Skip to main content

Abstract

Peroxisomes are ubiquitous and heterogeneous multi-purpose organelles, which are indispensable for human health and development. The invention of specific cytochemical staining methods for peroxisomes revealed their high plasticity and ability to alter their morphology in response to environmental cues. Peroxisome dynamics depend on peroxisomal morphology proteins such as Pex11p, DLP1/Drp1, Fis1, Mff, and GDAP1 which are partially shared with mitochondria. Here, we address variations of peroxisome morphology in the healthy organism and summarize findings on altered organelle morphology in peroxisomal disorders. We highlight recent insights in novel disorders with defects in peroxisome morphology proteins and alterations of peroxisomes during stress and signaling, as well as secondary alterations in liver disease and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOX:

Acyl-CoA oxidase

CMT:

Charcot-Marie-Tooth disease

D-BP:

D-bifunctional protein

DAB:

Diaminobenzidine

DHA:

Docosahexaenoic acid

DLP1/Drp1:

Dynamin-like/related protein 1

ER:

Endoplasmic reticulum

GDAP1:

Ganglioside-induced differentiation associated protein 1

Mff:

Mitochondrial fission factor

PBD:

Peroxisome biogenesis disorder

PEX:

Peroxin

PMP:

Peroxisomal membrane protein

PPAR:

Peroxisome proliferator activated receptor

PTS:

Peroxisomal targeting signal

ROS:

Reactive oxygen species

SED:

Single enzyme deficiency

References

  • Angermuller S, Fahimi HD (1986) Ultrastructural cytochemical localization of uricase in peroxisomes of rat liver. J Histochem Cytochem 34:159–165

    CAS  PubMed  Google Scholar 

  • Ashrafian H, Docherty L, Leo V, Towlson C, Neilan M, Steeples V, Lygate CA, Hough T, Townsend S, Williams D, Wells S, Norris D, Glyn-Jones S, Land J, Barbaric I, Lalanne Z, Denny P, Szumska D, Bhattacharya S, Griffin JL, Hargreaves I, Fernandez-Fuentes N, Cheeseman M, Watkins H, Dear TN (2010) A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet 6:e1001000

    PubMed Central  PubMed  Google Scholar 

  • Belanger AJ, Luo Z, Vincent KA, Akita GY, Cheng SH, Gregory RJ, Jiang C (2007) Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor alpha/retinoid X receptor. Biochem Biophys Res Commun 364:567–572

    CAS  PubMed  Google Scholar 

  • Benedetti E, Galzio R, D’Angelo B, Ceru MP, Cimini A (2010) PPARs in human neuroepithelial tumors: PPAR ligands as anticancer therapies for the most common human neuroepithelial tumors. PPAR Res 2010:427401

    PubMed Central  PubMed  Google Scholar 

  • Biempica L (1966) Human hepatic microbodies with crystalloid cores. J Cell Biol 29:383–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonekamp NA, Schrader M (2012) Transient complex peroxisomal interactions: A new facet of peroxisome dynamics in mammalian cells. Commun Integr Biol 5:534–537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonekamp NA, Vormund K, Jacob R, Schrader M (2010) Dynamin-like protein 1 at the Golgi complex: a novel component of the sorting/targeting machinery en route to the plasma membrane. Exp Cell Res 316:3454–3467

    CAS  PubMed  Google Scholar 

  • Bonekamp NA, Sampaio P, de Abreu FV, Luers GH, Schrader M (2012) Transient complex interactions of mammalian peroxisomes without exchange of matrix or membrane marker proteins. Traffic 13:960–978

    CAS  PubMed  Google Scholar 

  • Bonekamp NA, Grille S, Cardoso MJ, Almeida M, Aroso M, Gomes S, Magalhaes AC, Ribeiro D, Islinger M, Schrader M (2013) Self-interaction of human Pex11pbeta during peroxisomal growth and division. PLoS One 8:e53424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cablé S, Keller JM, Colin S, Haffen K, Kedinger M, Parache RM, Dauca M (1992) Peroxisomes in human colon carcinomas. A cytochemical and biochemical study. Virchows Arch B 62:221–226

    PubMed  Google Scholar 

  • Camões F, Bonekamp NA, Delille HK, Schrader M (2009) Organelle dynamics and dysfunction: a closer link between peroxisomes and mitochondria. J Inherit Metab Dis 32:163–180

    PubMed  Google Scholar 

  • Chang CC, South S, Warren D, Jones J, Moser AB, Moser HW, Gould SJ (1999) Metabolic control of peroxisome abundance. J Cell Sci 112:1579–1590

    CAS  PubMed  Google Scholar 

  • Chang CR, Manlandro CM, Arnoult D, Stadler J, Posey AE, Hill RB, Blackstone C (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285:32494–32503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuesta A, Pedrola L, Sevilla T, Garcia-Planells J, Chumillas MJ, Mayordomo F, LeGuern E, Marin I, Vilchez JJ, Palau F (2002) The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet 30:22–25

    CAS  PubMed  Google Scholar 

  • De Craemer D (1995) Secondary alterations of human hepatocellular peroxisomes. J Inherit Metab Dis 18:181–213

    PubMed  Google Scholar 

  • De Craemer D, Pauwels M, Van den Branden C (1996) Morphometric characteristics of human hepatocellular peroxisomes in alcoholic liver disease. Alcohol Clin Exp Res 20:908–913

    PubMed  Google Scholar 

  • De Craemer D, Van den Branden C, Pauwels M, Vamecq J (1998) Peroxisome-proliferating effects of fenoprofen in mice. Lipids 33:539–543

    PubMed  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • del Rio LA (ed) (2013) Peroxisomes and their key role in cellular signaling and metabolism, vol 69, Subcellular biochemistry. Springer, Heidelberg

    Google Scholar 

  • Delille HK, Alves R, Schrader M (2009) Biogenesis of peroxisomes and mitochondria: linked by division. Histochem Cell Biol 131:441–446

    CAS  PubMed  Google Scholar 

  • Delille HK, Agricola B, Guimaraes SC, Borta H, Luers GH, Fransen M, Schrader M (2010) Pex11pbeta-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 123:2750–2762

    CAS  PubMed  Google Scholar 

  • Delille HK, Dodt G, Schrader M (2011) Pex11pbeta-mediated maturation of peroxisomes. Commun Integr Biol 4:51–54

    PubMed Central  PubMed  Google Scholar 

  • Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, Horvath TL (2011) Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17:1121–1127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W (1993) Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell 77:67–76

    CAS  PubMed  Google Scholar 

  • Ebberink MS, Csanyi B, Chong WK, Denis S, Sharp P, Mooijer PA, Dekker CJ, Spooner C, Ngu LH, De Sousa C, Wanders RJ, Fietz MJ, Clayton PT, Waterham HR, Ferdinandusse S (2010) Identification of an unusual variant peroxisome bio-genesis disorder caused by mutations in the PEX16 gene. J Med Genet 47:608–615

    CAS  PubMed  Google Scholar 

  • Ebberink MS, Koster J, Visser G, Spronsen F, Stolte-Dijkstra I, Smit GP, Fock JM, Kemp S, Wanders RJ, Waterham HR (2012) A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11beta gene. J Med Genet 49:307–313

    CAS  PubMed  Google Scholar 

  • Espeel M, Depreter M, Nardacci R, D'Herde K, Kerckaert I, Stefanini S, Roels F (1997) Biogenesis of peroxisomes in fetal liver. Microsc Res Tech 39:453–466

    CAS  PubMed  Google Scholar 

  • Fahimi HD (1969) Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes). J Cell Biol 43:275–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fahimi HD (2009) Peroxisomes: 40 years of histochemical staining, personal reminiscences. Histochem Cell Biol 131:437–440

    Google Scholar 

  • Fahimi HD, Kino M, Hicks L, Thorp KA, Abelman WH (1979) Increased myocardial catalase in rats fed ethanol. Am J Pathol 96:373–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fahimi HD, Reinicke A, Sujatta M, Yokota S, Ozel M, Hartig F, Stegmeier K (1982) The short- and long-term effects of bezafibrate in the rat. Ann N Y Acad Sci 386:111–135

    CAS  PubMed  Google Scholar 

  • Fahimi HD, Baumgart E, Volkl A (1993) Ultrastructural aspects of the biogenesis of peroxisomes in rat liver. Biochimie 75:201–208

    CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Mooijer PA, Zhang Z, Reddy JK, Spector AA, Wanders RJ (2001) Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J Lipid Res 42:1987–1995

    CAS  PubMed  Google Scholar 

  • Fischer M, You M, Matsumoto M, Crabb DW (2003) Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J Biol Chem 278:27997–28004

    CAS  PubMed  Google Scholar 

  • Frederiks WM, Bosch KS, Hoeben KA, van Marle J, Langbein S (2010) Renal cell carcinoma and oxidative stress: the lack of peroxisomes. Acta Histochem 112:364–371

    PubMed  Google Scholar 

  • Fritz R, Bol J, Hebling U, Angermuller S, Volkl A, Fahimi HD, Mueller S (2007) Compartment-dependent management of H(2)O(2) by peroxisomes. Free Radic Biol Med 42:1119–1129

    CAS  PubMed  Google Scholar 

  • Funato M, Shimozawa N, Nagase T, Takemoto Y, Suzuki Y, Imamura Y, Matsumoto T, Tsukamoto T, Kojidani T, Osumi T, Fukao T, Kondo N (2006) Aberrant peroxisome morphology in peroxisomal beta-oxidation enzyme deficiencies. Brain Dev 28:287–292

    PubMed  Google Scholar 

  • Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19:2402–2412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorgas K (1984) Peroxisomes in sebaceous glands. V. Complex peroxisomes in the mouse preputial gland: serial sectioning and three-dimensional reconstruction studies. Anat Embryol 169:261–270

    CAS  PubMed  Google Scholar 

  • Gorgas K (1985) Serial section analysis of mouse hepatic peroxisomes. Anat Embryol 172:21–32

    CAS  PubMed  Google Scholar 

  • Gorgas K, Volkl A (1984) Peroxisomes in sebaceous glands. IV. Aggregates of tubular peroxisomes in the mouse Meibomian gland. Histochem J 16:1079–1098

    CAS  PubMed  Google Scholar 

  • Gorgas K, Zaar K (1984) Peroxisomes in sebaceous glands. III. Morphological similarities of peroxisomes with smooth endoplasmic reticulum and Golgi stacks in the circumanal gland of the dog. Anat Embryol 169:9–20

    CAS  PubMed  Google Scholar 

  • Gould SG, Keller GA, Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105:2923–2931

    CAS  PubMed  Google Scholar 

  • Grabenbauer M, Satzler K, Baumgart E, Fahimi HD (2000) Three-dimensional ultrastructural analysis of peroxisomes in HepG2 cells. Absence of peroxisomal reticulum but evidence of close spatial association with the endoplasmic reticulum. Cell Biochem Biophys 32:37–49

    CAS  PubMed  Google Scholar 

  • Hall D, Poussin C, Velagapudi VR, Empsen C, Joffraud M, Beckmann JS, Geerts AE, Ravussin Y, Ibberson M, Oresic M, Thorens B (2010) Peroxisomal and microsomal lipid pathways associated with resistance to hepatic steatosis and reduced pro-inflammatory state. J Biol Chem 285:31011–31023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanker JS, Romanovicz DK (1977) Phi bodies: peroxidatic particles that produce crystalloidal cellular inclusions. Science 197:895–898

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS (2000) Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 275:28918–28928

    CAS  PubMed  Google Scholar 

  • Hicks L, Fahimi HD (1977) Peroxisomes (microbodies) in the myocardium of rodents and primates. A comparative Ultrastructural cytochemical study. Cell Tissue Res 175:467–481

    CAS  PubMed  Google Scholar 

  • Hoepfner D, Schildknegt D, Braakman I, Philippsen P, Tabak HF (2005) Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122:85–95

    CAS  PubMed  Google Scholar 

  • Huber N, Guimaraes S, Schrader M, Suter U, Niemann A (2013) Charcot-Marie-Tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission. EMBO Rep 14:545–552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV, Fransen M (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10:1722–1733

    CAS  PubMed  Google Scholar 

  • Imoto Y, Kuroiwa H, Yoshida Y, Ohnuma M, Fujiwara T, Yoshida M, Nishida K, Yagisawa F, Hirooka S, Miyagishima SY, Misumi O, Kawano S, Kuroiwa T (2013) Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Natl Acad Sci USA 110:9583–9588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    CAS  PubMed  Google Scholar 

  • Islinger M, Cardoso MJ, Schrader M (2010) Be different–the diversity of peroxisomes in the animal kingdom. Biochim Biophys Acta 1803:881–897

    CAS  PubMed  Google Scholar 

  • Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137:547–574

    CAS  PubMed  Google Scholar 

  • Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    CAS  PubMed  Google Scholar 

  • Itoyama A, Honsho M, Abe Y, Moser A, Yoshida Y, Fujiki Y (2012) Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. J Cell Sci 125:589–602

    CAS  PubMed  Google Scholar 

  • Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y, Fujiki Y (2013) Mff functions with Pex11pβ and DLP1 in peroxisomal fission. Biol Open 2:998–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johkura K, Usuda N, Liang Y, Nakazawa A (1998) Immunohistochemical localization of peroxisomal enzymes in developing rat kidney tissues. J Histochem Cytochem 46:1161–1173

    CAS  PubMed  Google Scholar 

  • Kang YH, Morris HP, Criss WE (1982) Correlation between growth rate and cytochemistry in Morris hepatomas. Anat Rec 202:209–219

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Tanaka A, Fujiki Y (2007) Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp Cell Res 313:1675–1686

    CAS  PubMed  Google Scholar 

  • Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem 278:8597–8605

    CAS  PubMed  Google Scholar 

  • Koch A, Schneider G, Luers GH, Schrader M (2004) Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J Cell Sci 117:3995–4006

    CAS  PubMed  Google Scholar 

  • Koch J, Brocard C (2012) PEX11 proteins attract Mff and human Fis1 to coordinate peroxisomal fission. J Cell Sci 125:3813–3826

    CAS  PubMed  Google Scholar 

  • Koch J, Pranjic K, Huber A, Ellinger A, Hartig A, Kragler F, Brocard C (2010) PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. J Cell Sci 123:3389–3400

    CAS  PubMed  Google Scholar 

  • Lauer C, Volkl A, Riedl S, Fahimi HD, Beier K (1999) Impairment of peroxisomal biogenesis in human colon carcinoma. Carcinogenesis 20:985–989

    CAS  PubMed  Google Scholar 

  • Laurenti G, Benedetti E, D’Angelo B, Cristiano L, Cinque B, Raysi S, Alecci M, Ceru MP, Cifone MG, Galzio R, Giordano A, Cimini A (2011) Hypoxia induces peroxisome proliferator-activated receptor alpha (PPARalpha) and lipid metabolism peroxisomal enzymes in human glioblastoma cells. J Cell Biochem 112:3891–3901

    CAS  PubMed  Google Scholar 

  • Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ, Walton PA, Terlecky SR (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13:4243–4255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Alavian KN, Lazrove E, Mehta N, Jones A, Zhang P, Licznerski P, Graham M, Uo T, Guo J, Rahner C, Duman RS, Morrison RS, Jonas EA (2013) A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nat Cell Biol 15:773–785

    PubMed Central  PubMed  Google Scholar 

  • Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002) PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Gould SJ (2003) The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 278:17012–17020

    CAS  PubMed  Google Scholar 

  • Litwin JA, Beier K, Volkl A, Hofmann WJ, Fahimi HD (1999) Immunocytochemical investigation of catalase and peroxisomal lipid beta-oxidation enzymes in human hepatocellular tumors and liver cirrhosis. Virchows Arch 435:486–495

    CAS  PubMed  Google Scholar 

  • Misra P, Viswakarma N, Reddy JK (2013) Peroxisome proliferator-activated receptor-alpha signaling in hepatocarcinogenesis. Subcell Biochem 69:77–99

    CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    CAS  PubMed  Google Scholar 

  • Nakajima T, Kamijo Y, Tanaka N, Sugiyama E, Tanaka E, Kiyosawa K, Fukushima Y, Peters JM, Gonzalez FJ, Aoyama T (2004) Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology 40:972–980

    CAS  PubMed  Google Scholar 

  • Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM (2004) Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 310:417–424

    CAS  PubMed  Google Scholar 

  • Narravula S, Colgan SP (2001) Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol 166:7543–7548

    CAS  PubMed  Google Scholar 

  • Nazarko TY, Farre JC, Subramani S (2009) Peroxisome size provides insights into the function of autophagy-related proteins. Mol Biol Cell 20:3828–3839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niemann A, Ruegg M, La Padula V, Schenone A, Suter U (2005) Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol 170:1067–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niemann A, Berger P, Suter U (2006) Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med 8:217–242

    CAS  PubMed  Google Scholar 

  • Niemann A, Wagner KM, Ruegg M, Suter U (2009) GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis 36:509–520

    CAS  PubMed  Google Scholar 

  • Noack R, Frede S, Albrecht P, Henke N, Pfeiffer A, Knoll K, Dehmel T, Meyer Zu Horste G, Stettner M, Kieseier BC, Summer H, Golz S, Kochanski A, Wiedau-Pazos M, Arnold S, Lewerenz J, Methner A (2012) Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential. Hum Mol Genet 21:150–162

    PubMed  Google Scholar 

  • Nordgren M, Wang B, Apanasets O, Fransen M (2013) Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front Physiol 4:145

    PubMed Central  PubMed  Google Scholar 

  • Novikoff AB, Novikoff PM (1973) Microperoxisomes. J Histochem Cytochem 11:963–966

    Google Scholar 

  • Opalinski L, Kiel JA, Williams C, Veenhuis M, van der Klei IJ (2011) Membrane curvature during peroxisome fission requires Pex11. EMBO J 30:5–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pavelka M, Goldenberg H, Huttinger M, Kramar R (1976) Enzymic and morphological studies on catalase positive particles from brown fat of cold adapted rats. Histochemistry 50:47–55

    CAS  PubMed  Google Scholar 

  • Phipps AN, Connock MJ, Johnson P, Burdett K (2000) Peroxisome distribution along the crypt-villus axis of the guinea pig small intestine. Mol Cell Biochem 203:119–126

    CAS  PubMed  Google Scholar 

  • Pipan N, Psenicnik M (1975) The development of microperoxisomes in the cells of the proximal tubules of the kidney and epithelium of the small intestine during the embryonic development and postnatal period. Histochemistry 44:13–21

    CAS  PubMed  Google Scholar 

  • Platt FM, Boland B, van der Spoel AC (2012) The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199:723–734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    CAS  PubMed  Google Scholar 

  • Purohit V, Gao B, Song BJ (2009) Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 33:191–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108:10190–10195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhodin J (1954) Correlation of ultrastructural organization and function in normal experimentally changed convoluted tubule cells of the mouse kidney. Aktiebolaget Godvil, Stockholm

    Google Scholar 

  • Ribeiro D, Castro I, Fahimi HD, Schrader M (2012) Peroxisome morphology in pathology. Histol Histopathol 27:661–676

    CAS  PubMed  Google Scholar 

  • Roels F, Geerts A, de Prest B, de Coster W, Plum J (1981) Absence of peroxisome turnover during inhibition of catalase synthesis. Verh Anat Ges 75:623–626

    Google Scholar 

  • Sandalio LM, Rodriguez-Serrano M, Romero-Puertas MC, Del Rio LA (2013) Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. Subcell Biochem 69:231–255

    CAS  PubMed  Google Scholar 

  • Santel A, Frank S (2008) Shaping mitochondria: the complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life 60:448–455

    CAS  PubMed  Google Scholar 

  • Schrader M (2006) Shared components of mitochondrial and peroxisomal division. Biochim Biophys Acta 1763:531–541

    CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006a) Growth and division of peroxisomes. Int Rev Cytol 255:237–290

    CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006b) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    CAS  PubMed  Google Scholar 

  • Schrader M, Baumgart E, Volkl A, Fahimi HD (1994) Heterogeneity of peroxisomes in human hepatoblastoma cell line HepG2. Evidence of distinct subpopulations. Eur J Cell Biol 64:281–294

    CAS  PubMed  Google Scholar 

  • Schrader M, Burkhardt JK, Baumgart E, Luers G, Spring H, Volkl A, Fahimi HD (1996) Interaction of microtubules with peroxisomes. Tubular and spherical peroxisomes in HepG2 cells and their alterations induced by microtubule-active drugs. Eur J Cell Biol 69:24–35

    CAS  PubMed  Google Scholar 

  • Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ (1998) Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    CAS  PubMed  Google Scholar 

  • Schrader M, Wodopia R, Fahimi HD (1999) Induction of tubular peroxisomes by UV irradiation and reactive oxygen species in HepG2 cells. J Histochem Cytochem 47:1141–1148

    CAS  PubMed  Google Scholar 

  • Schrader M, King SJ, Stroh TA, Schroer TA (2000) Real time imaging reveals a peroxisomal reticulum in living cells. J Cell Sci 113:3663–3671

    CAS  PubMed  Google Scholar 

  • Schrader M, Thiemann M, Fahimi HD (2003) Peroxisomal motility and interaction with microtubules. Microsc Res Tech 61:171–178

    CAS  PubMed  Google Scholar 

  • Schrader M, Yoon Y (2007) Mitochondria and peroxisomes: are the ‘big brother’ and the ‘little sister’ closer than assumed? BioEssays 29:1105–1114

    CAS  PubMed  Google Scholar 

  • Schrader M, Bonekamp NA, Islinger M (2012) Fission and proliferation of peroxisomes. Biochim Biophys Acta 1822:1343–1357

    CAS  PubMed  Google Scholar 

  • Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241

    PubMed  Google Scholar 

  • Sima AA (1980) Peroxisomes (microbodies) in human glial tumors. A cytochemical ultrastructural study. Acta Neuropathol 51:113–117

    CAS  PubMed  Google Scholar 

  • Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J (2009) Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59:231–242

    CAS  PubMed  Google Scholar 

  • Tanaka A, Kobayashi S, Fujiki Y (2006) Peroxisome division is impaired in a CHO cell mutant with an inactivating point-mutation in dynamin-like protein 1 gene. Exp Cell Res 312:1671–1684

    CAS  PubMed  Google Scholar 

  • Thoms S, Erdmann R (2005) Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J 272:5169–5181

    CAS  PubMed  Google Scholar 

  • Titorenko VI, Rachubinski RA (2004) The peroxisome: orchestrating important developmental decisions from inside the cell. J Cell Biol 164:641–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toyama T, Nakamura H, Harano Y, Yamauchi N, Morita A, Kirishima T, Minami M, Itoh Y, Okanoue T (2004) PPARalpha ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats. Biochem Biophys Res Commun 324:697–704

    CAS  PubMed  Google Scholar 

  • van der Zand A, Braakman I, Geuze HJ, Tabak HF (2006) The return of the peroxisome. J Cell Sci 119:989–994

    PubMed  Google Scholar 

  • Vasko R, Ratliff BB, Bohr S, Nadel E, Chen J, Xavier S, Chander P, Goligorsky MS (2013) Endothelial peroxisomal dysfunction and impaired pexophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury. Antioxid Redox Signal 19:211–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner KM, Ruegg M, Niemann A, Suter U (2009) Targeting and function of the mitochondrial fission factor GDAP1 are dependent on its tail-anchor. PLoS One 4:e5160

    PubMed Central  PubMed  Google Scholar 

  • Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, Iijima M, Sesaki H (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186:805–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    CAS  PubMed  Google Scholar 

  • Waterham HR, Ebberink MS (2012) Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta 1822:1430–1441

    CAS  PubMed  Google Scholar 

  • Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Fahimi HD (1987) Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J Cell Biol 105:713–722

    CAS  PubMed  Google Scholar 

  • Yan M, Rayapuram N, Subramani S (2005) The control of peroxisome number and size during division and proliferation. Curr Opin Cell Biol 17:376–383

    CAS  PubMed  Google Scholar 

  • Yokota S, Fahimi HD (1978) The peroxisome (microbody) membrane: effects of de-tergents and lipid solvents on its ultrastructure and permeability to catalase. Histochem J 10:469–487

    CAS  PubMed  Google Scholar 

  • Zaar K, Fahimi HD (1990) A freeze-etch study of angular marginal-plate-containing peroxisomes in the proximal tubes of bovine kidney. Cell Tissue Res 260:409–414

    CAS  PubMed  Google Scholar 

  • Zhou J, Zhang S, Xue J, Avery J, Wu J, Lind SE, Ding WQ (2012) Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) suppresses hypoxia-inducible factor-1alpha (HIF-1alpha) signaling in cancer cells. J Biol Chem 287:35161–35169

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank M. Ebberink and H. Waterham (Amsterdam Medical Center), H. Shamseddin and F.S. Alkuraya (King Faisal Specialist Hospital and Research Center, Riyadh) for kindly providing images of patient fibroblasts and members of the laboratory for stimulating discussions and comments on the manuscript. We apologize to those whose work has not been cited owing to space limitations. This work was generously supported by a Wellcome Trust Institutional Strategic Support Award (WT097835MF), BBSRC (BB/K006231/1), the Portuguese Foundation for Science and Technology (FCT) and FEDER/COMPETE (PTDC/SAU/OSM/103647/2008; PTDC/BIA-BCM/099613/2008; PTDC/BIA-BCM/118605/2010; SFRH/BPD/74428/2010 to M.I.). I.C. is supported by a fellowship from the University of Exeter, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schrader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Schrader, M., Castro, I., Fahimi, H.D., Islinger, M. (2014). Peroxisome Morphology in Pathologies. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_7

Download citation

Publish with us

Policies and ethics