Skip to main content

Molecular Basis for Peroxisome Biogenesis Disorders

  • Chapter
  • First Online:
Molecular Machines Involved in Peroxisome Biogenesis and Maintenance

Abstract

The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS), autosomal recessive, and progressive disorders characterized by loss of multiple peroxisomal metabolic functions and defects in peroxisome assembly, consisting of 13 complementation groups (CGs). Two mutually distinct but complementary approaches, forward genetic approach using more than a dozen CGs of peroxisome-deficient Chinese hamster ovary (CHO) cell mutants and the homology search by screening the human expressed sequence tag (EST) database using yeast peroxin (PEX) genes, have been taken in order to isolate mammalian PEX genes. Search for pathogenic genes responsible for PBDs of all 13 CGs is now accomplished. Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins, Pex1p, Pex2p, Pex5p, Pex6p, Pex7p, Pex10p, Pex12p, Pex13p, Pex14p, and Pex26p, for 10 CGs of PBDs, are required for matrix protein import; three, Pex3p, Pex16p, and Pex19p, are essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three CGs, 12, 9, and 14, respectively; PEX11β mutation causes dysmorphogenesis of peroxisomes in ZS-like phenotype of CG16. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts, and deletions. Prenatal DNA diagnosis using PEX genes is now possible for PBDs of all 13 CGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CG:

Complementation group

CHO:

Chinese hamster ovary

ER:

Endoplasmic reticulum

PBD:

Peroxisome biogenesis disorder

PMP:

Peroxisomal membrane protein

PTS:

Peroxisomal targeting signal

References

  • Abe I, Fujiki Y (1998) cDNA cloning and characterization of a constitutively expressed isoform of the human peroxin Pex11p. Biochem Biophys Res Commun 252:529–533

    CAS  PubMed  Google Scholar 

  • Abe I, Okumoto K, Tamura S, Fujiki Y (1998) Clofibrate-inducible, 28-kDa peroxisomal integral membrane protein is encoded by PEX11. FEBS Lett 431:468–472

    CAS  PubMed  Google Scholar 

  • Agrawal G, Joshi S, Subramani S (2011) Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc Natl Acad Sci USA 108:9113–9118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baerends RJS, Rasmussen SW, Hilbrands RE, van der Heide M, Faber KN, Reuvekamp PTW, Klei JAKW, Cregg JM, van der Klei IJ, Veenhuis M (1996) The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J Biol Chem 271:8887–8894

    CAS  PubMed  Google Scholar 

  • Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D, van Veldhoven PP, Mannaerts GP (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57

    CAS  PubMed  Google Scholar 

  • Braverman N, Steel G, Obie C, Moser A, Moser H, Gould SJ, Valle D (1997) Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet 15:369–376

    CAS  PubMed  Google Scholar 

  • Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sá-Miranda C, Azevedo JE (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282:31267–31272

    CAS  PubMed  Google Scholar 

  • Chang C-C, Lee W-H, Moser H, Valle D, Gould SJ (1997) Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat Genet 15:385–388

    CAS  PubMed  Google Scholar 

  • Chang C-C, Warren DS, Sacksteder KA, Gould SJ (1999) PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J Cell Biol 147:761–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Liu Z, Huang X (2010) Drosophila models of peroxisomal biogenesis disorder: peroxins are required for spermatogenesis and very-long-chain fatty acid metabolism. Hum Mol Genet 19:494–505

    CAS  PubMed  Google Scholar 

  • Dammai V, Subramani S (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105:187–196

    CAS  PubMed  Google Scholar 

  • Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE, Warscheid B, Girzalsky W, Erdmann R (2011) Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem 286:28223–28234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delille HK, Agricola B, Guimaraes SC, Borta H, Lüers GH, Fransen M, Schrader M (2010) Pex11pβ-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 123:2750–2762

    CAS  PubMed  Google Scholar 

  • Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JAKW, Kunau W-H, Lazarow PB, Mannaerts GP, Moser H, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3

    CAS  PubMed  Google Scholar 

  • Dodt G, Braverman N, Wong CS, Moser A, Moser HW, Watkins P, Valle D, Gould SJ (1995) Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 9:115–125

    CAS  PubMed  Google Scholar 

  • Ebberink MS, Csanyi B, Chong WK, Denis S, Sharp P, Mooijer PAW, Dekker CJM, Spooner C, Ngu LH, De Sousa C, Wanders RJA, Fietz MJ, Clayton PT, Waterham HR, Ferdinandusse S (2010) Identification of an unusual variant peroxisome biogenesis disorder caused by mutations in the PEX16 gene. J Med Genet 47:608–615

    CAS  PubMed  Google Scholar 

  • Ebberink MS, Koster J, Visser G, van Spronsen F, Stolte-Dijkstra I, Smit GPA, Fock JM, Kemp S, Wanders RJA, Waterham HR (2012) A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene. J Med Genet 49:307–313

    CAS  PubMed  Google Scholar 

  • Eitzen GA, Szilard RK, Rachubinski RA (1997) Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J Cell Biol 137:1265–1278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Y, Morrell JC, Jones JM, Gould SJ (2004) PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J Cell Biol 164:863–875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faust PL, Hatten ME (1997) Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol 139:1293–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faust JE, Verma A, Peng C, McNew JA (2012) An inventory of peroxisomal proteins and pathways in Drosophila melanogaster. Traffic 13:1378–1392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fransen M, Brees C, Baumgart E, Vanhooren JC, Baes M, Mannaerts GP, Veldhoven PPV (1995) Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J Biol Chem 270:7731–7736

    CAS  PubMed  Google Scholar 

  • Fujiki Y (2003) Peroxisome biogenesis disorders. In: Cooper DN (ed) Nature encyclopedia of the human genome, vol 4. Nature Publishing Group, London, pp 541–547

    Google Scholar 

  • Fujiki Y (2011) Peroxisome biogenesis disorders. Encyclopedia of Life Sciences. Wiley, Chichester. doi:10.1002/9780470015902.a0006109.pub2

    Google Scholar 

  • Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M (2006a) Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions. Biochim Biophys Acta Mol Cell Res 1763:1639–1646

    CAS  Google Scholar 

  • Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K (2006b) Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. Biochim Biophys Acta Mol Cell Res 1763:1374–1381

    CAS  Google Scholar 

  • Fujiki Y, Yagita Y, Matsuzaki T (2012) Peroxisome biogenesis disorders: molecular basis for impaired peroxisomal membrane assembly—in metabolic functions and biogenesis of peroxisomes in health and disease. Biochim Biophys Acta 1822:1337–1342

    CAS  PubMed  Google Scholar 

  • Fukuda S, Shimozawa N, Suzuki Y, Zhang Z, Tomatsu S, Tsukamoto T, Hashiguchi N, Osumi T, Masuno M, Imaizumi K, Kuroki Y, Fujiki Y, Orii T, Kondo N (1996) Human peroxisome assembly factor-2 (PAF-2): a gene responsible for group C peroxisome biogenesis disorder in humans. Am J Hum Genet 59:1210–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19:2402–2412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geisbrecht BV, Collins CS, Reuber BE, Gould SJ (1998) Disruption of a PEX1-PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc Natl Acad Sci USA 95:8630–8635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghaedi K, Honsho M, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (2000a) PEX3 is the causal gene responsible for peroxisome membrane assembly-defective Zellweger syndrome of complementation group G. Am J Hum Genet 67:976–981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghaedi K, Tamura S, Okumoto K, Matsuzono Y, Fujiki Y (2000b) The peroxin Pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell 11:2085–2102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64

    CAS  PubMed  Google Scholar 

  • Götte K, Girzalsky W, Linkert M, Baumgart E, Kammerer S, Kunau W-H, Erdmann R (1998) Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol Cell Biol 18:616–628

    PubMed Central  PubMed  Google Scholar 

  • Gould SJ, Raymond GV, Valle D (2001) The peroxisome biogenesis disorders. The metabolic and molecular bases of inherited disease, 8th edn. McGraw Hill, New York

    Google Scholar 

  • Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE (2003) Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J Biol Chem 278:226–232

    CAS  PubMed  Google Scholar 

  • Grou CP, Carvalho AF, Pinto MP, Huybrechts SJ, Sá-Miranda C, Fransen M, Azevedo JE (2009) Properties of the ubiquitin-Pex5p thiol ester conjugate. J Biol Chem 284:10504–10513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodríguez-Borges JE, Sá-Miranda C, Fransen M, Azevedo JE (2012) Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 287:12815–12827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halbach A, Landgraf C, Lorenzen S, Rosenkranz K, Volkmer-Engert R, Erdmann R, Rottensteiner H (2006) Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J Cell Sci 119:2508–2517

    CAS  PubMed  Google Scholar 

  • Hettema EH, Girzalsky W, van den Berg M, Erdmann R, Distel B (2000) Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J 19:223–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoepfner D, Schildknegt D, Braakman I, Philippsen P, Tabak HF (2005) Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122:85–95

    CAS  PubMed  Google Scholar 

  • Honsho M, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (1998) Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet 63:1622–1630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huybrechts SJ, Van Veldhoven PP, Hoffman I, Zeevaert R, de Vos R, Demaerel P, Brams M, Jaeken J, Fransen M, Cassiman D (2008) Identification of a novel PEX14 mutation in Zellweger syndrome. J Med Genet 45:376–383

    CAS  PubMed  Google Scholar 

  • Imamura A, Tamura S, Shimozawa N, Suzuki Y, Zhang Z, Tsukamoto T, Orii T, Kondo N, Osumi T, Fujiki Y (1998a) Temperature-sensitive mutation in PEX1 moderates the phenotypes of peroxisome deficiency disorders. Hum Mol Genet 7:2089–2094

    CAS  PubMed  Google Scholar 

  • Imamura A, Tsukamoto T, Shimozawa N, Suzuki Y, Zhang Z, Imanaka T, Fujiki Y, Orii T, Kondo N, Osumi T (1998b) Temperature-sensitive phenotypes of peroxisome assembly processes represent the milder forms of human peroxisome-biogenesis disorders. Am J Hum Genet 62:1539–1543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y, Fujiki Y (2013) Mff functions with Pex11pβ and DLP1 in peroxisomal fission. Biol Open 2(10):998–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kassmann CM, Lappe-Siefke C, Baes M, Brügger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave K-A (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39:969–976

    CAS  PubMed  Google Scholar 

  • Kim PK, Mullen RT, Schumann U, Lippincott-Schwartz J (2006) The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J Cell Biol 173:521–532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi S, Tanaka A, Fujiki Y (2007) Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp Cell Res 313:1675–1686

    CAS  PubMed  Google Scholar 

  • Koch J, Brocard C (2012) PEX11 proteins attract Mff and hFis1 to coordinate peroxisomal fission. J Cell Sci 125:3813–3826

    CAS  PubMed  Google Scholar 

  • Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem 278:8597–8605

    CAS  PubMed  Google Scholar 

  • Koch A, Yoon Y, Bonekamp NA, McNiven MA, Schrader M (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch J, Pranjic K, Huber A, Ellinger A, Hartig A, Kragler F, Brocard C (2010) PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. J Cell Sci 123:3389–3400

    CAS  PubMed  Google Scholar 

  • Kragt A, Voorn-Brouwer T, van den Berg M, Distel B (2005) Endoplasmic reticulum-directed Pex3p routes to peroxisomes and restores peroxisome formation in a Saccharomyces cerevisiae pex3Δ strain. J Biol Chem 280:34350–34357

    CAS  PubMed  Google Scholar 

  • Kunau W-H (2006) Peroxisomes: morphology, function, biogenesis and disorders. Biochim Biophys Acta Mol Cell Res 1763(Special issue):1363–1808

    CAS  Google Scholar 

  • Lam SK, Yoda N, Schekman R (2010) A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc Natl Acad Sci USA 107:21523–21528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazarow PB (2003) Peroxisome biogenesis: advances and conundrums. Curr Opin Cell Biol 15:489–497

    CAS  PubMed  Google Scholar 

  • Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    CAS  PubMed  Google Scholar 

  • Li X, Gould SJ (2003) The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 278:17012–17020

    CAS  PubMed  Google Scholar 

  • Li X, Baumgart E, Dong G-X, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD, Gould SJ (2002a) PEX11α is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22:8226–8240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002b) PEX11β deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Bjoerkman J, Urquhart A, Wanders RJA, Crane DI, Gould SJ (1999) PEX13 is mutated in complementation group 13 of the peroxisome-biogenesis disorders. Am J Hum Genet 65:621–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma C, Agrawal G, Subramani S (2011) Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol 193:7–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto N, Tamura S, Fujiki Y (2003a) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol 5:454–460

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Tamura S, Furuki S, Miyata N, Moser A, Shimozawa N, Moser HW, Suzuki Y, Kondo N, Fujiki Y (2003b) Mutations in novel peroxin gene PEX26 that cause peroxisome biogenesis disorders of complementation group 8 provide a genotype-phenotype correlation. Am J Hum Genet 73:233–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuzaki T, Fujiki Y (2008) The peroxisomal membrane-protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p- and Pex16p-dependent pathway. J Cell Biol 183:1275–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuzono Y, Kinoshita N, Tamura S, Shimozawa N, Hamasaki M, Ghaedi K, Wanders RJA, Suzuki Y, Kondo N, Fujiki Y (1999) Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome and potential role in peroxisomal membrane assembly. Proc Natl Acad Sci USA 96:2116–2121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuzono Y, Matsuzaki T, Fujiki Y (2006) Functional domain mapping of peroxin Pex19p: interaction with Pex3p is essential for function and translocation. J Cell Sci 119:3539–3550

    CAS  PubMed  Google Scholar 

  • Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C, Tonks I, Paton BC, Kay GF, Crane DI (2003) Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 23:5947–5957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor, Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 25:10822–10832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyata N, Hosoi K, Mukai S, Fujiki Y (2009) In vitro import of peroxisome-targeting signal 2 (PTS2) receptor Pex7p into peroxisomes. Biochim Biophys Acta Mol Cell Res 1793:860–870

    CAS  Google Scholar 

  • Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y (2012) AWP1/ZFAND6 functions in Pex5 export by interacting with Cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 13:168–183

    CAS  PubMed  Google Scholar 

  • Motley AM, Hettema EH (2007) Yeast peroxisomes multiply by growth and division. J Cell Biol 178:399–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Motley AM, Hettema EH, Hogenhout EM, Brites P, ten Asbroek ALMA, Wijburg FA, Baas F, Heijmans HS, Tabak HF, Wanders RJA, Distel B (1997) Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat Genet 15:377–380

    CAS  PubMed  Google Scholar 

  • Mukai S, Ghaedi K, Fujiki Y (2002) Intracellular localization, function, and dysfunction of the peroxisome-targeting signal type 2 receptor, Pex7p, in mammalian cells. J Biol Chem 277:9548–9561

    CAS  PubMed  Google Scholar 

  • Muntau AC, Mayerhofer PU, Paton BC, Kammerer S, Roscher AA (2000) Defective peroxisome membrane synthesis due to mutations in human PEX3 causes Zellweger syndrome, complementation group G. Am J Hum Genet 67:967–975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nair DM, Purdue PE, Lazarow PB (2004) Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae. J Cell Biol 167:599–604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama M, Sato H, Okuda T, Fujisawa N, Kono N, Arai H, Suzuki E, Umeda M, Ishikawa HO, Matsuno K (2011) Drosophila carrying Pex3 or Pex16 mutations are models of Zellweger syndrome that reflect its symptoms associated with the absence of peroxisomes. PLoS One 6:e22984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okumoto K, Fujiki Y (1997) PEX12 encodes an integral membrane protein of peroxisomes. Nat Genet 17:265–266

    CAS  PubMed  Google Scholar 

  • Okumoto K, Itoh R, Shimozawa N, Suzuki Y, Tamura S, Kondo N, Fujiki Y (1998a) Mutation in PEX10 is the cause of Zellweger peroxisome deficiency syndrome of complementation group B. Hum Mol Genet 7:1399–1405

    CAS  PubMed  Google Scholar 

  • Okumoto K, Shimozawa N, Kawai A, Tamura S, Tsukamoto T, Osumi T, Moser H, Wanders RJA, Suzuki Y, Kondo N, Fujiki Y (1998b) PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning by functional complementation on a CHO cell mutant, patient analysis, and characterization of Pex12p. Mol Cell Biol 18:4324–4336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okumoto K, Abe I, Fujiki Y (2000) Molecular anatomy of the peroxin Pex12p: RING finger domain is essential for Pex12p function and interacts with the peroxisome targeting signal type 1-receptor Pex5p and a RING peroxin, Pex10p. J Biol Chem 275:25700–25710

    CAS  PubMed  Google Scholar 

  • Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y (2011) Cysteine ubiquitination of PTS1-receptor Pex5p regulates Pex5p recycling. Traffic 12:1067–1083

    CAS  PubMed  Google Scholar 

  • Otera H, Okumoto K, Tateishi K, Ikoma Y, Matsuda E, Nishimura M, Tsukamoto T, Osumi T, Ohashi K, Higuchi O, Fujiki Y (1998) Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol Cell Biol 18:388–399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile PTS1-transporter, translocates Pex7p-PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 275:21703–21714

    CAS  PubMed  Google Scholar 

  • Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y (2002) Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol Cell Biol 22:1639–1655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Otzen M, Perband U, Wang D, Baerends RJ, Kunau WH, Veenhuis M, Van der Klei IJ (2004) Hansenula polymorpha Pex19p is essential for the formation of functional peroxisomal membranes. J Biol Chem 279:19181–19190

    CAS  PubMed  Google Scholar 

  • Petriv OI, Pilgrim DB, Rachubinski RA, Titorenko VI (2002) RNA interference of peroxisome-related genes in C. elegans: a new model for human peroxisomal disorders. Physiol Genomics 10:79–91

    CAS  PubMed  Google Scholar 

  • Platta HW, Erdmann R (2007) The peroxisomal protein import machinery. FEBS Lett 581:2811–2819

    CAS  PubMed  Google Scholar 

  • Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7:817–822

    CAS  PubMed  Google Scholar 

  • Platta HW, Magraoui FE, Bäumer BE, Schlee D, Girzalsky W, Erdmann R (2009) Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 29:5505–5516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Portsteffen H, Beyer A, Becker E, Epplen C, Pawlak A, Kunau W-H, Dodt G (1997) Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders. Nat Genet 17:449–452

    CAS  PubMed  Google Scholar 

  • Purdue PE, Zhang JW, Skoneczny M, Lazarow PB (1997) Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 15:381–384

    CAS  PubMed  Google Scholar 

  • Reuber BE, Germain-Lee E, Collins CS, Morrell JC, Ameritunga R, Moser HW, Valle D, Gould SJ (1997) Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat Genet 17:445–448

    CAS  PubMed  Google Scholar 

  • Sacksteder KA, Gould SJ (2000) The genetics of peroxisome biogenesis. Annu Rev Genet 34:623–652

    CAS  PubMed  Google Scholar 

  • Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148:931–944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos MJ, Imanaka T, Shio H, Small GM, Lazarow PB (1988) Peroxisomal membrane ghosts in Zellweger syndrome—aberrant organelle assembly. Science 239:1536–1538

    CAS  PubMed  Google Scholar 

  • Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ (1998) Expression of PEX11β mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    CAS  PubMed  Google Scholar 

  • Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:634–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimozawa N, Tsukamoto T, Suzuki Y, Orii T, Shirayoshi Y, Mori T, Fujiki Y (1992) A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255:1132–1134

    CAS  PubMed  Google Scholar 

  • Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Kondo N, Kinoshita N, Fujiki Y, Tsukamoto T, Osumi T, Imanaka T, Orii T, Beemer F, Mooijer P, Dekker C, Wanders RJA (1998) Genetic basis of peroxisome-assembly mutants of humans, Chinese hamster ovary cells and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts. Am J Hum Genet 63:1898–1903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Toyama R, Mukai S, Fujiki Y, Tsukamoto T, Osumi T, Orii T, Wanders RJA, Kondo N (1999) Nonsense and temperature-sensitive mutations in PEX13 are the cause of complementation group H of peroxisome biogenesis disorders. Hum Mol Genet 8:1077–1083

    CAS  PubMed  Google Scholar 

  • Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Ghaedi K, Fujiki Y, Kondo N (2000) Identification of PEX3 as the gene mutated in a Zellweger syndrome patient lacking peroxisomal remnant structures. Hum Mol Genet 9:1995–1999

    CAS  PubMed  Google Scholar 

  • Shimozawa N, Nagase T, Takemoto Y, Suzuki Y, Fujiki Y, Wanders RJA, Kondo N (2002) A novel aberrant splicing mutation of the PEX16 gene in two patients with Zellweger syndrome. Biochem Biophys Res Commun 292:109–112

    CAS  PubMed  Google Scholar 

  • Shimozawa N, Tsukamoto T, Nagase T, Takemoto Y, Koyama N, Suzuki Y, Komori M, Osumi T, Jeannette G, Wanders RJA, Kondo N (2004) Identification of a new complementation group of the peroxisome biogenesis disorders and PEX14 as the mutated gene. Hum Mutat 23:552–558

    CAS  PubMed  Google Scholar 

  • Singh I, Moser AE, Goldfischer S, Moser HW (1984) Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci USA 81:4203–4207

    CAS  PubMed Central  PubMed  Google Scholar 

  • South ST, Gould SJ (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144:255–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • South ST, Sacksteder KA, Li X, Liu Y, Gould SJ (2000) Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J Cell Biol 149:1345–1360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sparkes IA, Hawes C, Baker A (2005) AtPEX2 and AtPEX10 are targeted to peroxisomes independently of Known endoplasmic reticulum trafficking routes. Plant Physiol 139:690–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta Mol Cell Res 1763:1733–1748

    CAS  Google Scholar 

  • Subramani S (1998) Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 78:171–188

    CAS  PubMed  Google Scholar 

  • Subramani S, Koller A, Snyder WB (2000) Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 69:399–418

    CAS  PubMed  Google Scholar 

  • Tabak HF, Murk JL, Braakman I, Geuze HJ (2003) Peroxisomes start their life in the endoplasmic reticulum. Traffic 4:512–518

    CAS  PubMed  Google Scholar 

  • Tabak HF, Braakman I, van der Zand A (2013) Peroxisome formation and maintenance are dependent on the endoplasmic reticulum. Annu Rev Biochem 82:723–744

    CAS  PubMed  Google Scholar 

  • Tamura S, Okumoto K, Toyama R, Shimozawa N, Tsukamoto T, Suzuki Y, Osumi T, Kondo N, Fujiki Y (1998a) Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Proc Natl Acad Sci USA 95:4350–4355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura S, Shimozawa N, Suzuki Y, Tsukamoto T, Osumi T, Fujiki Y (1998b) A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p. Biochem Biophys Res Commun 245:883–886

    CAS  PubMed  Google Scholar 

  • Tamura S, Matsumoto N, Imamura A, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (2001) Phenotype-genotype relationships in peroxisome biogenesis disorders of PEX1-defective complementation group 1 are defined by Pex1p-Pex6p interaction. Biochem J 357:417–426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka A, Okumoto K, Fujiki Y (2003) cDNA cloning and characterization of the third isoform of human peroxin Pex11p. Biochem Biophys Res Commun 300:819–823

    CAS  PubMed  Google Scholar 

  • Tanaka A, Kobayashi S, Fujiki Y (2006) Peroxisome division is impaired in a CHO cell mutant with an inactivating point-mutation in dynamin-like protein 1 gene. Exp Cell Res 312:1671–1684

    CAS  PubMed  Google Scholar 

  • Thieringer H, Moellers B, Dodt G, Kunau W-H, Driscoll M (2003) Modeling human peroxisome biogenesis disorders in the nematode Caenorhabditis elegans. J Cell Sci 116:1797–1804

    CAS  PubMed  Google Scholar 

  • Tsukamoto T, Miura S, Fujiki Y (1991) Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350:77–81

    CAS  PubMed  Google Scholar 

  • Tsukamoto T, Miura S, Nakai T, Yokota S, Shimozawa N, Suzuki Y, Orii T, Fujiki Y, Sakai F, Bogaki A, Yasumo H, Osumi T (1995) Peroxisome assembly factor-2, a putative ATPase cloned by functional complementation on a peroxisome-deficient mammalian cell mutant. Nat Genet 11:395–401

    CAS  PubMed  Google Scholar 

  • van der Zand A, Braakman I, Tabak HF (2010) Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol Biol Cell 21:2057–2065

    PubMed Central  PubMed  Google Scholar 

  • Walter C, Gootjes J, Mooijer PA, Portsteffen H, Klein C, Waterham HR, Barth PG, Epplen JT, Kunau W-H, Wanders RJA, Dodt G (2001) Disorders of peroxisome biogenesis due to mutations in PEX1: phenotypes and PEX1 protein levels. Am J Hum Genet 69:35–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763:1707–1720

    CAS  PubMed  Google Scholar 

  • Warren DS, Morrell JC, Moser HW, Valle D, Gould SJ (1998) Identification of PEX10, the gene defective in complementation group 7 of the peroxisome-biogenesis disorders. Am J Hum Genet 63:347–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waterham HR, Koster J, van Roermund CWT, Mooyer PAW, Wanders RJA, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    CAS  PubMed  Google Scholar 

  • Weller S, Gould SJ, Valle D (2003) Peroxisome biogenesis disorders. Annu Rev Genomics Hum Genet 4:165–211

    CAS  PubMed  Google Scholar 

  • Weller S, Cajigas I, Morrell J, Obie C, Steel G, Gould SJ, Valle D (2005) Alternative splicing suggests extended function of PEX26 in peroxisome biogenesis. Am J Hum Genet 76:987–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiemer EA, Nuttley WM, Bertolaet BL, Li X, Francke U, Wheelock MJ, Anne UK, Johnson KR, Subramani S (1995) Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J Cell Biol 130:51–65

    CAS  PubMed  Google Scholar 

  • Williams C, van den Berg M, Sprenger RR, Distel B (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282:22534–22543

    CAS  PubMed  Google Scholar 

  • Yagita Y, Hiromasa T, Fujiki Y (2013) Tail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway. J Cell Biol 200:651–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ (1996) The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J 15:2914–2923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yano T, Oku M, Akeyama N, Itoyama A, Yurimoto H, Kuge S, Fujiki Y, Sakai Y (2010) A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes. Mol Cell Biol 30:3758–3766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yonekawa S, Furuno A, Baba T, Fujiki Y, Ogasawara Y, Yamamoto A, Tagaya M, Tani K (2011) Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells. Proc Natl Acad Sci USA 108:12746–12751

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank K. Shimizu for figure illustrations. This work was supported in part by a CREST grant (to Y.F.) from the Science and Technology Agency of Japan, Grants-in-Aid for Scientific Research (19058011, 20370039, 24247038, 25112518, and 25116717 to Y.F.; 21770117 and 24770130 to K.O.; 21570116 and 24570134 to S.T.), Global Center of Excellence (GCOE) Program, Grants for Excellent Graduate Schools from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and grants (to Y.F.) from Takeda Science Foundation and Japan Foundation for Applied Enzymology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fujiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Fujiki, Y., Okumoto, K., Mukai, S., Tamura, S. (2014). Molecular Basis for Peroxisome Biogenesis Disorders. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_5

Download citation

Publish with us

Policies and ethics