Skip to main content

Pexophagy Sensing and Signaling in the Methylotrophic Yeasts

  • Chapter
  • First Online:
Molecular Machines Involved in Peroxisome Biogenesis and Maintenance

Abstract

Methylotrophic yeasts are unique eukaryotic organisms capable of utilizing the one-carbon toxic substrate, methanol. During methylotrophic growth, peroxisomes occupy 30–80 % of the cellular volume. A shift of methanol-grown cells to media with the alternative carbon sources, glucose or ethanol, induces massive peroxisome degradation. In Pichia pastoris, two morphologically distinct events have been observed namely, macro- and microautophagy. In other species, macroautophagy was mostly noted under massive peroxisome degradation. It was found that genes involved in non-specific autophagy (most of them known as ATG genes) also participate in carbon source-induced pexophagy. Many ATG genes have been discovered using methylotrophic yeasts models, mainly in P. pastoris, due to convenient and easy methods to monitor pexophagy. However, the mechanisms of glucose and ethanol sensing and signaling, which initiate the subsequent events of micro- and macroautophagy are poorly understood. Similarly, the nature of the low-molecular-weight effectors, derivatives of glucose and ethanol, which induce pexophagy, has not been identified.

P. pastoris possesses a single glucose sensor, Gss1p, ortholog of the S. cerevisiae high- and low-affinity glucose sensors Snf3p and Rgt2p, respectively. The Gss1 protein participates in glucose sensing and is involved in pexophagy and glucose catabolite repression. In the yeast P. pastoris, the orthologs of GPCR signaling proteins, Gpr1p and Gpa2p, do not participate in pexophagy upon glucose signaling. In this yeast species, the α-subunit of phosphofructokinase Pfk1p and the mitogen-activated protein kinase (MAPK) Slt2p are involved in glucose signaling of pexophagy. Ethanol signaling studied in P. methanolica mutants defective in ethanol catabolism suggested that glyoxylic acid is the most probable substance, which triggers pexophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksam EB, Koek A, Kiel JA et al (2007) A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 3:96–105

    Article  CAS  PubMed  Google Scholar 

  • Aksam EB, de Vries B, van der Klei IJ et al (2009) Preserving organelle vitality: peroxisomal quality control mechanisms in yeast. FEMS Yeast Res 9:808–820

    Article  CAS  PubMed  Google Scholar 

  • Ano Y, Hattori T, Oku M et al (2005a) A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol Biol Cell 16:446–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ano Y, Hattori T, Kato N et al (2005b) Intracellular ATP correlates with mode of pexophagy in Pichia pastoris. Biosci Biotechnol Biochem 69:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Baerends RJ, Rasmussen SW, Hilbrands RE et al (1996) The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J Biol Chem 271:8887–8894

    Article  CAS  PubMed  Google Scholar 

  • Bellu AR, Komori M, van der Klei IJ et al (2001a) Peroxisome biogenesis and selective degradation converge at Pex14p. J Biol Chem 276:44570–44574

    Article  CAS  PubMed  Google Scholar 

  • Bellu AR, Kram AM, Kiel JA et al (2001b) Glucose-induced and nitrogen-starvation-induced peroxisome degradation are distinct processes in Hansenula polymorpha that involve both common and unique genes. FEMS Yeast Res 1:23–31

    CAS  PubMed  Google Scholar 

  • Bellu AR, Salomons FA, Kiel JA, Veenhuis M, Van Der Klei IJ (2002) Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J Biol Chem 277:42875–42880

    Article  CAS  PubMed  Google Scholar 

  • Brooke AG, Dijkhuizen L, Harder W (1986) Regulation of flavin biosynthesis in the methylotrophie yeast Hansenula polymorpha. Arch Microbiol 145:62–70

    Article  CAS  Google Scholar 

  • Brown LA, Baker A (2008) Shuttles and cycles: transport of proteins into the peroxisome matrix (review). Mol Membr Biol 25:363–375

    Article  CAS  PubMed  Google Scholar 

  • Colombo S, Ma P, Cauwenberg L et al (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17:3326–3341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cregg JM, Tolstorukov I, Kusari A et al (2008) Expression in the yeast Pichia pastoris. Methods Enzymol 463:169–189

    Article  Google Scholar 

  • Dunn WA Jr, Cregg JM, Kiel JA et al (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy 1:75–83

    Article  CAS  PubMed  Google Scholar 

  • Faber KN, Harder W, Ab G et al (1995) Review: methylotrophic yeasts as factories for the production of foreign proteins. Yeast 11:1331–1344

    Article  CAS  PubMed  Google Scholar 

  • Farre JC, Subramani S (2004) Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol 14:515–523

    Article  CAS  PubMed  Google Scholar 

  • Farré JC, Manjithaya R, Mathewson RD, Subramani S (2008) PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 14:365–376

    Article  PubMed Central  PubMed  Google Scholar 

  • Farré JC, Krick R, Subramani S et al (2009) Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 21:522–530

    Article  PubMed Central  PubMed  Google Scholar 

  • Fry MR, Thomson JM, Tomasini AJ et al (2006) Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8. Autophagy 2:280–288

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704

    Article  CAS  PubMed  Google Scholar 

  • Hazra PP, Suriapranata I, Snyder WB et al (2002) Peroxisome remnants in pex3-delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 3:560–574

    Article  CAS  PubMed  Google Scholar 

  • Herrero P, Martínez-Campa C, Moreno F (1998) The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett 434:71–76

    Article  CAS  PubMed  Google Scholar 

  • Herrero P, Flores L, de la Cera T et al (1999) Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene. Biochem J 343:319–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiel JA (2010) Autophagy in unicellular eukaryotes. Philos Trans R Soc Lond B Biol Sci 365:819–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lahtchev KL, Semenova VD, Tolstorukov II et al (2002) Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732. Arch Microbiol 177:150–158

    Article  CAS  PubMed  Google Scholar 

  • Lanyon-Hogg T, Warriner SL, Baker A (2010) Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell 102:245–263

    Article  CAS  PubMed  Google Scholar 

  • Leão-Helder AN, Krikken AM, Lunenborg MG et al (2004) Hansenula polymorpha Tup1p is important for peroxisome degradation. FEMS Yeast Res 4:789–794

    Article  PubMed  Google Scholar 

  • Liesen T, Hollenberg CP, Heinisch JJ (1996) ERA, a novel cis-acting element required for autoregulation and ethanol repression of PDC1 transcription in Saccharomyces cerevisiae. Mol Microbiol 21:621–632

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Subramani S (2009) Peroxisome matrix and membrane protein biogenesis. IUBMB Life 61:713–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maidan MM, De Rop L, Serneels J et al (2005) The G protein-coupled receptor Gpr1 and the Gα protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell 16:1971–1986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manjithaya R, Nazarko TY, Farré JC et al (2010) Molecular mechanism and physiological role of pexophagy. FEBS Lett 584:1367–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marelli M, Smith JJ, Jung S et al (2004) Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisomemembrane. J Cell Biol 167:1099–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mast FD, Fagarasanu A, Knoblach B et al (2010) Peroxisome biogenesis: something old, something new, something borrowed. Physiology (Bethesda) 25:347–356

    Article  CAS  Google Scholar 

  • Meijer WH, Gidijala L, Fekken S et al (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 76:5702–5709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michels PA, Moyersoen J, Krazy H et al (2005) Peroxisomes, glyoxysomes and glycosomes (review). Mol Membr Biol 22:133–145

    Article  CAS  PubMed  Google Scholar 

  • Michels PAM, Bringaud F, Herman M et al (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763:1463–1477

    Article  CAS  PubMed  Google Scholar 

  • Monastyrska I, Kiel JA, Krikken AM et al (2005) The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy 1:92–100

    Article  CAS  PubMed  Google Scholar 

  • Mukaiyama H, Oku M, Baba M et al (2002) Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 7:75–90

    Article  CAS  PubMed  Google Scholar 

  • Mukaiyama H, Baba M, Osumi M et al (2004) Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol Biol Cell 15:58–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nazarko TY, Polupanov AS, Manjithaya RR et al (2007a) The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell 18:106–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nazarko TY, Farré JC, Polupanov AS et al (2007b) Autophagy-related pathways and specific role of sterol glucoside in yeasts. Autophagy 3:263–265

    Article  CAS  PubMed  Google Scholar 

  • Nazarko VY, Thevelein JM, Sibirny AA (2008a) G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol Int 32:502–504

    Article  CAS  PubMed  Google Scholar 

  • Nazarko VY, Futej KO, Thevelein JM et al (2008b) Differences in glucose sensing and signaling for pexophagy between the baker’s yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. Autophagy 4:381–384

    Article  CAS  PubMed  Google Scholar 

  • Nazarko TY, Farré JC, Subramani S (2009) Peroxisome size provides insights into the function of autophagy-related proteins. Mol Biol Cell 20:3828–3839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nazarko VY, Nazarko TY, Farré JC et al (2011) Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 7:375–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oku M, Warnecke D, Noda T et al (2003) Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J 22:3231–3241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oku M, Nishimura T, Hattori T et al (2006) Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy. Autophagy 2:272–279

    Article  CAS  PubMed  Google Scholar 

  • Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ozcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polupanov AS, Sibirny AA (2014) Cytoplasmic extension peptide of Pichia pastoris glucose sensor Gss1 is not compulsory for glucose signalling. Cell Biol Int 38(2):172–178. doi:10.1002/cbin.10189

    Article  CAS  PubMed  Google Scholar 

  • Polupanov AS, Nazarko VY, Sibirny AA (2011) CCZ1, MON1 and YPT7 genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast Pichia pastoris. Cell Biol Int 35:311–319

    Article  CAS  PubMed  Google Scholar 

  • Polupanov AS, Nazarko VY, Sibirny AA (2012) Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression. Int J Biochem Cell Biol 44:1906–1918

    Article  CAS  PubMed  Google Scholar 

  • Rose M, Albig W, Entian KD (1991) Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur J Biochem 199:511–518

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Texeira M, Van Zeebroeck G, Voordeckers K et al (2010) Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 10:134–149

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Koller A, Rangell LK et al (1998) Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 141:625–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai Y, Oku M, van der Klei IJ et al (2006) Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta 1763:1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Saleem RA, Smith JJ, Aitchison JD (2006) Proteomics of the peroxisome. Biochim Biophys Acta 1763:1541–1551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saleem RA, Knoblach B, Mast FD et al (2008) Genome-wide analysis of signaling networks regulating fatty acid-induced gene expression and organelle biogenesis. J Cell Biol 181:281–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saliola M, Getuli C, Mazzoni C (2007) A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase. FEMS Yeast Res 7:693–701

    Article  CAS  PubMed  Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2008) The peroxisome: still a mysterious organelle. Histochem Cell Biol 129:421–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sibirny AA (1990) Genetic control of methanol and ethanol metabolism in the yeast Pichia pinus. In: Heslot H (ed) Proceedings of the 6th international symposium on genetics of industrial microorganisms. Starsbourg, France. Soc. Franc. Microbiol., v.l, pp 545–554

    Google Scholar 

  • Sibirny AA (2011) Mechanisms of autophagy and pexophagy in yeasts. Biochem Mosc 76:1279–1290

    Article  CAS  Google Scholar 

  • Sibirny AA (2012) Molecular mechanisms of peroxisome biogenesis in yeasts. Mol Biol (Mosc) 46:11–26

    Article  CAS  Google Scholar 

  • Sibirny AA, Titorenko VI (1986) The method for qualitative assay of alcohol oxidase and catalase in yeast colonies. Ukr Biokhim Zh 58:65–68 (in Russian)

    Google Scholar 

  • Sibirny AA, Titorenko VI, Efremov BD et al (1987) Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus. Yeast 3:233–241

    Article  Google Scholar 

  • Sibirny AA, Titorenko VI, Teslyar GE et al (1991) Methanol and ethanol utilization in methylotrophic yeast Pichia pinus wild-type and mutant strains. Arch Microbiol 156:455–462

    Google Scholar 

  • Smith JJ, Marelli M, Christmas RH et al (2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 158:259–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stasyk OV, Nazarko TY, Stasyk OG et al (2003) Sterol glucosyltransferases have different roles in Pichia pastoris and Yarrowia lipolytica. Cell Biol Int 27:947–952

    Article  CAS  PubMed  Google Scholar 

  • Stasyk OV, Stasyk OG, Komduur J et al (2004) A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorpha. J Biol Chem 279:8116–8125

    Article  CAS  PubMed  Google Scholar 

  • Stasyk OV, Stasyk OG, Mathewson RD et al (2006) Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy 2:30–38

    Article  CAS  PubMed  Google Scholar 

  • Stasyk OG, van Zutphen T, Kang HA et al (2007) The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy. FEMS Yeast Res 7:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Stasyk OV, Nazarko TY, Sibirny AA (2008a) Methods of plate pexophagy monitoring and positive selection for ATG gene cloning in yeasts. Methods Enzymol 451:229–239

    Article  CAS  PubMed  Google Scholar 

  • Stasyk OG, Maidan MM, Stasyk OV et al (2008b) Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. Eukaryot Cell 7:735–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steinberg SJ, Dodt G, Raymond GV (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763:1733–1748

    Article  CAS  PubMed  Google Scholar 

  • Stevens P, Monastyrska I, Leão-Helder AN et al (2005) Hansenula polymorpha Vam7p is required for macropexophagy. FEMS Yeast Res 5:985–997

    Article  CAS  PubMed  Google Scholar 

  • Subramani S (1997) PEX genes on the rise. Nat Genet 15:331–333

    Article  CAS  PubMed  Google Scholar 

  • Subramani S (1998) Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 78:171–188

    CAS  PubMed  Google Scholar 

  • Suzuki K (2013) Selective autophagy in budding yeast. Cell Death Differ 20:43–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  CAS  PubMed  Google Scholar 

  • Till A, Lakhani R, Burnett SF, Subramani S (2012) Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012:512721

    Article  PubMed Central  PubMed  Google Scholar 

  • Tolstorukov I, Cregg JM (2007) Classical genetics. Methods Mol Biol 389:189–202

    Article  CAS  PubMed  Google Scholar 

  • Tolstorukov II, Efremov BD, Benevolensky SV et al (1989) Mutants of methylotrophic yeast Pichia pinus defective in C2 metabolism. Yeast 5:179–186

    Article  CAS  Google Scholar 

  • Tuttle DL, Dunn WA Jr (1995) Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 108:25–35

    CAS  PubMed  Google Scholar 

  • van der Klei IJ, Yurimoto H, Sakai Y et al (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763:1453–1462

    Article  PubMed  Google Scholar 

  • van Zutphen T, van der Klei IJ, Kiel JA (2008) Pexophagy in Hansenula polymorpha. Methods Enzymol 451:197–215

    Article  PubMed  Google Scholar 

  • Veenhuis M, Van Dijken JP, Harder W (1983) The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol 24:1–82

    Article  CAS  PubMed  Google Scholar 

  • Veenhuis M, Salomons FA, van der Klei IJ (2000) Peroxisome biogenesis and degradation in yeast: a structure/function analysis. Microsc Res Tech 51:584–600

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Saleem RA, Ratushny AV et al (2009) Role of the histone variant H2A.Z/Htz1p in TBP recruitment, chromatin dynamics, and regulated expression of oleate-responsive genes. Mol Cell Biol 29:2346–2358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wanders RJ, Duran M, Loupatty FJ (2010) Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway. J Inherit Metab Dis 35:5–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Oku M, Wasada Y et al (2006) PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J Cell Biol 173:709–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokota S (2003) Degradation of normal and proliferated peroxisomes in rat hepatocytes: regulation of peroxisomes quantity in cells. Microsc Res Tech 61:151–160

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Tuttle DL, Shi YJ (1997) Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J Cell Sci 110:1935–1945

    CAS  PubMed  Google Scholar 

  • Zhang P, Zhang W, Zhou X et al (2010) Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Appl Environ Microbiol 76:6108–6118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The work in the field of pexophagy in the author’s laboratory was supported by grant № F46.1/012 from the State Foundation for Basic Research “Key State Laboratory of Molecular and Cellular Biology”, Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy A. Sibirny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Sibirny, A.A. (2014). Pexophagy Sensing and Signaling in the Methylotrophic Yeasts. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_23

Download citation

Publish with us

Policies and ethics