graphene nanoribbon transport. IEEE Electron Device Lett. 31(3), 237–239 (2010)

    Google Scholar 

  117. Yanik, A.A., Klimeck, G., Datta, S.: Quantum transport with spin dephasing: a nonequlibrium green’s function approach. Phys. Rev. B 76, 045213 (2007)

    Google Scholar 

  118. Yazdanpanah Goharrizi, A., Pourfath, M., Fathipour, M., Kosina, H., Selberherr, S.: An analytical model for line-edge roughness limited mobility of graphene nano-ribbons. IEEE Trans. Electron Devices 58(11), 3725–3735 (2011)

    Google Scholar 

  119. Yazdanpanah Goharrizi, A., Pourfath, M., Fathipour, M., Kosina, H., Selberherr, S.: A numerical study of line-edge roughness scattering in graphene nano-ribbons. IEEE Trans. Electron Devices 59(2), 433–440 (2012)

    Google Scholar 

  120. Ye, L.H., Liu, B.G., Wang, D.S., Han, R.: Ab initio phonon dispersions of single-wall carbon nanotubes. Phys. Rev. B 69, 235409 (2004)

    Google Scholar 

  121. Zhang, J., Xi, N., Chan, H., Li, G.: Single carbon nanotube based infrared sensor. Proc. SPIE 6395, 63950A (2006)

    Google Scholar 

  122. Zhang, W., Fisher, T., Mingo, N.: The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transf. Part B 51(4), 333–349 (2007)

    Google Scholar 

  123. Zhao, P., Feenstra, R.M., Gu, G., Jena, D.: SymFET: a proposed symmetric graphene tunneling field-effect transistor. IEEE Trans. Electron Devices 60(3), 951–957 (2013)

    Google Scholar 

  124. Zheng, H., Wang, Z., Luo, T., Shi, Q., Chen, J.: Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B 75, 165414 (2007)

    Google Scholar 

  125. Ziman, J.M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Clarendon Press, Oxford (1960)

    MATH  Google Scholar 

  126. Zuev, Y.M., Chang, W., Kim, P.: Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Pourfath, M. (2014). Applications. In: The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1800-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1800-9_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1799-6

  • Online ISBN: 978-3-7091-1800-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics