Skip to main content

Abstract

Peroxisomes are ubiquitous cell organelles of eukaryotic cells. Depending on environmental changes and cellular demands, peroxisomes display a high plasticity in metabolic functions. A prerequisite to carry out their physiological tasks is compartmentalization of peroxisomal enzymes in the lumen of this organelle, the peroxisomal matrix. The matrix proteins are synthesized on free polyribosomes in the cytosol and harbor a peroxisomal targeting sequence (PTS). They are targeted to the peroxisomal membrane by soluble PTS-receptors. Following the release of the cargo enzyme into the peroxisomal matrix, the PTS-receptor is ubiquitinated and exported back to the cytosol to facilitate further rounds of matrix protein import. The retrotranslocation of the receptor is facilitated by a molecular machinery that comprises enzymes required for the ubiquitination as well as for the ATP-dependent extraction of the receptor from the membrane. Furthermore, recent evidence indicates that the export machinery of the receptors might function as molecular motor not only for the retrotranslocation of the receptors themselves but also for the import of peroxisomal matrix proteins. This is thought to be achieved by coupling the ATP-dependent removal of the PTS-receptor with the cargo protein translocation into the organelle. In this review, we will discuss the combined data on the architecture and molecular function of the peroxisomal receptor export machinery, the peroxisomal exportomer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agne B, Meindl NM, Niederhoff K, Einwächter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH (2003) Pex8p. An intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 11(3):635–646

    CAS  PubMed  Google Scholar 

  • Albertini M, Girzalsky W, Veenhuis M, Kunau W-H (2001) Pex12p of Saccharomyces cerevisiae is a component of a multi-protein complex essential for peroxisomal matrix protein import. Eur J Cell Biol 80(4):257–270

    CAS  PubMed  Google Scholar 

  • Albiniak AM, Baglieri J, Robinson C (2012) Targeting of lumenal proteins across the thylakoid membrane. J Exp Bot 63(4):1689–1698

    CAS  PubMed  Google Scholar 

  • Alencastre IS, Rodrigues TA, Grou CP, Fransen M, Sá-Miranda C, Azevedo JE (2009) Mapping the Cargo Protein Membrane Translocation Step into the PEX5 Cycling Pathway. J Biol Chem 284(40):27243–27251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207

    CAS  PubMed  Google Scholar 

  • Baes M, Van Veldhoven PP (2012) Mouse models for peroxisome biogenesis defects and β-oxidation enzyme deficiencies. Biochim Biophys Acta 1822(9):1489–1500

    CAS  PubMed  Google Scholar 

  • Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: beta-oxidation in signalling and development. Trends Plant Sci 11(3):124–132

    CAS  PubMed  Google Scholar 

  • Berleth ES, Pickart CM (1996) Mechanism of ubiquitin conjugating enzyme E2-230 K: catalysis involving a thiol relay? Biochemistry 35(5):1664–1671

    CAS  PubMed  Google Scholar 

  • Berteaux-Lecellier V, Picard M, Thompson-Coffe C, Zickler D, Panvier-Adoutte A, Simonet JM (1995) A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81(7):1043–1051

    CAS  PubMed  Google Scholar 

  • Beuron F, Flynn TC, Ma J, Kondo H, Zhang X, Freemont PS (2003) Motions and negative cooperativity between p97 domains revealed by cryo-electron microscopy and quantised elastic deformational model. J Mol Biol 327(3):619–629

    CAS  PubMed  Google Scholar 

  • Beyer A (1997) Sequence analysis of the AAA protein family. Protein Sci 6(10):2043–2058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birschmann I, Stroobants AK, Van Den Berg M, Schäfer A, Rosenkranz K, Kunau WH, Tabak HF (2003) Pex15p of Saccharomyces cerevisiae Provides a Molecular Basis for Recruitment of the AAA Peroxin Pex6p to Peroxisomal Membranes. Mol Biol Cell 14(6):2226–2236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birschmann I, Rosenkranz K, Erdmann R, Kunau WH (2005) Structural and functional analysis of the interaction of the AAA-peroxins Pex1p and Pex6p. FEBS J 272(1):47–58

    CAS  PubMed  Google Scholar 

  • Bolte K, Gruenheit N, Felsner G, Sommer MS, Maier UG, Hempel F (2011) Making new of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. Bioessays 33(5):368–376

    CAS  PubMed  Google Scholar 

  • Bonekamp NA, Völkl A, Fahimi HD, Schrader M (2009) Reactive oxygen species and peroxisomes: struggling for balance. Biofactors 35(4):346–355

    CAS  PubMed  Google Scholar 

  • Brzovic PS, Klevit RE (2006) Ubiquitin transfer from the E2 perspective: why is UbcH5 so promiscuous? Cell Cycle 5:2867–2873

    CAS  PubMed  Google Scholar 

  • Burroughs AM, Iyer LM, Aravind L (2011) Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Mol Biosyst 7(7):2261–2277

    CAS  PubMed  Google Scholar 

  • Cadwell K, Coscoy L (2005) Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309:127–130

    CAS  PubMed  Google Scholar 

  • Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sa-Miranda C, Azevedo JE (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282(43):31267–31272

    CAS  PubMed  Google Scholar 

  • Chang CC, Warren DS, Sacksteder KA, Gould SJ (1999) PEX12 Interacts with PEX5 and PEX10 and Acts Downstream of Receptor Docking in Peroxisomal Matrix Protein Import. J Cell Biol 147(4):761–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cipriano DJ, Jung J, Vivona S, Fenn TD, Brunger AT, Bryant Z (2013) Processive ATP-driven disassembly of SNARE complexes by the N-ethylmaleimide sensitive factor molecular machine. J Biol Chem. doi:10.1074/jbc.M1113.476705

    PubMed Central  Google Scholar 

  • Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ (2000) The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p Act in the terminal steps of peroxisomal matrix protein import. Mol Cell Biol 20(20):7516–7526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper TG, Beevers H (1969) Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244(13):3514–3520

    CAS  PubMed  Google Scholar 

  • Crane DI, Kalish JE, Gould SJ (1994) The Pichia pastoris PAS4 gene encodes a ubiquitin-conjugation enzyme required for peroxisome assembly. J Biol Chem 269(34):21835–21844

    CAS  PubMed  Google Scholar 

  • Cui S, Fukao Y, Mano S, Yamada K, Hayashi M, Nishimura M (2013) Proteomic analysis reveals that the Rab GTPase RabE1c is involved in the degradation of the peroxisomal protein receptor PEX7 (peroxin 7). J Biol Chem 288(8):doi: 1.1074/jbc.M1112.438143

    Google Scholar 

  • Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE, Warscheid B, Girzalsky W, Erdmann R (2011) Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem 286(32):28223–28234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    CAS  PubMed  Google Scholar 

  • Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135(1):1–3

    CAS  PubMed  Google Scholar 

  • Dodt G, Gould SJ (1996) Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: Evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 135:1763–1774

    CAS  PubMed  Google Scholar 

  • Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 136(1):123–135

    CAS  PubMed  Google Scholar 

  • Ebberink MS, Mooijer PA, Gootjes J, Koster J, Wanders RJ, Waterham HR (2011) Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 32(1):59–69

    CAS  PubMed  Google Scholar 

  • Eckert JH, Johnsson N (2003) Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome. J Cell Sci 116(17):3623–3634

    CAS  PubMed  Google Scholar 

  • Eisenhaber B, Chumak N, Eisenhaber F, Hauser MT (2007) The ring between ring fingers (RBR) protein family. Genome Biol 8(3):209

    PubMed Central  PubMed  Google Scholar 

  • El Magraoui F, Bäumer BE, Platta HW, Baumann JS, Girzalsky W, Erdmann R (2012) The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner. FEBS J 279(11):2060–2070

    PubMed  Google Scholar 

  • El Magraoui F, Brinkmeier R, Schrötter A, Girzalsky W, Müller T, Marcus K, Meyer HE, Erdmann R, Platta HW (2013) Distinct ubiquitination cascades act on the peroxisomal targeting signal type 2 co-receptor Pex18p. Traffic 14(12):1290–1301

    PubMed  Google Scholar 

  • Erdmann R, Schliebs W (2005) Peroxisomal matrix protein import: the transient pore model. Nat Rev Mol Cell Biol 6(9):738–742

    CAS  PubMed  Google Scholar 

  • Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Fröhlich KU, Kunau W-H (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64(3):499–510

    CAS  PubMed  Google Scholar 

  • Fagarasanu A, Mast FD, Knoblach B, Rachubinski RA (2010) Molecular mechanism of organelle inheritance: lessons from peroxisomes in yeast. Nat Rev Mol Cell Biol 11(9):644–654

    CAS  PubMed  Google Scholar 

  • Fanelli F, Sepe S, D’Amelio M, Bernardi C, Cristiano L, Cimini A, Cecconi F, Ceru’ MP, Moreno S (2013) Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer’s disease. Mol Neurodegener 8 (8):doi:10.1186/1750-1326-1188-1188

  • Fenner BJ, Scannell M, Prehn JH (2009) Identification of polyubiquitin binding proteins involved in NF-kappaB signaling using protein arrays. Biochim Biophys Acta 1794(7):1010–1016

    CAS  PubMed  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim Biophys Acta 1822(9):1363–1373

    CAS  PubMed  Google Scholar 

  • Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64(3):483–484

    CAS  PubMed  Google Scholar 

  • Fujiki Y, Nashiro C, Miyata N, Tamura S, Okumoto K (2012) New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. Biochim Biophys Acta 1823(1):145–149

    CAS  PubMed  Google Scholar 

  • Furuki S, Tamura S, Matsumoto N, Miyata N, Moser A, Moser HW, Fujiki Y (2006) Mutations in the peroxin Pex26p responsible for peroxisome biogenesis disorders of complementation group 8 impair its stability, peroxisomal localization, and interaction with the Pex1p x Pex6p complex. J Biol Chem 281(3):1317–1323

    CAS  PubMed  Google Scholar 

  • Gabaldon T, Snel B, van Zimmeren F, Hemrika W, Tabak H, Huynen MA (2006) Origin and evolution of the peroxisomal proteome. Biol Direct 1:8

    PubMed Central  PubMed  Google Scholar 

  • Geisbrecht BV, Collins CS, Reuber BE, Gould SJ (1998) Disruption of a PEX1-PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc Natl Acad Sci U S A 95(15):8630–8635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girzalsky W, Platta HW, Erdmann R (2009) Protein transport across the peroxisomal membrane. Biol Chem 390(8):745–751

    CAS  PubMed  Google Scholar 

  • Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A (1999) Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha. J Biol Chem 274(21):14823–14830

    CAS  PubMed  Google Scholar 

  • Goto S, Mano S, Nakamori C, Nishimura M (2011) Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 is a peroxin that recruits the PEX1-PEX6 complex to peroxisomes. Plant Cell 23(4):1573–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE (2003) Characterization of the peroxisomal cycling receptor Pex5p import pathway. Adv Exp Med Biol 544:213–220

    Google Scholar 

  • Grimm I, Saffian D, Platta HW, Erdmann R (2012) The AAA-type ATPases Pex1p and Pex6p and their role in peroxisomal matrix protein import in Saccharomyces cerevisiae. Biochim Biophys Acta 1823(1):150–158

    CAS  PubMed  Google Scholar 

  • Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE, Warscheid B, Sa-Miranda C, Azevedo JE (2008) Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem 283(21):14190–14197

    CAS  PubMed  Google Scholar 

  • Grou CP, Carvalho AF, Pinto MP, Alencastre IS, Rodrigues TA, Freitas MO, Francisco T, Sa-Miranda C, Azevedo JE (2009a) The peroxisomal protein import machinery–a case report of transient ubiquitination with a new flavor. Cell Mol Life Sci 66(2):254–262

    CAS  PubMed  Google Scholar 

  • Grou CP, Carvalho AF, Pinto MP, Huybrechts SJ, Sa-Miranda C, Fransen M, Azevedo JE (2009b) Properties of the ubiquitin-Pex5p thiol ester conjugate. J Biol Chem 284(16):10504–10513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodríguez-Borges JE, Sá-Miranda C, Fransen M, Azevedo JE (2012) Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on the ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 287(16):12815–12827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grunau S, Lay D, Mindthoff S, Platta HW, Girzalsky W, Just WW, Erdmann R (2011) The Phosphoinositide-3-kinase Vps34p is required for pexophagy in Saccharomyces cerevisiae. Biochem J 434:161–170

    CAS  PubMed  Google Scholar 

  • Gründlinger M, Yasmin S, Lechner BE, Geley S, Schrettl M, Hynes M, Haas H (2013) Fungal siderophore biosynthesis is partially localized in peroxisomes. Mol Microbiol 88(5):862–875

    PubMed Central  PubMed  Google Scholar 

  • Hampton RY, Sommer T (2012) Finding the will and the way of ERAD substrate retrotranslocation. Curr Opin Cell Biol 24(4):460–466

    CAS  PubMed  Google Scholar 

  • Hasan S, Platta HW, Erdmann R (2013) Import of proteins into the peroxisomal matrix. Front Physiol 4:261

    PubMed Central  PubMed  Google Scholar 

  • Hazra PP, Suriapranata I, Snyder WB, Subramani S (2002) Peroxisome remnants in pex3Delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 3(8):560–574

    CAS  PubMed  Google Scholar 

  • Hensel A, Beck S, El Magraoui F, Platta HW, Girzalsky W, Erdmann R (2011) Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 286:43495–43505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imanaka T, Small GM, Lazarow PB (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J Cell Biol 105:2915–2922

    CAS  PubMed  Google Scholar 

  • Ishikura S, Weissman AM, Bonifacino JS (2010) Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J Biol Chem 285(31):23916–23924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137(5):547–574

    CAS  PubMed  Google Scholar 

  • Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M (2011) Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 22(9):1440–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA + ATPases. J Struct Biol 146(1–2):11–31

    CAS  PubMed  Google Scholar 

  • Joo HJ, Kim KY, Yim YH, Jin YX, Kim H, Kim MY, Paik YK (2010) Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J Biol Chem 285(38):29319–29325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jungwirth H, Ring J, Mayer T, Schauer A, Buttner S, Eisenberg T, Carmona-Gutierrez D, Kuchler K, Madeo F (2008) Loss of peroxisome function triggers necrosis. FEBS Lett 582(19):2882–2886

    CAS  PubMed  Google Scholar 

  • Kaur N, Zhao Q, Xie Q, Hu J (2013) Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins(F). J Integr Plant Biol 55(1):108–120

    CAS  PubMed  Google Scholar 

  • Kee Y, Huibregtse JM (2007) Regulation of catalytic activities of HECT ubiquitin ligases. Biochem Biophys Res Commun 354(2):329–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    CAS  PubMed  Google Scholar 

  • Kerssen D, Hambruch E, Klaas W, Platta HW, de Kruijff B, Erdmann R, Kunau WH, Schliebs W (2006) Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 281(37):27003–27015

    CAS  PubMed  Google Scholar 

  • Kiel JA, Hilbrands RE, van der Klei IJ, Rasmussen SW, Salomons FA, van der Heide M, Faber KN, Cregg JM, Veenhuis M (1999) Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact. Yeast 15(11):1059–1078

    CAS  PubMed  Google Scholar 

  • Kiel JA, Hilbrands RE, Bovenberg RA, Veenhuis M (2000) Isolation of Penicillium chrysogenum PEX1 and PEX6 encoding AAA proteins involved in peroxisome biogenesis. Appl Microbiol Biotechnol 54(2):238–242

    CAS  PubMed  Google Scholar 

  • Kiel JA, Emmrich K, Meyer HE, Kunau WH (2005a) Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 280(3):1921–1930

    CAS  PubMed  Google Scholar 

  • Kiel JA, Otzen M, Veenhuis M, van der Klei IJ (2005b) Obstruction of polyubiquitination affects PTS1 peroxisomal matrix protein import. Biochim Biophys Acta 1745(2):176–186

    CAS  PubMed  Google Scholar 

  • Kiel JA, Veenhuis M, van der Klei IJ (2006) PEX genes in fungal genomes: common, rare or redundant. Traffic 7(10):1291–1303

    CAS  PubMed  Google Scholar 

  • Kienow L, Schneider K, Bartsch M, Stuible HP, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J Exp Bot 59(2):403–419

    CAS  PubMed  Google Scholar 

  • Koellensperger G, Daubert S, Erdmann R, Hann S, Rottensteiner H (2007) Characterisation of zinc-binding domains of peroxisomal RING finger proteins using size exclusion chromatography/inductively coupled plasma-mass spectrometry. Biol Chem 388(11):1209–1214

    CAS  PubMed  Google Scholar 

  • Koller A, Snyder WB, Faber KN, Wenzel TJ, Rangell L, Keller GA, Subramani S (1999) Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J Cell Biol 146(1):99–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kou J, Kovacs GG, Höftberger R, Kulik W, Brodde A, Forss-Petter S, Hönigschnabl S, Gleiss A, Brügger B, Wanders R, Just W, Budka H, Jungwirth S, Fischer P, Berger J (2011) Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 122(3):271–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kragt A, Voorn-Brouwer T, van den Berg M, Distel B (2005) The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells. J Biol Chem 280(9):7867–7874

    CAS  PubMed  Google Scholar 

  • Krazy H, Michels PA (2006) Identification and characterization of three peroxins–PEX6, PEX10 and PEX12–involved in glycosome biogenesis in Trypanosoma brucei. Biochim Biophys Acta 1763(1):6–17

    CAS  PubMed  Google Scholar 

  • Kunau W-H, Beyer A, Franken T, Götte K, Marzioch M, Saidowsky J, Skaletz-Rorowski A, Wiebel FF (1993) Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: Forward and reversed genetics. Biochimie 75:209–224

    CAS  PubMed  Google Scholar 

  • Lazarow PB, DeDuve C (1976) A fatty acyl-CoA oxidazing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 73:2043–2046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leon S, Subramani S (2007) A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. J Biol Chem 282(10):7424–7430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leon S, Goodman JM, Subramani S (2006a) Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. Biochim Biophys Acta 1763(12):1552–1564

    CAS  PubMed  Google Scholar 

  • Leon S, Zhang L, McDonald WH, Yates J 3rd, Cregg JM, Subramani S (2006b) Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J Cell Biol 172(1):67–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Subramani S (2013) Unique requirements for mono- and polyubiquitination of the peroxisomal targeting signal co-receptor, Pex20. J Biol Chem 288(10):7230–7240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Ma C, Subramani S (2012) Recent advances in peroxisomal matrix protein import. Curr Opin Cell Biol 24(4):484–489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L (2012) Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimers Dis 29(2):241–254

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Tamura S, Fujiki Y (2003a) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol 5(5):454–460

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Tamura S, Furuki S, Miyata N, Moser A, Shimozawa N, Moser HW, Suzuki Y, Kondo N, Fujiki Y (2003b) Mutations in novel peroxin gene PEX26 that cause peroxisome-biogenesis disorders of complementation group 8 provide a genotype-phenotype correlation. Am J Hum Genet 73(2):233–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Micobiol 76(17):5702–5709

    CAS  Google Scholar 

  • Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 25(24):10822–10832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyata N, Hosoi K, Mukai S, Fujiki Y (2009) In vitro import of peroxisome-targeting signal type 2 (PTS2) receptor Pex7p into peroxisomes. Biochim Biophys Acta 1793(5):860–870

    CAS  PubMed  Google Scholar 

  • Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y (2012) AWP1/ZFAND6 Functions in Pex5 Export by Interacting with Cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 13(1):168–183

    CAS  PubMed  Google Scholar 

  • Müller WH, van der Krift TP, Krouwer AJ, Wösten HA, van der Voort LH, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10(2):489–495

    PubMed Central  PubMed  Google Scholar 

  • Nagotu S, Kalel VC, Erdmann R, Platta HW (2012) Molecular basis of peroxisomal biogenesis disorders caused by defects in peroxisomal matrix protein import. Biochim Biophys Acta 1822(9):1326–1336

    CAS  PubMed  Google Scholar 

  • Nashiro C, Kashiwagi A, Matsuzaki T, Tamura S, Fujiki Y (2011) Recruiting Mechanism of the AAA peroxins, Pex1p and Pex6p, to Pex26p on Peroxisome Membrane. Traffic 12(6):774–788

    CAS  PubMed  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9(1):27–43

    CAS  PubMed  Google Scholar 

  • Nito K, Kamigaki A, Kondo M, Hayashi M, Nishimura M (2007) Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants. Plant Cell Physiol 48(6):763–774

    CAS  PubMed  Google Scholar 

  • Novikoff AB, Novikoff PM, Davis C, Quintana N (1973) Studies on microperoxisomes. V are microperoxisomes ubiquitous in mammalian cells? J Histochem Cytochem 21(8):737–755

    CAS  PubMed  Google Scholar 

  • Oeljeklaus S, Reinartz BS, Wolf J, Wiese S, Tonillo J, Podwojski K, Kuhlmann K, Stephan C, Meyer HE, Schliebs W, Brocard C, Erdmann R, Warscheid B (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11(4):2567–2580

    CAS  PubMed  Google Scholar 

  • Okumoto K, Abe I, Fujiki Y (2000) Molecular anatomy of the peroxin Pex12p: RING finger domain is essential for the Pex12p function and interacts with the peroxisome targeting signal type 1-receptor Pex5p and a RING peroxin, Pex10p. J Biol Chem 275(33):25700–25710

    CAS  PubMed  Google Scholar 

  • Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y (2011) Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 12(8):1067–1083

    CAS  PubMed  Google Scholar 

  • Oliveira ME, Gouveia AM, Pinto RA, Sa-Miranda C, Azevedo JE (2003) The energetics of Pex5p-mediated peroxisomal protein import. J Biol Chem 278(41):39483–39488

    CAS  PubMed  Google Scholar 

  • Opaliński L, Veenhuis M, van der Klei IJ (2011) Peroxisomes: membrane events accompanying peroxisome proliferation. Int J Biochem Cell Biol 43(6):847–851

    PubMed  Google Scholar 

  • Otzen M, Wang D, Lunenborg MG, van der Klei IJ (2005) Hansenula polymorpha Pex20p is an oligomer that binds the peroxisomal targeting signal 2 (PTS2). J Cell Sci 118(Pt 15):3409–3418

    CAS  PubMed  Google Scholar 

  • Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–964

    CAS  PubMed  Google Scholar 

  • Park S, Isaacson R, Kim HT, Silver PA, Wagner G (2005) Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 13(7):995–1005

    CAS  PubMed  Google Scholar 

  • Peraza-Reyes L, Zickler D, Berteaux-Lecellier V (2008) The peroxisome RING-finger complex is required for meiocyte formation in the fungus Podospora anserina. Traffic 9(11):1998–2009

    CAS  PubMed  Google Scholar 

  • Platta HW, Erdmann R (2007a) Peroxisomal dynamics. Trends Cell Biol 17(10):474–484

    CAS  PubMed  Google Scholar 

  • Platta HW, Erdmann R (2007b) The peroxisomal protein import machinery. FEBS Lett 581(15):2811–2819

    CAS  PubMed  Google Scholar 

  • Platta HW, Girzalsky W, Erdmann R (2004) Ubiquitination of the peroxisomal import receptor Pex5p. Biochem J 384(Pt 1):37–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7(8):817–822

    CAS  PubMed  Google Scholar 

  • Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R (2007a) Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 177(2):197–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Platta HW, Thoms S, Kunau WH, Erdmann R (2007b) Function of the ubiquitin-conjugating enzyme Pex4p and the AAA peroxins Pex1p and Pex6p in peroxisomal protein transport, vol 25. The Enzymes Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Platta HW, Debelyy MO, El Magraoui F, Erdmann R (2008) The AAA peroxins Pex1p and Pex6p function as dislocases for the ubiquitinated peroxisomal import receptor Pex5p. Biochem Soc Trans 36:99–104

    CAS  PubMed  Google Scholar 

  • Platta HW, El Magraoui F, Baumer BE, Schlee D, Girzalsky W, Erdmann R (2009) Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 29(20):5505–5516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Platta HW, Hagen S, Erdmann R (2013) The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 70(8):1393–1411

    CAS  PubMed  Google Scholar 

  • Prestele J, Hierl G, Scherling C, Hetkamp S, Schwechheimer C, Isono E, Weckwerth W, Wanner G, Gietl C (2010) Different functions of the C3HC4 zinc RING finger peroxins PEX10, PEX2, and PEX12 in peroxisome formation and matrix protein import. Proc Natl Acad Sci U S A 107(33):14915–14920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purdue PE, Lazarow PB (2001) Pex18p is constitutively degraded during peroxisome biogenesis. J Biol Chem 276(50):47684–47689

    CAS  PubMed  Google Scholar 

  • Ratzel SE, Lingard MJ, Woodward AW, Bartel B (2011) Reducing PEX13 expression ameliorates physiological defects of late-acting peroxin mutants. Traffic 12(1):121–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9(9):679–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenkranz K, Birschmann I, Grunau S, Girzalsky W, Kunau WH, Erdmann R (2006) Functional association of the AAA complex and the peroxisomal importomer. FEBS J 273(16):3804–3815

    CAS  PubMed  Google Scholar 

  • Saffian D, Grimm I, Girzalsky W, Erdmann R (2012) ATP-dependent assembly of the heteromeric Pex1p-Pex6p-complex of the peroxisomal matrix protein import machinery. J Struct Biol 179(2):126–132

    CAS  PubMed  Google Scholar 

  • Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC, Woods YL, Lane DP (2004) Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279(40):42169–42181

    CAS  PubMed  Google Scholar 

  • Schliebs W, Girzalsky W, Erdmann R (2010) Peroxisomal protein import and ERAD: variations on a common theme. Nat Rev Mol Cell Biol 11(12):885–890

    CAS  PubMed  Google Scholar 

  • Schluter A, Fourcade S, Ripp R, Mandel JL, Poch O, Pujol A (2006) The evolutionary origin of peroxisomes: an ER-peroxisome connection. Mol Biol Evol 23(4):838–845

    CAS  PubMed  Google Scholar 

  • Schumann U, Prestele J, O’Geen H, Brueggeman R, Wanner G, Gietl C (2007) Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc Natl Acad Sci U S A 104(3):1069–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo JG, Lai CY, Miceli MV, Jazwinski SM (2007) A novel role of peroxin PEX6: suppression of aging defects in mitochondria. Aging Cell 6(3):405–413

    CAS  PubMed  Google Scholar 

  • Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9(2):543–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seufert W, McGrath JP, Jentsch S (1990) UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J 9(13):4535–3541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu Y, Okuda-Shimizu Y, Hendershot LM (2010) Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol Cell 40(6):917–926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimozawa N, Tsukamoto T, Suzuki Y, Orii T, Shirayoshi Y, Mori T, Fujiki Y (1992) A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255(5048):1132–1134

    CAS  PubMed  Google Scholar 

  • Shiozawa K, Maita N, Tomii K, Seto A, Goda N, Akiyama Y, Shimizu T, Shirakawa M, Hiroaki H (2004) Structure of the N-terminal domain of PEX1 AAA-ATPase. Characterization of a putative adaptor-binding domain. J Biol Chem 279(48):50060–50068

    CAS  PubMed  Google Scholar 

  • Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A (2003) An arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. Plant Physiol 133(4):1809–1819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spiegel CN, Batista-Pereira LG, Bretas JA, Eiras AE, Hooper AM, Peixoto AA, Soares MJ (2011) Pheromone gland development and pheromone production in lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae). J Med Entomol 48(3):489–495

    CAS  PubMed  Google Scholar 

  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763(12):1733–1748

    CAS  PubMed  Google Scholar 

  • Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT (2013) Nucleotide binding and conformational switching in the hexameric ring of a AAA + machine. Cell 153(3):628–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura S, Shimozawa N, Suzuki Y, Tsukamoto T, Osumi T, Fujiki Y (1998) A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p. Biochem Biophys Res Commun 245(3):883–886

    CAS  PubMed  Google Scholar 

  • Tamura S, Yasutake S, Matsumoto N, Fujiki Y (2006) Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p. J Biol Chem 281(38):27693–27704

    CAS  PubMed  Google Scholar 

  • Taylor EB, Rutter J (2011) Mitochondrial quality control by the ubiquitin-proteasome system. Biochem Soc Trans 39(5):1509–1513

    CAS  PubMed  Google Scholar 

  • Theodoulou FL, Bernhardt K, Linka N, Baker A (2013) Peroxisome membrane proteins: multiple trafficking routes and multiple functions? Biochem J 451(3):345–352

    CAS  PubMed  Google Scholar 

  • Till A, Lakhani R, Burnett SF, Subramani S (2012) Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012:512721

    PubMed Central  PubMed  Google Scholar 

  • Titorenko VI, Rachubinski RA (2000) Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J Cell Biol 150(4):881–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tower RJ, Fagarasanu A, Aitchison JD, Rachubinski RA (2011) The Peroxin Pex34p functions with the Pex11 family of peroxisomal divisional proteins to regulate the peroxisome population in yeast. Mol Biol Cell 22(10):1727–1738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukamoto T, Miura S, Fujiki Y (1991) Restoration by a 35 K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350(6313):77–81

    CAS  PubMed  Google Scholar 

  • van der Klei IJ, Hilbrands RE, Kiel JAKW, Rasmussen SW, Cregg JM, Veenhuis M (1998) The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. EMBO J 17(13):3608–3618

    PubMed Central  PubMed  Google Scholar 

  • van der Zand A, Gent J, Braakman I, Tabak HF (2012) Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149(2):397–409

    PubMed  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J 1(8):945–951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006a) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    CAS  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006b) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763(12):1707–1720

    CAS  PubMed  Google Scholar 

  • Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH (2007) Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol 177(4):613–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Herr RA, Hansen TH (2012) Ubiquitination of substrates by esterification. Traffic 13(1):19–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warner DR, Roberts EA, Greene RM, Pisano MM (2003) Identification of novel Smad binding proteins. Biochem Biophys Res Commun 312(4):1185–1190

    CAS  PubMed  Google Scholar 

  • Waterham HR, Ebberink MS (2012) Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta 1822(9):1430–1441

    CAS  PubMed  Google Scholar 

  • Wendler P, Ciniawsky S, Kock M, Kube S (2012) Structure and function of the AAA + nucleotide binding pocket. Biochim Biophys Acta 1823(1):2–14

    CAS  PubMed  Google Scholar 

  • Wenzel DM, Lissounov A, Brzovic PS, Klevit RE (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474:105–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widhalm JR, Ducluzeau AL, Buller NE, Elowsky CG, Olsen LJ, Basset GJ (2012) Phylloquinone (vitamin K(1) ) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-Coa. Plant J 71(2):205–215

    CAS  PubMed  Google Scholar 

  • Wiebel FF, Kunau W-H (1992) The PAS2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature 359(6390):73–76

    CAS  PubMed  Google Scholar 

  • Williams C, van den Berg M, Sprenger RR, Distel B (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282(31):22534–22543

    CAS  PubMed  Google Scholar 

  • Williams C, van den Berg M, Geers E, Distel B (2008) Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. Biochem Biophys Res Commun 374(4):620–624

    CAS  PubMed  Google Scholar 

  • Williams C, van den Berg M, Panjikar S, Stanley WA, Distel B, Wilmanns M (2012) Insights into ubiquitin-conjugating enzyme/ co-activator interactions from the structure of the Pex4p:Pex22p complex. EMBO J 31(2):391–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zolman BK, Bartel B (2004) An arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci U S A 101(6):1786–1791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zolman BK, Monroe-Augustus M, Silva ID, Bartel B (2005) Identification and functional characterization of arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 17(12):3422–3435

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all the scientists whose work could not be cited due to space limitations. This work was supported by grants of the Deutsche Forschungsgemeinschaft (SFB 642 and FOR 1905) to RE and HWP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harald W. Platta or Ralf Erdmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Platta, H.W., Hagen, S., Erdmann, R. (2014). The Peroxisomal Exportomer. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_15

Download citation

Publish with us

Policies and ethics